File size: 65,203 Bytes
2695b3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:21000
- loss:ContrastiveTensionLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: '        "The lemma follows by invoking Lemma 4.1 and Lemma A.1.\n\u220e",'
  sentences:
  - '        "To better address non-stationarity with changing uncertainty, we introduce
    Location-Scale Noise Model (LSNM) into DDPMs, which relaxes the traditional Additive
    Noise Model (ANM) by incorporating a contextually changing variance: \ud835\udc18=f\u2062(\ud835\udc17)+g\u2062(\ud835\udc17)\u2062\u03f5\ud835\udc18\ud835\udc53\ud835\udc17\ud835\udc54\ud835\udc17bold-italic-\u03f5\\mathbf{Y}=f(\\mathbf{X})+\\sqrt{g(\\mathbf{X})}\\boldsymbol{\\epsilon}bold_Y
    = italic_f ( bold_X ) + square-root start_ARG italic_g ( bold_X ) end_ARG bold_italic_\u03f5,
    where g\u2062(\ud835\udc17)\ud835\udc54\ud835\udc17g(\\mathbf{X})italic_g ( bold_X
    ) is an \ud835\udc17\ud835\udc17\\mathbf{X}bold_X-dependent variance model. LSNM
    is capable of modeling both the contextual mean through f\u2062(\ud835\udc17)\ud835\udc53\ud835\udc17f(\\mathbf{X})italic_f
    ( bold_X ) and the contextual uncertainty through g\u2062(\ud835\udc17)\ud835\udc54\ud835\udc17\\sqrt{g(\\mathbf{X})}square-root
    start_ARG italic_g ( bold_X ) end_ARG. In the special case where g\u2062(\ud835\udc17)\u22611\ud835\udc54\ud835\udc171g(\\mathbf{X})\\equiv
    1italic_g ( bold_X ) \u2261 1, this simplifies to the standard ANM. Building upon
    this more flexible and expressive assumption, we propose the Non-stationary Diffusion
    Model (NsDiff) framework, which provides an uncertainty-aware noise schedule for
    both forward and reverse diffusion processes. In summary, our contributions are
    as:\n\n\n\u2022\n\nWe observe that the ANM is inadequate for capturing the varying
    uncertainty and propose a novel framework that integrates LSNM to allow for explict
    uncertainty modeling. This work is the first attempt to introduce LSNM into probabilistic
    time series forecasting.\n\n\n\n\u2022\n\nTo fundamentally elevate the noise modeling
    capabilities of DDPM, we seamlessly integrate time-varying variances into the
    core diffusion process through an uncertainty-aware noise schedule that dynamically
    adapts the noise variance at each step.\n\n\n\n\n\u2022\n\nExperimental results
    indicate that NsDiff achieves superior performance in capturing uncertainty. Specifically,
    in comparison to the second-best recent baseline TMDM, NsDiff improves up to 66.3%
    on real-world datasets and 88.3% on synthetic datasets.",'
  - '        "The deep neural network representation of the Bifrost simulations is
    highly compressed compared to the original Bifrost data: the deep neural network
    has 44,261 floating point values whereas the Bifrost simulation cube has 96\u22c596\u22c564\u22c520=11,796,480\u22c5969664201179648096\\cdot
    96\\cdot 64\\cdot 20=11,796,48096 \u22c5 96 \u22c5 64 \u22c5 20 = 11 , 796 , 480
    floating point values. This corresponds to a compression by a factor of 267; this
    compression factor may be different for other numerical simulations and depends
    on their smoothness. In addition, the deep neural network can be evaluated at
    any point in space and time covered by the simulations, therefore enabling a trivial
    way to interpolate between grid points; furthermore, gradients are calculate with
    high efficiency with automatic differentiation. As such, it might be worth considering
    releasing deep-neural-network representations of (magneto)hydrodynamic simulations.",'
  - '        "\u03f5y\u2062(\u03bc)={1nt\u2062\u2211i=nkntey\u2062(ti,\u03bc)=1nt\u2062\u2211i=nknt|y~\u2062(ti,\u03bc)\u2212y\u2062(ti,\u03bc)|if\u00a0\u20621nt\u2062\u2211i=nknt|y\u2062(ti,\u03bc)|\u22641,1nt\u2062\u2211i=nkntey,r\u2062e\u2062l\u2062(ti,\u03bc)=1nt\u2062\u2211i=nknt|y~\u2062(ti,\u03bc)\u2212y\u2062(ti,\u03bc)|/|y\u2062(ti,\u03bc)|if\u00a0\u20621nt\u2062\u2211i=nknt|y\u2062(ti,\u03bc)|>1.subscriptitalic-\u03f5\ud835\udc66\ud835\udf07cases1subscript\ud835\udc5b\ud835\udc61superscriptsubscript\ud835\udc56subscript\ud835\udc5b\ud835\udc58subscript\ud835\udc5b\ud835\udc61subscript\ud835\udc52\ud835\udc66subscript\ud835\udc61\ud835\udc56\ud835\udf071subscript\ud835\udc5b\ud835\udc61superscriptsubscript\ud835\udc56subscript\ud835\udc5b\ud835\udc58subscript\ud835\udc5b\ud835\udc61~\ud835\udc66subscript\ud835\udc61\ud835\udc56\ud835\udf07\ud835\udc66subscript\ud835\udc61\ud835\udc56\ud835\udf07if\u00a01subscript\ud835\udc5b\ud835\udc61superscriptsubscript\ud835\udc56subscript\ud835\udc5b\ud835\udc58subscript\ud835\udc5b\ud835\udc61\ud835\udc66subscript\ud835\udc61\ud835\udc56\ud835\udf0711subscript\ud835\udc5b\ud835\udc61superscriptsubscript\ud835\udc56subscript\ud835\udc5b\ud835\udc58subscript\ud835\udc5b\ud835\udc61subscript\ud835\udc52\ud835\udc66\ud835\udc5f\ud835\udc52\ud835\udc59subscript\ud835\udc61\ud835\udc56\ud835\udf071subscript\ud835\udc5b\ud835\udc61superscriptsubscript\ud835\udc56subscript\ud835\udc5b\ud835\udc58subscript\ud835\udc5b\ud835\udc61~\ud835\udc66subscript\ud835\udc61\ud835\udc56\ud835\udf07\ud835\udc66subscript\ud835\udc61\ud835\udc56\ud835\udf07\ud835\udc66subscript\ud835\udc61\ud835\udc56\ud835\udf07if\u00a01subscript\ud835\udc5b\ud835\udc61superscriptsubscript\ud835\udc56subscript\ud835\udc5b\ud835\udc58subscript\ud835\udc5b\ud835\udc61\ud835\udc66subscript\ud835\udc61\ud835\udc56\ud835\udf071\\centering\\epsilon_{y}(\\mu)=\\begin{cases}\\frac{1}{n_{t}}\\sum\\limits_{i=n_{k}}^%\n{n_{t}}e_{y}(t_{i},\\mu)=\\frac{1}{n_{t}}\\sum\\limits_{i=n_{k}}^{n_{t}}|\\tilde{y}%\n(t_{i},\\mu)-y(t_{i},\\mu)|&\\text{if
    }\\frac{1}{n_{t}}\\sum\\limits_{i=n_{k}}^{n_{t%\n}}|y(t_{i},\\mu)|\\leq 1,\\\\\n\\frac{1}{n_{t}}\\sum\\limits_{i=n_{k}}^{n_{t}}e_{y,rel}(t_{i},\\mu)=\\frac{1}{n_{t%\n}}\\sum\\limits_{i=n_{k}}^{n_{t}}|\\tilde{y}(t_{i},\\mu)-y(t_{i},\\mu)|/|y(t_{i},%\n\\mu)|&\\text{if
    }\\frac{1}{n_{t}}\\sum\\limits_{i=n_{k}}^{n_{t}}|y(t_{i},\\mu)|>1.%\n\\end{cases}\\@add@centeringitalic_\u03f5
    start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( italic_\u03bc ) = { start_ROW
    start_CELL divide start_ARG 1 end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_t
    end_POSTSUBSCRIPT end_ARG \u2211 start_POSTSUBSCRIPT italic_i = italic_n start_POSTSUBSCRIPT
    italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT
    italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_y
    end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ,
    italic_\u03bc ) = divide start_ARG 1 end_ARG start_ARG italic_n start_POSTSUBSCRIPT
    italic_t end_POSTSUBSCRIPT end_ARG \u2211 start_POSTSUBSCRIPT italic_i = italic_n
    start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT
    italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUPERSCRIPT |
    over~ start_ARG italic_y end_ARG ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
    , italic_\u03bc ) - italic_y ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
    , italic_\u03bc ) | end_CELL start_CELL if divide start_ARG 1 end_ARG start_ARG
    italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG \u2211 start_POSTSUBSCRIPT
    italic_i = italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT
    start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT
    end_POSTSUPERSCRIPT | italic_y ( italic_t start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
    , italic_\u03bc ) | \u2264 1 , end_CELL end_ROW start_ROW start_CELL divide start_ARG
    1 end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG
    \u2211 start_POSTSUBSCRIPT italic_i = italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
    end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t
    end_POSTSUBSCRIPT end_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_y ,
    italic_r italic_e italic_l end_POSTSUBSCRIPT ( italic_t start_POSTSUBSCRIPT italic_i
    end_POSTSUBSCRIPT , italic_\u03bc ) = divide start_ARG 1 end_ARG start_ARG italic_n
    start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG \u2211 start_POSTSUBSCRIPT
    italic_i = italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT end_POSTSUBSCRIPT
    start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT
    end_POSTSUPERSCRIPT | over~ start_ARG italic_y end_ARG ( italic_t start_POSTSUBSCRIPT
    italic_i end_POSTSUBSCRIPT , italic_\u03bc ) - italic_y ( italic_t start_POSTSUBSCRIPT
    italic_i end_POSTSUBSCRIPT , italic_\u03bc ) | / | italic_y ( italic_t start_POSTSUBSCRIPT
    italic_i end_POSTSUBSCRIPT , italic_\u03bc ) | end_CELL start_CELL if divide start_ARG
    1 end_ARG start_ARG italic_n start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_ARG
    \u2211 start_POSTSUBSCRIPT italic_i = italic_n start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT
    end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n start_POSTSUBSCRIPT italic_t
    end_POSTSUBSCRIPT end_POSTSUPERSCRIPT | italic_y ( italic_t start_POSTSUBSCRIPT
    italic_i end_POSTSUBSCRIPT , italic_\u03bc ) | > 1 . end_CELL end_ROW\n\n(12)",'
- source_sentence: '        "While significant research addresses design tolerance
    optimisation in manufacturing, there is very little focus on production inspection
    machines such as AOIs for manufactured products. For AOIs inspecting PCBs, each
    component may demand a distinct tolerance for each type of inspection, leading
    to thousands of possible scenarios. Consequently, a general paradigm is needed
    that accommodates inspection of all components, including new introductions that
    the system has not previously encountered.",'
  sentences:
  - '        "Indeed, for any e\u2208D0\ud835\udc52subscript\ud835\udc370e\\in D_{0}italic_e
    \u2208 italic_D start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, there exists a \u03b4\ud835\udeff\\deltaitalic_\u03b4-tube
    Te\u03b4\u2062(ae)subscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udc52subscript\ud835\udc4e\ud835\udc52T^{\\delta}_{e}(a_{e})italic_T
    start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e
    end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT )
    centred at some ae\u2208Asubscript\ud835\udc4e\ud835\udc52\ud835\udc34a_{e}\\in
    Aitalic_a start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT \u2208 italic_A such
    that\n\n\n\n1|Te\u03b4\u2062(ae)|n\u2062|E\u2229Te\u03b4\u2062(ae)|n>\u03bb.1subscriptsubscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udc52subscript\ud835\udc4e\ud835\udc52\ud835\udc5bsubscript\ud835\udc38subscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udc52subscript\ud835\udc4e\ud835\udc52\ud835\udc5b\ud835\udf06\\frac{1}{\\left|T^{\\delta}_{e}(a_{e})\\right|_{n}}\\left|E\\cap
    T^{\\delta}_{e}(a_{%\ne})\\right|_{n}>\\lambda.divide start_ARG 1 end_ARG start_ARG
    | italic_T start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT
    italic_e end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT
    ) | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG | italic_E \u2229 italic_T
    start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e
    end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT )
    | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT > italic_\u03bb .\n\n\n\nSince
    Emsubscript\ud835\udc38\ud835\udc5aE_{m}italic_E start_POSTSUBSCRIPT italic_m
    end_POSTSUBSCRIPT and E\u00af\u00af\ud835\udc38\\overline{E}over\u00af start_ARG
    italic_E end_ARG form a partition of E\ud835\udc38Eitalic_E, we obtain\n\n\n\n1|Te\u03b4\u2062(ae)|n\u2062|Em\u2229Te\u03b4\u2062(ae)|n+1|Te\u03b4\u2062(ae)|n\u2062|E\u00af\u2229Te\u03b4\u2062(ae)|n>\u03bb.1subscriptsubscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udc52subscript\ud835\udc4e\ud835\udc52\ud835\udc5bsubscriptsubscript\ud835\udc38\ud835\udc5asubscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udc52subscript\ud835\udc4e\ud835\udc52\ud835\udc5b1subscriptsubscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udc52subscript\ud835\udc4e\ud835\udc52\ud835\udc5bsubscript\u00af\ud835\udc38subscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udc52subscript\ud835\udc4e\ud835\udc52\ud835\udc5b\ud835\udf06\\frac{1}{\\left|T^{\\delta}_{e}(a_{e})\\right|_{n}}\\left|E_{m}\\cap
    T^{\\delta}_{e}%\n(a_{e})\\right|_{n}+\\frac{1}{\\left|T^{\\delta}_{e}(a_{e})\\right|_{n}}\\left|%\n\\overline{E}\\cap
    T^{\\delta}_{e}(a_{e})\\right|_{n}>\\lambda.divide start_ARG 1 end_ARG start_ARG
    | italic_T start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT
    italic_e end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT
    ) | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG | italic_E start_POSTSUBSCRIPT
    italic_m end_POSTSUBSCRIPT \u2229 italic_T start_POSTSUPERSCRIPT italic_\u03b4
    end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ( italic_a
    start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_n
    end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG | italic_T start_POSTSUPERSCRIPT
    italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT
    ( italic_a start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT
    italic_n end_POSTSUBSCRIPT end_ARG | over\u00af start_ARG italic_E end_ARG \u2229
    italic_T start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT
    italic_e end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT
    ) | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT > italic_\u03bb .\n\n\n\nThus,
    at least one of the terms on the left-hand side must be greater than \u03bb2\ud835\udf062\\frac{\\lambda}{2}divide
    start_ARG italic_\u03bb end_ARG start_ARG 2 end_ARG, implying e\u2208Dm\u222aD\u00af\ud835\udc52subscript\ud835\udc37\ud835\udc5a\u00af\ud835\udc37e\\in
    D_{m}\\cup\\overline{D}italic_e \u2208 italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT
    \u222a over\u00af start_ARG italic_D end_ARG from the definition (3.14) and (3.19).
    Since\n\n\n\n|Dm|n\u22121+|D\u00af|n\u22121\u2a7e|D0|n\u22121=\u03b50subscriptsubscript\ud835\udc37\ud835\udc5a\ud835\udc5b1subscript\u00af\ud835\udc37\ud835\udc5b1subscriptsubscript\ud835\udc370\ud835\udc5b1subscript\ud835\udf000\\left|D_{m}\\right|_{n-1}+\\left|\\overline{D}\\right|_{n-1}\\geqslant\\left|D_{0}%\n\\right|_{n-1}=\\varepsilon_{0}|
    italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT | start_POSTSUBSCRIPT
    italic_n - 1 end_POSTSUBSCRIPT + | over\u00af start_ARG italic_D end_ARG | start_POSTSUBSCRIPT
    italic_n - 1 end_POSTSUBSCRIPT \u2a7e | italic_D start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT
    | start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT = italic_\u03b5 start_POSTSUBSCRIPT
    0 end_POSTSUBSCRIPT\n\n\n\nand the stopping condition ensures\n\n\n\n|Dm|n\u22121<14\u2062\u03b50,subscriptsubscript\ud835\udc37\ud835\udc5a\ud835\udc5b114subscript\ud835\udf000\\left|D_{m}\\right|_{n-1}<\\frac{1}{4}\\varepsilon_{0},|
    italic_D start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT | start_POSTSUBSCRIPT
    italic_n - 1 end_POSTSUBSCRIPT < divide start_ARG 1 end_ARG start_ARG 4 end_ARG
    italic_\u03b5 start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ,\n\n\n\nit follows that\n\n\n(3.20)\n\n|D\u00af|n\u22121\u2a7e14\u2062\u03b50.subscript\u00af\ud835\udc37\ud835\udc5b114subscript\ud835\udf000\\left|\\overline{D}\\right|_{n-1}\\geqslant\\frac{1}{4}\\varepsilon_{0}.|
    over\u00af start_ARG italic_D end_ARG | start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT
    \u2a7e divide start_ARG 1 end_ARG start_ARG 4 end_ARG italic_\u03b5 start_POSTSUBSCRIPT
    0 end_POSTSUBSCRIPT .\n\n\n\nFor any \u03be\u2208D\u00af\ud835\udf09\u00af\ud835\udc37\\xi\\in\\overline{D}italic_\u03be
    \u2208 over\u00af start_ARG italic_D end_ARG, there exists a \u03b4\ud835\udeff\\deltaitalic_\u03b4-tube
    T\u03be\u03b4\u2062(a\u03be)subscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09T^{\\delta}_{\\xi}(a_{\\xi})italic_T
    start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_\u03be
    end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT
    ) centred at a\u03be\u2208Asubscript\ud835\udc4e\ud835\udf09\ud835\udc34a_{\\xi}\\in
    Aitalic_a start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT \u2208 italic_A
    such that\n\n\n\n1|T\u03be\u03b4\u2062(a\u03be)|n\u2062|\u22c3i=0m\u22121(E\u2229\u212ci)\u2229T\u03be\u03b4\u2062(a\u03be)|n>\u03bb2.1subscriptsubscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09\ud835\udc5bsubscriptsuperscriptsubscript\ud835\udc560\ud835\udc5a1\ud835\udc38subscript\u212c\ud835\udc56subscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09\ud835\udc5b\ud835\udf062\\frac{1}{\\left|T^{\\delta}_{\\xi}(a_{\\xi})\\right|_{n}}\\left|\\bigcup_{i=0}^{m-1}(%\nE\\cap\\mathcal{B}_{i})\\cap
    T^{\\delta}_{\\xi}(a_{\\xi})\\right|_{n}>\\frac{\\lambda}{%\n2}.divide start_ARG
    1 end_ARG start_ARG | italic_T start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT
    start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT
    italic_\u03be end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT
    end_ARG | \u22c3 start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT
    italic_m - 1 end_POSTSUPERSCRIPT ( italic_E \u2229 caligraphic_B start_POSTSUBSCRIPT
    italic_i end_POSTSUBSCRIPT ) \u2229 italic_T start_POSTSUPERSCRIPT italic_\u03b4
    end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT ( italic_a
    start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_n
    end_POSTSUBSCRIPT > divide start_ARG italic_\u03bb end_ARG start_ARG 2 end_ARG
    .\n\n\n\nThis implies\n\n\n(3.21)\n\n\u2211i=0m\u22121|\u212ci\u2229T\u03be\u03b4\u2062(a\u03be)|n|T\u03be\u03b4\u2062(a\u03be)|n\u2a7e\u2211i=0m\u22121|(E\u2229\u212ci)\u2229T\u03be\u03b4\u2062(a\u03be)|n|T\u03be\u03b4\u2062(a\u03be)|n\u2a7e|\u22c3i=0m\u22121(E\u2229\u212ci)\u2229T\u03be\u03b4\u2062(a\u03be)|n|T\u03be\u03b4\u2062(a\u03be)|n>\u03bb2superscriptsubscript\ud835\udc560\ud835\udc5a1subscriptsubscript\u212c\ud835\udc56subscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09\ud835\udc5bsubscriptsubscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09\ud835\udc5bsuperscriptsubscript\ud835\udc560\ud835\udc5a1subscript\ud835\udc38subscript\u212c\ud835\udc56subscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09\ud835\udc5bsubscriptsubscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09\ud835\udc5bsubscriptsuperscriptsubscript\ud835\udc560\ud835\udc5a1\ud835\udc38subscript\u212c\ud835\udc56subscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09\ud835\udc5bsubscriptsubscriptsuperscript\ud835\udc47\ud835\udeff\ud835\udf09subscript\ud835\udc4e\ud835\udf09\ud835\udc5b\ud835\udf062\\begin{split}\\frac{\\sum_{i=0}^{m-1}\\left|\\mathcal{B}_{i}\\cap
    T^{\\delta}_{\\xi}(%\na_{\\xi})\\right|_{n}}{\\left|T^{\\delta}_{\\xi}(a_{\\xi})\\right|_{n}}&\\geqslant%\n\\frac{\\sum_{i=0}^{m-1}\\left|(E\\cap\\mathcal{B}_{i})\\cap
    T^{\\delta}_{\\xi}(a_{\\xi%\n})\\right|_{n}}{\\left|T^{\\delta}_{\\xi}(a_{\\xi})\\right|_{n}}\\\\\n&\\geqslant\\frac{\\left|\\bigcup_{i=0}^{m-1}(E\\cap\\mathcal{B}_{i})\\cap
    T^{\\delta}%\n_{\\xi}(a_{\\xi})\\right|_{n}}{\\left|T^{\\delta}_{\\xi}(a_{\\xi})\\right|_{n}}>\\frac{%\n\\lambda}{2}\\end{split}start_ROW
    start_CELL divide start_ARG \u2211 start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT
    start_POSTSUPERSCRIPT italic_m - 1 end_POSTSUPERSCRIPT | caligraphic_B start_POSTSUBSCRIPT
    italic_i end_POSTSUBSCRIPT \u2229 italic_T start_POSTSUPERSCRIPT italic_\u03b4
    end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT ( italic_a
    start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_n
    end_POSTSUBSCRIPT end_ARG start_ARG | italic_T start_POSTSUPERSCRIPT italic_\u03b4
    end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT ( italic_a
    start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT ) | start_POSTSUBSCRIPT italic_n
    end_POSTSUBSCRIPT end_ARG end_CELL start_CELL \u2a7e divide start_ARG \u2211 start_POSTSUBSCRIPT
    italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m - 1 end_POSTSUPERSCRIPT
    | ( italic_E \u2229 caligraphic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
    ) \u2229 italic_T start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT
    italic_\u03be end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT
    ) | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG start_ARG | italic_T
    start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_\u03be
    end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT
    ) | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG end_CELL end_ROW start_ROW
    start_CELL end_CELL start_CELL \u2a7e divide start_ARG | \u22c3 start_POSTSUBSCRIPT
    italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m - 1 end_POSTSUPERSCRIPT
    ( italic_E \u2229 caligraphic_B start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT
    ) \u2229 italic_T start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT
    italic_\u03be end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT
    ) | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG start_ARG | italic_T
    start_POSTSUPERSCRIPT italic_\u03b4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_\u03be
    end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_\u03be end_POSTSUBSCRIPT
    ) | start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_ARG > divide start_ARG
    italic_\u03bb end_ARG start_ARG 2 end_ARG end_CELL end_ROW",'
  - '        "In [kipvar], the authors first add and subtract terms to\nexplicitly
    express\nIn\u2062(f,\u22c5)subscript\ud835\udc3c\ud835\udc5b\ud835\udc53\u22c5I_{n}(f,\\cdot)italic_I
    start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_f , \u22c5 ) in terms
    of\nDynkin martingale and then pass to\nthe limit \u03bb\u21930\u2193\ud835\udf060\\lambda\\downarrow
    0italic_\u03bb \u2193 0, before\nanalyzing that result in a second limit as\nn\u2192\u221e\u2192\ud835\udc5bn\\to\\inftyitalic_n
    \u2192 \u221e. This is the approach of\n[varadhan95, liggett99, landim] as well.\nThe
    essential idea of the present proof is to first note that\nfor f\u2208\ud835\udc9f(\u2212A^)\u221212\u2283\u211bA^\ud835\udc53subscript\ud835\udc9fsuperscript^\ud835\udc3412superset-ofsubscript\u211b^\ud835\udc34f\\in\\mathscr{D}_{(-\\hat{A})^{-\\frac{1}{2}}}\\supset\\mathscr{R}_{\\hat{A}}italic_f
    \u2208 script_D start_POSTSUBSCRIPT ( - over^ start_ARG italic_A end_ARG ) start_POSTSUPERSCRIPT
    - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_POSTSUBSCRIPT
    \u2283 script_R start_POSTSUBSCRIPT over^ start_ARG italic_A end_ARG end_POSTSUBSCRIPT,
    the sequence\n\u039bn\u2062(f,\u03bbn,\u22c5)subscript\u039b\ud835\udc5b\ud835\udc53subscript\ud835\udf06\ud835\udc5b\u22c5\\Lambda_{n}(f,\\lambda_{n},\\cdot)roman_\u039b
    start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_f , italic_\u03bb start_POSTSUBSCRIPT
    italic_n end_POSTSUBSCRIPT , \u22c5 ) converges to zero\nin probability as n\u2192\u221e\u2192\ud835\udc5bn\\to\\inftyitalic_n
    \u2192 \u221e for a choice of the sequence \u03bbnsubscript\ud835\udf06\ud835\udc5b\\lambda_{n}italic_\u03bb
    start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT\ntending to zero. From this it
    follows that\nIn\u2062(f,\u22c5)subscript\ud835\udc3c\ud835\udc5b\ud835\udc53\u22c5I_{n}(f,\\cdot)italic_I
    start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_f , \u22c5 ) and In\u2062(f,\u22c5)\u2212\u039bn\u2062(f,\u03bbn,\u22c5)\u2261An\u2062(f,\u03bbn,\u22c5)subscript\ud835\udc3c\ud835\udc5b\ud835\udc53\u22c5subscript\u039b\ud835\udc5b\ud835\udc53subscript\ud835\udf06\ud835\udc5b\u22c5subscript\ud835\udc34\ud835\udc5b\ud835\udc53subscript\ud835\udf06\ud835\udc5b\u22c5I_{n}(f,\\cdot)-\\Lambda_{n}(f,\\lambda_{n},\\cdot)\\equiv
    A_{n}(f,\\lambda_{n},\\cdot)italic_I start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT
    ( italic_f , \u22c5 ) - roman_\u039b start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT
    ( italic_f , italic_\u03bb start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , \u22c5
    ) \u2261 italic_A start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_f ,
    italic_\u03bb start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , \u22c5 ) have the
    same limit distribution, provided that the limit exists.\nThe proof is then completed
    by showing that the latter\nlimit exists and can be obtained by an\nargument using
    Theorem 1 in which n\ud835\udc5bnitalic_n tends to infinity for a\nfixed small,
    but positive\n\u03bb\u2113subscript\ud835\udf06\u2113\\lambda_{\\ell}italic_\u03bb
    start_POSTSUBSCRIPT roman_\u2113 end_POSTSUBSCRIPT, to be determined. Thus, this
    new\nproof exhibits the asymptotic distribution of\n1n\u2062\u222b0n\u2062tf\u2062(X\u2062(s))\u2062\ud835\udc51s,t\u226501\ud835\udc5bsuperscriptsubscript0\ud835\udc5b\ud835\udc61\ud835\udc53\ud835\udc4b\ud835\udc60differential-d\ud835\udc60\ud835\udc610\\frac{1}{\\sqrt{n}}\\int_{0}^{nt}f(X(s))ds,t\\geq
    0divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_n end_ARG end_ARG
    \u222b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n
    italic_t end_POSTSUPERSCRIPT italic_f ( italic_X ( italic_s ) ) italic_d italic_s
    , italic_t \u2265 0,\nf\u2208\ud835\udc9f(\u2212A^)\u221212\ud835\udc53subscript\ud835\udc9fsuperscript^\ud835\udc3412f\\in\\mathscr{D}_{(-\\hat{A})^{-\\frac{1}{2}}}italic_f
    \u2208 script_D start_POSTSUBSCRIPT ( - over^ start_ARG italic_A end_ARG ) start_POSTSUPERSCRIPT
    - divide start_ARG 1 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_POSTSUBSCRIPT,
    explicitly\nas the limit of\n1n\u2062\u222b0n\u2062tA^\u2062R\u03bbn\u2062f\u2062(X\u2062(s)),t\u226501\ud835\udc5bsuperscriptsubscript0\ud835\udc5b\ud835\udc61^\ud835\udc34subscript\ud835\udc45subscript\ud835\udf06\ud835\udc5b\ud835\udc53\ud835\udc4b\ud835\udc60\ud835\udc610\\frac{1}{\\sqrt{n}}\\int_{0}^{nt}\\hat{A}R_{\\lambda_{n}}f(X(s)),t\\geq
    0divide start_ARG 1 end_ARG start_ARG square-root start_ARG italic_n end_ARG end_ARG
    \u222b start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n
    italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_A end_ARG italic_R start_POSTSUBSCRIPT
    italic_\u03bb start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT
    italic_f ( italic_X ( italic_s ) ) , italic_t \u2265 0,\nA^\u2062R\u03bbn\u2062f\u2208\u211bA^^\ud835\udc34subscript\ud835\udc45subscript\ud835\udf06\ud835\udc5b\ud835\udc53subscript\u211b^\ud835\udc34\\hat{A}R_{\\lambda_{n}}f\\in\\mathscr{R}_{\\hat{A}}over^
    start_ARG italic_A end_ARG italic_R start_POSTSUBSCRIPT italic_\u03bb start_POSTSUBSCRIPT
    italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_f \u2208 script_R start_POSTSUBSCRIPT
    over^ start_ARG italic_A end_ARG end_POSTSUBSCRIPT,\nfor a sequence of positive
    \u201ctuning\u201dparameters \u03bbnsubscript\ud835\udf06\ud835\udc5b\\lambda_{n}italic_\u03bb
    start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT.\nSo this new approach\nmay have
    added value in\ncomputational and further theoretical refinements of the fclt.",'
  - '        "Few-shot Voice Cloning: This follows the central concept of speaker
    adaptation. However, the difference is the amount of data required. Thus, the
    reference audio can range from a few seconds to a maximum of 5 minutes, which
    is decided based on previous work, and anything more is challenging to obtain
    in real-life scenarios.",'
- source_sentence: '        "For any \u03b3\u2208(0,2\u2062d)\ud835\udefe02\ud835\udc51\\gamma\\in(0,\\sqrt{2d})italic_\u03b3
    \u2208 ( 0 , square-root start_ARG 2 italic_d end_ARG ), define a stochastic process\n{P\u03b3(\u03bb)\u2062(\ud835\udc2d):\ud835\udc2d\u2208[0,1]d}conditional-setsuperscriptsubscript\ud835\udc43\ud835\udefe\ud835\udf06\ud835\udc2d\ud835\udc2dsuperscript01\ud835\udc51\\{P_{\\gamma}^{(\\lambda)}(\\mathbf{t}):\\mathbf{t}\\in[0,1]^{d}\\}{
    italic_P start_POSTSUBSCRIPT italic_\u03b3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT
    ( italic_\u03bb ) end_POSTSUPERSCRIPT ( bold_t ) : bold_t \u2208 [ 0 , 1 ] start_POSTSUPERSCRIPT
    italic_d end_POSTSUPERSCRIPT } by\n\n\n(3.52)\n\nP\u03b3(\u03bb)\u2062(\ud835\udc2d):=exp\u2061(\u03b3\u2062Z\u03bb\u2062(\ud835\udc2d)\u2212\u03b322\u2062\ud835\udd3c\u2062[Z\u03bb\u2062(\ud835\udc2d)2])=exp\u2061(\u03b3\u2062Z\u03bb\u2062(\ud835\udc2d)\u2212\u03b322\u2062R\u03bb\u2062(\ud835\udc2d,\ud835\udc2d)).assignsuperscriptsubscript\ud835\udc43\ud835\udefe\ud835\udf06\ud835\udc2d\ud835\udefesubscript\ud835\udc4d\ud835\udf06\ud835\udc2dsuperscript\ud835\udefe22\ud835\udd3cdelimited-[]subscript\ud835\udc4d\ud835\udf06superscript\ud835\udc2d2\ud835\udefesubscript\ud835\udc4d\ud835\udf06\ud835\udc2dsuperscript\ud835\udefe22subscript\ud835\udc45\ud835\udf06\ud835\udc2d\ud835\udc2d\\displaystyle
    P_{\\gamma}^{(\\lambda)}(\\mathbf{t}):=\\exp\\Big{(}\\gamma Z_{\\lambda%\n}(\\mathbf{t})-\\frac{\\gamma^{2}}{2}\\mathbb{E}[Z_{\\lambda}(\\mathbf{t})^{2}]\\Big{%\n)}=\\exp\\Big{(}\\gamma
    Z_{\\lambda}(\\mathbf{t})-\\frac{\\gamma^{2}}{2}R_{\\lambda}(%\n\\mathbf{t},\\mathbf{t})\\Big{)}.italic_P
    start_POSTSUBSCRIPT italic_\u03b3 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( italic_\u03bb
    ) end_POSTSUPERSCRIPT ( bold_t ) := roman_exp ( italic_\u03b3 italic_Z start_POSTSUBSCRIPT
    italic_\u03bb end_POSTSUBSCRIPT ( bold_t ) - divide start_ARG italic_\u03b3 start_POSTSUPERSCRIPT
    2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG blackboard_E [ italic_Z start_POSTSUBSCRIPT
    italic_\u03bb end_POSTSUBSCRIPT ( bold_t ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
    ] ) = roman_exp ( italic_\u03b3 italic_Z start_POSTSUBSCRIPT italic_\u03bb end_POSTSUBSCRIPT
    ( bold_t ) - divide start_ARG italic_\u03b3 start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
    end_ARG start_ARG 2 end_ARG italic_R start_POSTSUBSCRIPT italic_\u03bb end_POSTSUBSCRIPT
    ( bold_t , bold_t ) ) .",'
  sentences:
  - '        "In this section, we highlight open challenges and future directions
    in network-level ISAC design and the practical implementation of distributed ISAC
    systems.",'
  - '}'
  - '        "Warning: As before, we need to restrict ourselves to a smaller class
    of perturbation data (i.e. sufficiently small Hamiltonian perturbations) to ensure
    that the element on the right is in \u039b0subscript\u039b0\\Lambda_{0}roman_\u039b
    start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT, in other words such that for any quilted
    strip u\u00af\u00af\ud835\udc62\\underline{u}under\u00af start_ARG italic_u end_ARG
    we have \u03c9\u2062(u\u00af)=0\ud835\udf14\u00af\ud835\udc620\\omega(\\underline{u})=0italic_\u03c9
    ( under\u00af start_ARG italic_u end_ARG ) = 0 if and only if [u\u00af]=0delimited-[]\u00af\ud835\udc620[\\underline{u}]=0[
    under\u00af start_ARG italic_u end_ARG ] = 0.",'
- source_sentence: '        "For the regular planar lattice graphs, \ud835\udca2\u25b3,\ud835\udca2\u25a1,\ud835\udca2\u2394subscript\ud835\udca2\u25b3subscript\ud835\udca2\u25a1subscript\ud835\udca2\u2394\\mathcal{G}_{\\triangle},\\,\\mathcal{G}_{\\square},\\,\\mathcal{G}_{\\hexagon}caligraphic_G
    start_POSTSUBSCRIPT \u25b3 end_POSTSUBSCRIPT , caligraphic_G start_POSTSUBSCRIPT
    \u25a1 end_POSTSUBSCRIPT , caligraphic_G start_POSTSUBSCRIPT \u2394 end_POSTSUBSCRIPT,\n\n\n\nvol\u27c2\u2062(G)=vol\u2062(G)=vol\u25c6\u2062(G)+vol\u25c6\u2062(G\u2217)=2\u2062\u03c0\u2062m\u2062(p\u2062(z,w))=2\u2062\u03c0\u2062zGfd.superscriptvolperpendicular-to\ud835\udc3avol\ud835\udc3asuperscriptvol\u25c6\ud835\udc3asuperscriptvol\u25c6superscript\ud835\udc3a2\ud835\udf0bm\ud835\udc5d\ud835\udc67\ud835\udc642\ud835\udf0bsubscriptsuperscript\ud835\udc67fd\ud835\udc3a{\\rm
    vol}^{\\perp}(G)={\\rm vol}(G)={\\rm vol}^{\\lozenge}(G)+{\\rm vol}^{\\lozenge}%\n(G^{*})=2\\pi\\,\\mathrm{m}(p(z,w))=2\\pi\\,z^{\\rm
    fd}_{G}.roman_vol start_POSTSUPERSCRIPT \u27c2 end_POSTSUPERSCRIPT ( italic_G
    ) = roman_vol ( italic_G ) = roman_vol start_POSTSUPERSCRIPT \u25c6 end_POSTSUPERSCRIPT
    ( italic_G ) + roman_vol start_POSTSUPERSCRIPT \u25c6 end_POSTSUPERSCRIPT ( italic_G
    start_POSTSUPERSCRIPT \u2217 end_POSTSUPERSCRIPT ) = 2 italic_\u03c0 roman_m (
    italic_p ( italic_z , italic_w ) ) = 2 italic_\u03c0 italic_z start_POSTSUPERSCRIPT
    roman_fd end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_G end_POSTSUBSCRIPT .\n\n\n\nThus,
    the lower bound in Conjecture\u00a01 holds with equality.",'
  sentences:
  - '        "Let F\ud835\udc39Fitalic_F denote a target model, which will now be
    trained on a modified dataset Dp\u2062o\u2062i\u2062s\u2062o\u2062n\u2062e\u2062d=D\u2217subscript\ud835\udc37\ud835\udc5d\ud835\udc5c\ud835\udc56\ud835\udc60\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc51superscript\ud835\udc37D_{poisoned}=D^{*}italic_D
    start_POSTSUBSCRIPT italic_p italic_o italic_i italic_s italic_o italic_n italic_e
    italic_d end_POSTSUBSCRIPT = italic_D start_POSTSUPERSCRIPT \u2217 end_POSTSUPERSCRIPT,
    where D\u2217superscript\ud835\udc37D^{*}italic_D start_POSTSUPERSCRIPT \u2217
    end_POSTSUPERSCRIPT is a surreptitiously modified version of the clean training
    dataset D\ud835\udc37Ditalic_D. The aim of data poisoning F\ud835\udc39Fitalic_F
    is creating a poisoned model F\u2217superscript\ud835\udc39F^{*}italic_F start_POSTSUPERSCRIPT
    \u2217 end_POSTSUPERSCRIPT that makes incorrect predictions, often without an
    observable degradation in its overall accuracy. Data poisoning compromises the
    model integrity by introducing systematic biases that serve the attacker\u2019s
    objectives while evading detection during model training.",'
  - '        "Figure 2 illustrates a comparison between the observed low-medium resolution
    and the high-resolution spectral profiles of the oxygen A band, depicting observations
    of (telluric) molecular oxygen. The upper panel of Figure 2 shows low to medium
    resolution telluric oxygen features. These were obtained from the ESO Science
    Archive Facility using X-shooter[141] observations during February and March 2024
    by the UVES team, as part of Program ID: 60.A-9022(c), OB ID:2024672, 2024624
    and 2024822, at various resolutions with short exposures (12 seconds). The results
    indicate that higher resolution enables the observation of more detailed features
    within the molecular oxygen spectrum, revealing the signal more distinctly within
    each spectral line. The lower panel of Figure 2 shows performance tests for future
    HRS instrumentation by observing the Sun through the Earth\u2019s atmosphere.
    These profiles demonstrate the measurement outcomes obtained using two types of
    interferometers: Michelson-based and FPI-based. Firstly, the FTS from the National
    Solar Observatory at Kitt Peak [126] reported R=700,000 in the oxygen A-band.
    Secondly, the FIOS-demo[133] showcases spectral profiles based on a chained FPI
    array with a spectral resolution of R=250,000. This resolution can potentially
    increase up to R=350,000 with the addition of each array. The throughput of each
    additional unit, however, decreases by 10-15% [50]. One benefit of achieving this
    level of resolution is the increase in signal-to-noise ratio and the sampling
    frequency for each spectral line, which may reduce the required observing time,
    as predicted in [46, 93].",'
  - '        "At this point, we can reconcile what we observe with the evidence from
    the last paragraphs on TFP in Figure 5. We argue that a critical mass is needed
    in either case to record a significant impact of the exporting activity. At lower
    levels of exporting activity, the company starts to benefit from economies of
    scale but also needs to invest in productive capacity. To keep up with the technological
    frontier is costly, and it often requires an upgrade of obsolete tangible assets.
    We argue that the combined evidence of rising operational capacity (sales and
    costs) and investment in fixed assets explains why we observe a negative albeit
    small productivity loss in an intermediate range of export intensity. It is only
    when the company operates abroad at a larger scale that positive albeit small
    TFP gains come as a consequence of exporting. In this case, we argue, economies
    of scale become evident and the capital adjustment unveils its impact on firms\u2019
    performance.",'
- source_sentence: '        "To generate queer warmth phrases, we employed persona
    prompting to adapt our SAE warmth phrases (see Table\u00a04). Three distinct personas
    were designed and used as prompts to produce iterations of the 14 SAE warmth phrases.
    Each phrase was processed through all three persona prompts (see Table\u00a08),
    resulting in a total of 42 unique queer warmth phrases. The final set of phrases
    is presented below.",'
  sentences:
  - '    "title": "Always skip attention",'
  - '        "To generate queer warmth phrases, we employed persona prompting to adapt
    our SAE warmth phrases (see Table\u00a04). Three distinct personas were designed
    and used as prompts to produce iterations of the 14 SAE warmth phrases. Each phrase
    was processed through all three persona prompts (see Table\u00a08), resulting
    in a total of 42 unique queer warmth phrases. The final set of phrases is presented
    below.",'
  - '        "Assuming an adequately sized Bloom filter, the proportion of false positives
    is small, ensuring that XAcomsuperscriptsubscript\ud835\udc4b\ud835\udc34comX_{A}^{\\text{com}}italic_X
    start_POSTSUBSCRIPT italic_A end_POSTSUBSCRIPT start_POSTSUPERSCRIPT com end_POSTSUPERSCRIPT
    and XBcomsuperscriptsubscript\ud835\udc4b\ud835\udc35comX_{B}^{\\text{com}}italic_X
    start_POSTSUBSCRIPT italic_B end_POSTSUBSCRIPT start_POSTSUPERSCRIPT com end_POSTSUPERSCRIPT
    are highly similar. This minimizes the occurrence of similar but non-identical
    buckets, thereby mitigating the redundancy issue inherent in bucketing. Furthermore,
    the use of bucketing not only detects false positives but also ensures convergence,
    addressing the limitation of Bloom filters alone. This combined approach is analogous
    to the RSync protocol, where Bloom filters act as the weak checksum and bucketing
    serves as the strong checksum.",'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Stergios-Konstantinidis/MNLP_M2_document_encoder")
# Run inference
sentences = [
    '        "To generate queer warmth phrases, we employed persona prompting to adapt our SAE warmth phrases (see Table\\u00a04). Three distinct personas were designed and used as prompts to produce iterations of the 14 SAE warmth phrases. Each phrase was processed through all three persona prompts (see Table\\u00a08), resulting in a total of 42 unique queer warmth phrases. The final set of phrases is presented below.",',
    '        "To generate queer warmth phrases, we employed persona prompting to adapt our SAE warmth phrases (see Table\\u00a04). Three distinct personas were designed and used as prompts to produce iterations of the 14 SAE warmth phrases. Each phrase was processed through all three persona prompts (see Table\\u00a08), resulting in a total of 42 unique queer warmth phrases. The final set of phrases is presented below.",',
    '    "title": "Always skip attention",',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 21,000 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                          | sentence_1                                                                          | label                                           |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                              | string                                                                              | int                                             |
  | details | <ul><li>min: 3 tokens</li><li>mean: 173.22 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 170.67 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>0: ~66.60%</li><li>1: ~33.40%</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | label          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>        "the user may robustify the design by selecting a suitable A^^\ud835\udc34\\widehat{A}over^ start_ARG italic_A end_ARG. Only the choice of A^^\ud835\udc34\\widehat{A}over^ start_ARG italic_A end_ARG has an impact at an algorithmic level and, normally, A^^\ud835\udc34\\widehat{A}over^ start_ARG italic_A end_ARG is tuned to a set A\ud835\udc34Aitalic_A that, in the user\u2019s mind, captures, and suitably describes, possible adversarial actions. Still, we remark that our results hold true for any choice of A^^\ud835\udc34\\widehat{A}over^ start_ARG italic_A end_ARG and A\ud835\udc34Aitalic_A (with A^\u2286A^\ud835\udc34\ud835\udc34\\widehat{A}\\subseteq Aover^ start_ARG italic_A end_ARG \u2286 italic_A), so accommodating situations in which, e.g., the user envisages adversarial actions of a certain type and, yet, he is willing to theoretically test the robustness of the design against actions of higher magnitude. One simple example of this situation occurs when the design is done...</code> | <code>        "the user may robustify the design by selecting a suitable A^^\ud835\udc34\\widehat{A}over^ start_ARG italic_A end_ARG. Only the choice of A^^\ud835\udc34\\widehat{A}over^ start_ARG italic_A end_ARG has an impact at an algorithmic level and, normally, A^^\ud835\udc34\\widehat{A}over^ start_ARG italic_A end_ARG is tuned to a set A\ud835\udc34Aitalic_A that, in the user\u2019s mind, captures, and suitably describes, possible adversarial actions. Still, we remark that our results hold true for any choice of A^^\ud835\udc34\\widehat{A}over^ start_ARG italic_A end_ARG and A\ud835\udc34Aitalic_A (with A^\u2286A^\ud835\udc34\ud835\udc34\\widehat{A}\\subseteq Aover^ start_ARG italic_A end_ARG \u2286 italic_A), so accommodating situations in which, e.g., the user envisages adversarial actions of a certain type and, yet, he is willing to theoretically test the robustness of the design against actions of higher magnitude. One simple example of this situation occurs when the design is done...</code> | <code>1</code> |
  | <code>        "Aha Moment of R1-Reward. Through our task design and reward function formulation, the R1-Reward model effectively learns the reward modeling task structure during the SFT phase. Following reinforcement learning, it reduces the length of reasoning to enhance efficiency. Visual examples of the model\u2019s output appear in Figures\u00a03 and\u00a06. The model autonomously learns a process to assess response quality. It first defines the goal, analyzes the image, attempts to solve the problem, and provides an answer. Based on this, the model evaluates Response 1 and Response 2, compares the two outputs, and gives a final ranking. Simultaneously, the model demonstrates different reflection patterns. In Figure\u00a03, the model encounters an error in its calculation, but after rechecking the bar chart, it recognizes the mistake and recalculates to obtain the correct result. In Figure\u00a06, the model misunderstands the problem. However, after outputting \u201cWait, re-reading the ...</code> | <code>        "In an ideal case, the hole made after the punch doesn\u2019t move and keeps the size of the needle. Then the hole is filled with a subsequent paint layer, if it is not made in the top layer.",</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>0</code> |
  | <code>        "In our search for the optimal parameters, we evaluated all possible combinations presented in Section\u00a03.3. To do this, we aggregated the results for each specific parameter configuration and computed the mean metrics. This approach allowed us to isolate the effects of each parameter under evaluation.",</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>        "We employ RWP to model the movement of humans within the indoor space and use the Matern hard-core process (MHCP) to model static obstacles, such as furniture or static humans, in the environment [15].",</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <code>0</code> |
* Loss: [<code>ContrastiveTensionLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastivetensionloss)

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 3
- `per_device_eval_batch_size`: 3
- `num_train_epochs`: 10
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 3
- `per_device_eval_batch_size`: 3
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 10
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step  | Training Loss |
|:------:|:-----:|:-------------:|
| 0.0714 | 500   | 1.8871        |
| 0.1429 | 1000  | 1.7445        |
| 0.2143 | 1500  | 1.7138        |
| 0.2857 | 2000  | 1.699         |
| 0.3571 | 2500  | 1.6729        |
| 0.4286 | 3000  | 1.6864        |
| 0.5    | 3500  | 1.6718        |
| 0.5714 | 4000  | 1.6754        |
| 0.6429 | 4500  | 1.6747        |
| 0.7143 | 5000  | 1.6709        |
| 0.7857 | 5500  | 1.6797        |
| 0.8571 | 6000  | 1.6768        |
| 0.9286 | 6500  | 1.6694        |
| 1.0    | 7000  | 1.6754        |
| 1.0714 | 7500  | 1.6632        |
| 1.1429 | 8000  | 1.6643        |
| 1.2143 | 8500  | 1.6553        |
| 1.2857 | 9000  | 1.6626        |
| 1.3571 | 9500  | 1.6734        |
| 1.4286 | 10000 | 1.673         |
| 1.5    | 10500 | 1.6611        |
| 1.5714 | 11000 | 1.671         |
| 1.6429 | 11500 | 1.6762        |
| 1.7143 | 12000 | 1.6717        |
| 1.7857 | 12500 | 1.6599        |
| 1.8571 | 13000 | 1.681         |
| 1.9286 | 13500 | 1.6715        |
| 2.0    | 14000 | 1.6815        |
| 2.0714 | 14500 | 1.6304        |
| 2.1429 | 15000 | 1.6351        |
| 2.2143 | 15500 | 1.648         |
| 2.2857 | 16000 | 1.6538        |
| 2.3571 | 16500 | 1.6396        |
| 2.4286 | 17000 | 1.632         |
| 2.5    | 17500 | 1.6497        |
| 2.5714 | 18000 | 1.6526        |
| 2.6429 | 18500 | 1.6346        |
| 2.7143 | 19000 | 1.6548        |
| 2.7857 | 19500 | 1.6549        |
| 2.8571 | 20000 | 1.6438        |
| 2.9286 | 20500 | 1.6448        |
| 3.0    | 21000 | 1.6435        |
| 3.0714 | 21500 | 1.589         |
| 3.1429 | 22000 | 1.6075        |
| 3.2143 | 22500 | 1.6084        |
| 3.2857 | 23000 | 1.6061        |
| 3.3571 | 23500 | 1.6121        |
| 3.4286 | 24000 | 1.6168        |
| 3.5    | 24500 | 1.6022        |
| 3.5714 | 25000 | 1.6164        |
| 3.6429 | 25500 | 1.6132        |
| 3.7143 | 26000 | 1.6036        |
| 3.7857 | 26500 | 1.6077        |
| 3.8571 | 27000 | 1.6241        |
| 3.9286 | 27500 | 1.6224        |
| 4.0    | 28000 | 1.6023        |
| 4.0714 | 28500 | 1.5479        |
| 4.1429 | 29000 | 1.5569        |
| 4.2143 | 29500 | 1.5611        |
| 4.2857 | 30000 | 1.5413        |
| 4.3571 | 30500 | 1.5568        |
| 4.4286 | 31000 | 1.5458        |
| 4.5    | 31500 | 1.5405        |
| 4.5714 | 32000 | 1.5707        |
| 4.6429 | 32500 | 1.557         |
| 4.7143 | 33000 | 1.5561        |
| 4.7857 | 33500 | 1.5698        |
| 4.8571 | 34000 | 1.546         |
| 4.9286 | 34500 | 1.5589        |
| 5.0    | 35000 | 1.5692        |
| 5.0714 | 35500 | 1.5029        |
| 5.1429 | 36000 | 1.5087        |
| 5.2143 | 36500 | 1.4882        |
| 5.2857 | 37000 | 1.5116        |
| 5.3571 | 37500 | 1.5016        |
| 5.4286 | 38000 | 1.4988        |
| 5.5    | 38500 | 1.5065        |
| 5.5714 | 39000 | 1.5089        |
| 5.6429 | 39500 | 1.5104        |
| 5.7143 | 40000 | 1.4937        |
| 5.7857 | 40500 | 1.4974        |
| 5.8571 | 41000 | 1.5095        |
| 5.9286 | 41500 | 1.5064        |
| 6.0    | 42000 | 1.5119        |
| 6.0714 | 42500 | 1.4572        |
| 6.1429 | 43000 | 1.4732        |
| 6.2143 | 43500 | 1.4534        |
| 6.2857 | 44000 | 1.4598        |
| 6.3571 | 44500 | 1.4626        |
| 6.4286 | 45000 | 1.4486        |
| 6.5    | 45500 | 1.4677        |
| 6.5714 | 46000 | 1.4705        |
| 6.6429 | 46500 | 1.4757        |
| 6.7143 | 47000 | 1.4724        |
| 6.7857 | 47500 | 1.4744        |
| 6.8571 | 48000 | 1.4571        |
| 6.9286 | 48500 | 1.4571        |
| 7.0    | 49000 | 1.4549        |
| 7.0714 | 49500 | 1.4198        |
| 7.1429 | 50000 | 1.4328        |
| 7.2143 | 50500 | 1.4322        |
| 7.2857 | 51000 | 1.4191        |
| 7.3571 | 51500 | 1.4355        |
| 7.4286 | 52000 | 1.4409        |
| 7.5    | 52500 | 1.4366        |
| 7.5714 | 53000 | 1.4378        |
| 7.6429 | 53500 | 1.4229        |
| 7.7143 | 54000 | 1.4386        |
| 7.7857 | 54500 | 1.453         |
| 7.8571 | 55000 | 1.419         |
| 7.9286 | 55500 | 1.4215        |
| 8.0    | 56000 | 1.4248        |
| 8.0714 | 56500 | 1.4184        |
| 8.1429 | 57000 | 1.4059        |
| 8.2143 | 57500 | 1.4011        |
| 8.2857 | 58000 | 1.3962        |
| 8.3571 | 58500 | 1.4134        |
| 8.4286 | 59000 | 1.4104        |
| 8.5    | 59500 | 1.3924        |
| 8.5714 | 60000 | 1.4062        |
| 8.6429 | 60500 | 1.4117        |
| 8.7143 | 61000 | 1.4192        |
| 8.7857 | 61500 | 1.402         |
| 8.8571 | 62000 | 1.3998        |
| 8.9286 | 62500 | 1.4087        |
| 9.0    | 63000 | 1.4203        |
| 9.0714 | 63500 | 1.389         |
| 9.1429 | 64000 | 1.4049        |
| 9.2143 | 64500 | 1.3897        |
| 9.2857 | 65000 | 1.3839        |
| 9.3571 | 65500 | 1.3712        |
| 9.4286 | 66000 | 1.3908        |
| 9.5    | 66500 | 1.3986        |
| 9.5714 | 67000 | 1.4014        |
| 9.6429 | 67500 | 1.3919        |
| 9.7143 | 68000 | 1.404         |
| 9.7857 | 68500 | 1.3921        |
| 9.8571 | 69000 | 1.3918        |
| 9.9286 | 69500 | 1.4046        |
| 10.0   | 70000 | 1.3923        |

</details>

### Framework Versions
- Python: 3.12.8
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.6.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### ContrastiveTensionLoss
```bibtex
@inproceedings{carlsson2021semantic,
    title={Semantic Re-tuning with Contrastive Tension},
    author={Fredrik Carlsson and Amaru Cuba Gyllensten and Evangelia Gogoulou and Erik Ylip{"a}{"a} Hellqvist and Magnus Sahlgren},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=Ov_sMNau-PF}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->