File size: 32,174 Bytes
2d06dcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 |
/* \index
* weibull.cpp provides the core functionality for computing weibull fittings, as well as CDF and INF given parms
*
*
* @Author Brian Heflin <bheflin@securics.com>
* @Author Walter Scheirer <walter@securics.com>
* @Author Terry Boult tboult@securics.com
*
* Copyright 2010, 2011, Securics Inc.
*
* @section LICENSE
* See accompanying LICENSE agrement for full details on rights.
*
* Parts of this technology are subject to SBIR data rights and as described in DFARS 252.227-7018 (June 1995) SBIR Data Rights which apply to Contract Number: N00014-11-C-0243 and STTR N00014-07-M-0421 to Securics Inc, 1870 Austin Bluffs Parkway, Colorado Springs, CO 80918
*
*The Government's rights to use, modify, reproduce, release, perform, display, or disclose technical data or computer software marked with this legend are restricted during the period shown as provided in paragraph (b)(4) of the Rights in Noncommercial Technical Data and Computer Software-Small Business Innovative Research (SBIR) Program clause contained in the above identified contract. Expiration of SBIR Data Rights: Expires four years after completion of the above cited project work for this or any other follow-on SBIR contract, whichever is later.
*
* No restrictions on government use apply after the expiration date shown above. Any reproduction of technical data, computer software, or portions thereof marked with this legend must also reproduce the markings.
*
*
* See overall comments in weibull.h
*
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include "malloc.h"
#include <memory.h>
#include <float.h>
#include "weibull.h"
#ifdef __cplusplus
extern "C" {
#endif
/* if WEIBULL_USE_ASSERTS is defined, the code will use asserts to ensure its requirements are true, otherwise it returns error codes. Default is not defined */
/* if WEIBULL_IGNORE_ERRORS is defined, the code will just presume things will work out and not waste time on testing for error. Default is not defined */
/*#define WEIBULL_USE_ASSERTS */
/* #define WEIBULL_IGNORE_ERRORS */
#ifdef WEIBULL_USE_ASSERTS
#include <assert.h>
#endif
#ifdef WEIBULL_IGNORE_ERRORS
int weibull_fit_verbose_debug=0;
#define WEIBULL_ERROR_HANDLER(x,msg)
#else
int weibull_fit_verbose_debug=1;
static int tthrow(int x, const char* msg){if(weibull_fit_verbose_debug) fprintf(stderr,"%s\n",msg); return x;}
#define WEIBULL_ERROR_HANDLER(x,msg) return tthrow(x,msg)
#endif
/* weibull_cdf computes the probability (given our assumptions) that the value x is an outlier ABOVE the fit distribution. if the distribution was non-match data, then it provides this probability that x is a match score. If data was match-data then it would be the probability of it being a larger non-match.
computes @f[ 1-e^{{x/scale}^{shape}} @f]
@param x the location at which to compute the probability of being an outlier
@param scale the scale parameter of the Weibull. This is the first element in weibullparms (as computed by our weibull_fit)
@param shape the scale parameter of the Weibull. This is the first second in weibullparms (as computed by our weibull_fit)
@return if in the range [0-1] it is the probability of X being an outlier. Any value < 0 is an error code. returns -1 for invalid scale <=0 , -2 for invalid shape <=0
*
*/
double weibull_cdf(double x, double scale, double shape)
{
double cdf;
double tempVal, tempVal1;
if(x<0) return 0; /* optimize for the simple case that can be common in playing with SVMs. (a valid value, and can ignore other possible errors) */
#ifndef WEIBULL_IGNORE_ERRORS
#ifdef WEIBULL_USE_ASSERTS
assert(scale>0);
assert(shape>0);
#else
if(scale<=0) WEIBULL_ERROR_HANDLER( -1, "Bad scale in weibull_cdf");
if(shape <=0) WEIBULL_ERROR_HANDLER(-2, "Bad shape in weibull_cdf");
#endif
#endif
tempVal = x/scale;
tempVal1 = pow(tempVal,shape);
cdf = 1-exp(-1*tempVal1);
return cdf;
}
/* weibull_inv computes the inverse weibull, i.e. returns the score S (given our assumptions) such that x=weibull_cdf(s,scale,shape). Note it estimates from above, so if x=1.0 expect an answer of inf (infinity).
@param x the location at which you compute the inverse (must be between [0,1]
@param scale the scale parameter of the weibull. This is the first element in weibullparms (as computed by our weibull_fit)
@param shape the scale parameter of the weibull. This is the first second in weibullparms (as computed by our weibull_fit)
@return if X in the range [0-1], return S such that x=weibull_cdf(s,scale,shape). The return value is in the range [0,inf]. Any return value < 0 is an error code. returns -1 for invalid scale <=0 , -2 for invalid shape <=0 -3 for X<0, -4 for x >1
*
*/
double weibull_inv(double x, double scale, double shape)
{
double inv;
double tempVal, tempVal1, tempVal2;
#ifndef WEIBULL_IGNORE_ERRORS
#ifdef WEIBULL_USE_ASSERTS
assert(scale>0);
assert(shape>0);
assert(x>=0);
assert(x<=1);
#else
if(scale<=0) WEIBULL_ERROR_HANDLER( -1, "Bad scale in weibull_cdf");
if(shape <=0) WEIBULL_ERROR_HANDLER(-2, "Bad shape in weibull_cdf");
if(x<0) WEIBULL_ERROR_HANDLER(-3,"Invalid X<0 in weibull_ing");
if(x>1) WEIBULL_ERROR_HANDLER(-4,"Invalid X>1 in weibull_ing");
#endif
#endif
tempVal = log(1-x);
tempVal *= -1;
tempVal1 = 1/shape;
tempVal2 = pow(tempVal, tempVal1);
inv = scale * tempVal2;
return inv;
}
/*
printWeibullBuildInfo prints, to the file provied as an argument some information about the current package build information
*/
void printWeibullBuildInfo(FILE *fh)
{
if(fh == NULL)
fh = stdout;
#ifdef HAVE_CONFIG_H
fprintf(fh, "Project name: %s\n", PACKAGE_STRING);
#endif
fprintf(fh, "Git SHA Hash $Id: e6733c27c2f37c37aa58fe5f2b7d30aa084cd1e5 $\n");
}
/* abandon all hope ye who pass this point. We be mixing stuff in ugly ugly way including some conversion from fortran (erf approximations etc) and some non-obvious MLE estimations. */
#ifdef __cplusplus
}
#endif
#ifdef _WIN32
static __inline int fix(double n)
#else
static inline int fix(double n)
#endif
{
return (int)n;
}
/* erf function, based on Fortran calcerf which is turn is basd on
"Rational Chebyshev approximations for the error function" C by W. J. Cody, Math. Comp., 1969, PP. 631-638.
This code uses rational functions that theoretically approximate erf(x) and erfc(x) to at least 18 significant decimal digits, and on IEEE hardware is generally to near machine precision.
Note there are accelerated versions for GPUs and in the Intel Math Kernel library, so if you do this a lot it may be worh using those libraries.
*/
static double wcalcerfc(double x)
{
double PI = 3.141592653589793238462;
double thresh = 0.46875;
double a [] = {3.16112374387056560e00, 1.13864154151050156e02, 3.77485237685302021e02, 3.20937758913846947e03, 1.85777706184603153e-1};
double b [] = {2.36012909523441209e01, 2.44024637934444173e02, 1.28261652607737228e03, 2.84423683343917062e03};
double c [] = {5.64188496988670089e-1, 8.88314979438837594e00, 6.61191906371416295e01, 2.98635138197400131e02, 8.81952221241769090e02, 1.71204761263407058e03, 2.05107837782607147e03, 1.23033935479799725e03, 2.15311535474403846e-8};
double d [] = {1.57449261107098347e01, 1.17693950891312499e02, 5.37181101862009858e02, 1.62138957456669019e03, 3.29079923573345963e03, 4.36261909014324716e03, 3.43936767414372164e03, 1.23033935480374942e03};
double p [] = {3.05326634961232344e-1, 3.60344899949804439e-1, 1.25781726111229246e-1, 1.60837851487422766e-2, 6.58749161529837803e-4, 1.63153871373020978e-2};
double q [] = {2.56852019228982242e00, 1.87295284992346047e00, 5.27905102951428412e-1, 6.05183413124413191e-2, 2.33520497626869185e-3};
double result=0;
double xk;
double absxk;
double y,z;
double xnum,xden;
double tempVal, tempVal1;
double del;
int i;
xk = x;
absxk = fabs(xk);
if (absxk <= thresh) /* evaluate erf for |x| <= 0.46875 */
{
y = absxk;
z = y * y;
xnum = a[4]*z;
xden = z;
for (i=0; i<3; i++)
{
xnum = (xnum + a[i]) * z;
xden = (xden + b[i]) * z;
}
tempVal=xk*(xnum + a[3]);
tempVal1=xden + b[3];
result = tempVal/tempVal1;
result = 1 - result;
}
else if (absxk <= 4.0)/* evaluate erfc for 0.46875 <= |x| <= 4.0 */
{
y = absxk;
xnum = c[8]*y;
xden = y;
for (i = 0; i< 7; i++)
{
xnum = (xnum + c[i]) * y;
xden = (xden + d[i]) * y;
}
tempVal=xnum + c[7];
tempVal1=xden + d[7];
result = tempVal/tempVal1;
tempVal=fix(y*16);
tempVal1=16;
z=tempVal/tempVal1;
del = (y-z)*(y+z);
result = exp((-1*z)*z) * exp((-1*del)) * result;
}
else /*% evaluate erfc for |x| > 4.0 */
{
y = absxk;
z = 1/(y*y);
xnum = p[5]*z;
xden = z;
for (i = 0; i<4; i++)
{
xnum = (xnum + p[i]) * z;
xden = (xden + q[i]) * z;
}
tempVal=z*(xnum + p[4]);
tempVal1=xden + q[4];
result=tempVal/tempVal1;
tempVal=1/sqrt(PI);
tempVal -= result;
tempVal1 = y;
result=tempVal/tempVal1;
tempVal=fix(y*16);
z=tempVal/16;
del = (y-z) * (y+z);
result = exp((-1*z)*z) * exp((-1*del)) * result;
/*check to see if result is finite */
{
int test;
#ifdef _WIN32
test = _finite(result);
#else
test = isfinite(result);
#endif
if (test == 0) result = 0;
}
}
/*fix up for negative argument, erf, etc. */
if (xk < -thresh)
{
result = 2 - result;
}
else if (xk < -thresh)/* jint must = 2 */
{
if (xk < -26.628) /* if less than XNEG (the largest negative argument acceptable to ERFCX) by IEEE standard */
{
result = 1000000; /*%%ERROR (INF) */
WEIBULL_ERROR_HANDLER(-8,"wcalcerfc helper function failed to converge.." );
}
else
{
tempVal=fix(xk*16);
tempVal1=16;
z=tempVal/tempVal1;
del = (xk-z)*(xk+z);
y = exp(z*z) * exp(del);
result = (y+y) - result;
}
}
return result;
}
/*
Calculate the inverse complementary error function of the input argument y, for y in the interval [0, 2]. The inverse complementary error function find the value x that satisfies the equation y = erfc(x). based on fortran code based on "Rational Chebyshev approximations for the error function" C by W. J. Cody, Math. Comp., 1969, PP. 631-638.
Note there are accelerated versions for GPUs and in the Intel Math Kernel library, so if you do this a lot it may be worh using those libraries.
*/
static double derfcinv(double x)
{
double a [] = {1.370600482778535e-02, -3.051415712357203e-01, 1.524304069216834, -3.057303267970988, 2.710410832036097, -8.862269264526915e-01};
double b [] = {-5.319931523264068e-02, 6.311946752267222e-01, -2.432796560310728, 4.175081992982483, -3.320170388221430};
double c [] = {5.504751339936943e-03, 2.279687217114118e-01, 1.697592457770869, 1.802933168781950, -3.093354679843504, -2.077595676404383};
double d [] = {7.784695709041462e-03, 3.224671290700398e-01, 2.445134137142996, 3.754408661907416};
double q,r,u;
double result = 0;
double xlow = 0.0485000000;
double xhigh = 1.9515000000;
double tosp = 1.1283791670955126645;
double xk;
double tempVal, tempVal1, tempVal2;
xk = x;
/*Rational approximation for central region */
if ((xlow <= xk) && (xk <= xhigh))
{
q = xk - 1;
r = q*q;
tempVal1=(((((a[0]*r+a[1])*r+a[2])*r+a[3])*r+a[4])*r+a[5])*q;
tempVal2=((((b[0]*r+b[1])*r+b[2])*r+b[3])*r+b[4])*r+1;
result = tempVal1/tempVal2;
}
/*Rational approximation for lower region */
else if ((0 < xk) && (xk < xlow))
{
tempVal=xk/2;
q = sqrt(-2*log(tempVal));
tempVal1=((((c[0]*q+c[1])*q+c[2])*q+c[3])*q+c[4])*q+c[5];
tempVal2=(((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1;
result=tempVal1/tempVal2;
}
/*Rational approximation for upper region */
else if ((xhigh < xk) && (xk < 2))
{
tempVal=xk/2;
q = sqrt(-2*log(1-tempVal));
tempVal1= -1*(((((c[0]*q+c[1])*q+c[2]))*q+c[3])*q+c[4])*q+c[5];
tempVal2= (((d[0]*q+d[1])*q+d[2])*q+d[3])*q+1;
result = tempVal1/tempVal2;
}
/* Root finding with Halley's method */
/* For f = erfc(x) - y so then f' = -2/sqrt(pi)*exp(-x^2), and f" = -2*x*f' */
{
double erfcx = wcalcerfc(result);
if(erfcx <0) WEIBULL_ERROR_HANDLER(-9999,"derfcinv fails because wcalcerfc failed");
tempVal= (-1*tosp);
tempVal1=(-1*result)*(result);
tempVal1=exp(tempVal1);
tempVal2=tempVal*tempVal1;
u = (erfcx - xk)/tempVal2;
}
tempVal=(1+result*u);
tempVal1= u / tempVal;
result = result - tempVal1;
return result;
}
static int weibull_neg_log_likelihood(double* nlogL, double* acov, double* weibulparms, double* data,
double* censoring, double* frequency, int size)
{
int i;
double mu = weibulparms[0]; /* scale */
double sigma = weibulparms[1]; /* shape */
double* z = (double*)malloc(sizeof(double)*size);
double* expz = (double*)malloc(sizeof(double)*size);
double* L = (double*)malloc(sizeof(double)*size);
double logSigma;
if (sigma <= 0) WEIBULL_ERROR_HANDLER(-1,"Bad sigma (shape) in weibull_neg_log_likelihood..");
logSigma = log(sigma);
for (i = 0; i < size; i++)
{
z[i] = (data[i]-mu)/sigma;
expz[i] = exp(z[i]);
L[i] = (z[i]-logSigma)*(1-censoring[i]-expz[i]);
}
/* Sum up the individual contributions, and return the negative log-likelihood. */
for (i=0; i<size; i++)
{
*nlogL += (frequency[i]*L[i]);
}
*nlogL = *nlogL * -1;
/*Compute the negative hessian at the parameter values, and invert to get */
/*the observed information matrix. */
{
double* unc=(double*)malloc(sizeof(double)*size);
double nH11=0;
double nH12=0;
double nH22=0;
for (i=0; i<size; i++)
{
unc[i]=(1-censoring[i]);
nH11=nH11+(frequency[i]*expz[i]);
}
for (i=0; i<size; i++)
{
nH12=nH12+(frequency[i] * ((z[i] + 1) * expz[i] - unc[i]));
nH22=nH22+(frequency[i] * (z[i] *(z[i] + 2) * expz[i] - ((2 * z[i] + 1) *unc[i])));
}
{
double sigmaSq = sigma * sigma;
double avarDenom = (nH11*nH22 - nH12*nH12);
acov[0]=sigmaSq*(nH22/avarDenom);
acov[1]=sigmaSq*((-1*nH12)/avarDenom);
acov[2]=sigmaSq*((-1*nH12)/avarDenom);
acov[3]=sigmaSq*(nH11/avarDenom);
}
free(unc);
}
free(z);
free(expz);
free(L);
return 0;
}
static double weibull_scale_likelihood(double sigma, double* x, double* w, double xbar, int size)
{
double v;
double* wLocal;
int i;
double sumxw;
double sumw;
wLocal=(double*)malloc(sizeof(double)*size);
for (i=0; i<size; i++)
{
wLocal[i]=w[i]*exp(x[i]/sigma);
}
sumxw=0;
sumw=0;
for (i=0; i<size; i++)
{
sumxw+=(wLocal[i]*x[i]);
sumw+=wLocal[i];
}
v = (sigma + xbar - sumxw / sumw);
free(wLocal);
return v;
}
/* based on dfzero from fortan, it finxs the zero in the given search bands, and stops if it is within tolerance. */
static int wdfzero(double* sigmahat, double* likelihood_value, double* err, double* search_bands, double tol,
double* x0, double* frequency, double meanUncensored, int size)
{
double exitflag;
double a,b,c=0.0,d=0.0,e=0.0,m,p,q,r,s;
double fa,fb,fc;
double fval;
double tolerance;
exitflag=1;
*err = exitflag;
a = search_bands[0];
b = search_bands[1];
fa = weibull_scale_likelihood(a,x0,frequency,meanUncensored,size);
fb = weibull_scale_likelihood(b,x0,frequency,meanUncensored,size);
if (fa == 0)
{
b=a;
*sigmahat=b;
fval = fa;
*likelihood_value = fval;
return 1;
}
else if (fb == 0)
{
fval=fb;
*likelihood_value = fval;
*sigmahat=b;
return 1;
}
else if ((fa > 0) == (fb > 0))
{
WEIBULL_ERROR_HANDLER(-4,"ERROR: wdfzero says function values at the interval endpoints must differ in sign\n");
}
fc = fb;
/*Main loop, exit from middle of the loop */
while (fb != 0)
{
/* Insure that b is the best result so far, a is the previous */
/* value of b, and that c is on the opposite size of the zero from b. */
if ((fb > 0) == (fc > 0))
{
c = a;
fc = fa;
d = b - a;
e = d;
}
{
double absFC;
double absFB;
absFC=fabs(fc);
absFB=fabs(fb);
if (absFC < absFB)
{
a = b;
b = c;
c = a;
fa = fb;
fb = fc;
fc = fa;
}
}
/*set up for test of Convergence, is the interval small enough? */
m = 0.5*(c - b);
{
double absB, absM, absFA,absFB, absE;
absB=fabs(b);
absM=fabs(m);
absFA=fabs(fa);
absFB=fabs(fb);
absE=fabs(e);
{
tolerance = 2.0*tol *((absB > 1.0) ? absB : 1.0);
if ((absM <= tolerance) | (fb == 0.0))
break;
/*Choose bisection or interpolation */
if ((absE < tolerance) | (absFA <= absFB))
{
/*Bisection */
d = m;
e = m;
}
else
{
/*Interpolation */
s = fb/fa;
if (a == c)
{
/*Linear interpolation */
p = 2.0*m*s;
q = 1.0 - s;
}
else
{
/*Inverse quadratic interpolation */
q = fa/fc;
r = fb/fc;
p = s*(2.0*m*q*(q - r) - (b - a)*(r - 1.0));
q = (q - 1.0)*(r - 1.0)*(s - 1.0);
}
if (p > 0)
q = -1.0*q;
else
p = -1.0*p;
}
}
{
double tempTolerance = tolerance*q;
double absToleranceQ;
double absEQ;
double tempEQ = (0.5 * e * q);
absToleranceQ=fabs(tempTolerance);
absEQ=fabs(tempEQ);
/*Is interpolated point acceptable */
if ((2.0*p < 3.0*m*q - absToleranceQ) & (p < absEQ))
{
e = d;
d = p/q;
}
else
{
d = m;
e = m;
}
}
} /*Interpolation */
/*Next point */
a = b;
fa = fb;
if (fabs(d) > tolerance)
b = b + d;
else if (b > c)
b = b - tolerance;
else
b = b + tolerance;
fb = weibull_scale_likelihood(b,x0,frequency,meanUncensored,size);
}/*Main loop (While) */
fval=weibull_scale_likelihood(b,x0,frequency,meanUncensored,size);
*likelihood_value = fval;
*sigmahat=b;
return 1;
}
static int wnorminv(double* x, double* p,double *mu, double* sigma, int size)
{
double* tempP = (double *)malloc(sizeof(double)*4);
double* tempMU = (double *)malloc(sizeof(double)*4);
double* tempSigma = (double *)malloc(sizeof(double)*4);
tempP[0]=p[0];
tempP[1]=p[0];
tempP[2]=p[1];
tempP[3]=p[1];
tempMU[0]=mu[0];
tempMU[1]=mu[0];
tempMU[2]=mu[1];
tempMU[3]=mu[1];
tempSigma[0]=sigma[0];
tempSigma[1]=sigma[0];
tempSigma[2]=sigma[1];
tempSigma[3]=sigma[1];
{
double myTemp;
double tempVal1, tempVal2;
double* x0 = (double*)malloc(sizeof(double)*4);
myTemp=tempP[0];
{
double terfc=derfcinv(2*myTemp);
if(terfc==-9999) WEIBULL_ERROR_HANDLER(-7,"wnorminv fails since derfcinv");
tempVal1=(-1*sqrt((double)2))* terfc;
myTemp=tempP[2];
terfc=derfcinv(2*myTemp);
if(terfc==-9999) WEIBULL_ERROR_HANDLER(-7,"wnorminv fails since derfcinv");
tempVal2=(-1*sqrt((double)2))* terfc;
}
x0[0]=tempVal1;
x0[2]=tempVal1;
x0[1]=tempVal2;
x0[3]=tempVal2;
{
int i;
for (i=0; i<size; i++)
{
x[i]=tempSigma[i]*(x0[i])+tempMU[i];
}
}
free(x0);
}
free(tempP);
free(tempMU);
free(tempSigma);
return 0;
}
/* weibul fitting is based on methods developed for S/R and described
NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/
Lawless, J.F. (1982) Statistical Models and Methods for Lifetime Data, Wiley,
New York. and Meeker, W.Q. and L.A. Escobar (1998) Statistical Methods for Reliability Data, Wiley, New York.
with some checking and validation with various tools incldsdfasding R, S, MTLAB and
http://www.engineeredsoftware.com/nasa/pe_weibull_mle.htm (last accessed June 4 2012)
*/
#ifdef __cplusplus
extern "C" {
#endif
/*
weibull_fit does a maximum likelihood fitting to estimate the shape and scale parameters of a weibull probability distributon @f[ \frac{shape}{scale} (\frac{x}{scale}e^-{{x/scale}^{shape}} @f]
@param weibullparms is an array of 2 doubles, which must be preallocated. On successful completeion it will have shape and scale respectively.
@param wparm_confidenceintervals is an array of 4 doubles, which must be preallocated. On successful completeion it will have confidence interval for shape in the first two item and the CI for scale in the second two items
@param inputData is a pointer the data to use for fitting the distribution. It must have at least size elements
@param size is the size of the data to be used for fitting.
@param alpha is parameter for Confidence interval size estimation.
@return return should be 1 if all went well. Values < 0 imply errors in fitting or data. -1 means some data was negative, -2 means bad data range (e.g. all the same) -3 or lower means MLE did not converge.
*/
int weibull_fit(double* weibullparms, double* wparm_confidenceintervals, double* inputData, double alpha, int size)
{
double PI = 3.141592653589793238462;
double FULL_PRECISION_MIN = 2.225073858507201e-308; /* smalled full precision positive number anything smaller is unnormalized, for testing for underflow */
double FULL_PRECISION_MAX = 1.797693134862315e+308; /* largest full precision positive number, for testing for overflow */
double tol = 1.000000000000000e-006;/* this impacts the non-linear estimation.. if your problem is highly unstable (small scale) this might be made larger but we never recommend anything greater than 10e-5. Also if larger it will converge faster, so if yo can live with lower accuracy, you can change it */
double n;
double nuncensored=0;
double ncensored=0;
int i;
int code;
double *censoring= (double *)malloc(sizeof(double)*size);
double *frequency = (double *)malloc(sizeof(double)*size);
double * var = (double *)malloc(sizeof(double)*size);
double* x0 = (double *)malloc(sizeof(double)*size);
#ifndef WEIBULL_IGNORE_ERRORS
#ifdef WEIBULL_USE_ASSERTS
assert(x0 != NULL);
#else
if(x0== NULL)
WEIBULL_ERROR_HANDLER( -1,"malloc failed in weibull_fit\n");
#endif
#endif
/*set frequency to all 1.0's */
/*and censoring to 0.0's */
for (i=0; i< size; i++)
{
frequency[i]=1.0;
censoring[i]=0.0;
}
/* ********************************************** */
for (i=0; i<size; i++)
{
#ifndef WEIBULL_IGNORE_ERRORS
#ifdef WEIBULL_USE_ASSERTS
assert(inputData[i]>0);
#else
if(inputData[i]<=0)
WEIBULL_ERROR_HANDLER( -1,"cannot have data <=0 in call to weibull_fit\n");
#endif
#endif
inputData[i]=log(inputData[i]);
}
/* ********************************************** */
{
double mySum;
mySum=0;
for (i=0; i<size; i++)
{
mySum+=frequency[i];
}
n=mySum;
if(n<=1) WEIBULL_ERROR_HANDLER(-2,"Insufficient distinct data in weibull_fit\n");
/* ********************************************** */
{
mySum=0;
for (i=0; i<size; i++)
{
mySum+=(frequency[i]*censoring[i]);
}
ncensored=mySum;
nuncensored = n - ncensored;
#ifndef WEIBULL_IGNORE_ERRORS
#ifdef WEIBULL_USE_ASSERTS
assert(nuncensored>0);
assert(n>1);
#else
/* too much uncensored data means a plateau with no max */
if(nuncensored<=0) WEIBULL_ERROR_HANDLER(-2,"Insufficient distinct data, hit a plateau in weibull_fit\n");
#endif
#endif
}
}
/* declar local for max/range computation ********************************************** */
{
double maxVal, minVal;
double range, maxx;
double tempVal;
maxVal=-1000000000;
minVal=1000000000;
for (i=0; i<size; i++)
{
tempVal=inputData[i];
if (tempVal < minVal)
minVal=tempVal;
if (tempVal > maxVal)
maxVal=tempVal;
}
range = maxVal - minVal;
maxx = maxVal;
#ifndef WEIBULL_IGNORE_ERRORS
#ifdef WEIBULL_USE_ASSERTS
assert(range>0);
#else
if(range<=0) WEIBULL_ERROR_HANDLER(-2,"Insufficient distinct data range in weibull_fit\n");
#endif
#endif
/*Shift x to max(x) == 0, min(x) = -1 to make likelihood eqn more stable. */
/* ********************************************** */
{
double mean, myStd;
double sigmahat;
double meanUncensored;
double upper, lower;
double search_band[2];
for (i=0; i<size; i++)
{
x0[i]=(inputData[i]-maxx)/range;
}
mean=0;
myStd=0;
for (i=0; i<size; i++)
{
mean+=x0[i];
}
mean/=n;
for (i=0; i<size; i++)
{
var[i] = x0[i] - mean;
}
for (i=0; i<size; i++)
{
myStd+=var[i]*var[i];
}
myStd/=(n-1);
myStd=sqrt(myStd);
sigmahat = (sqrt((double)(6.0))*myStd)/PI;
meanUncensored=0;
for (i=0; i<size; i++)
{
meanUncensored+=(frequency[i]*x0[i])/n;
}
if ((tempVal=weibull_scale_likelihood(sigmahat,x0,frequency,meanUncensored,size)) > 0)
{
upper=sigmahat;
lower=0.5*upper;
while((tempVal=weibull_scale_likelihood(lower,x0,frequency,meanUncensored,size)) > 0)
{
upper = lower;
lower = 0.5 * upper;
if (lower < FULL_PRECISION_MIN)
{
WEIBULL_ERROR_HANDLER(-3,"MLE in wbfit Failed to converge leading for underflow in root finding\n");
}
}
}
else
{
lower = sigmahat;
upper = 2.0 * lower;
while ((tempVal=weibull_scale_likelihood(upper,x0,frequency,meanUncensored,size)) < 0)
{
lower=upper;
upper = 2 * lower;
/* check for overflow, no finite root */
#ifndef WEIBULL_IGNORE_ERRORS
#ifdef WEIBULL_USE_ASSERTS
assert(upper <= FULL_PRECISION_MAX);
#else
if(upper > FULL_PRECISION_MAX) WEIBULL_ERROR_HANDLER(-3,"MLE in wbfit Failed to converge leading for overflow in root finding\n");
#endif
#endif
}
}
/* ****************************************** */
search_band[0]=lower;
search_band[1]=upper;
/* ... Next we go find the root (zero) of the likelihood eqn which wil be the MLE for sigma. */
/* then the MLE for mu has an explicit formula from that. */
{
double err;
double likelihood_value;
code = wdfzero(&sigmahat,&likelihood_value,&err,search_band,tol,x0,frequency,meanUncensored,size);
#ifndef WEIBULL_IGNORE_ERRORS
#ifdef WEIBULL_USE_ASSERTS
assert(code == 1);
#else
if(code != 1) WEIBULL_ERROR_HANDLER(-4, "weibull_fit failed, could not find solution in MLE. Probably has insufficnt data distribution (e.g. all same value)...\n");
#endif
#endif
}
/* ****************************************** */
{
double muHat;
double sumfrequency;
muHat=0;
sumfrequency=0;
for (i=0; i<size; i++)
{
tempVal=exp(x0[i]/sigmahat);
sumfrequency +=(frequency[i]*tempVal);
}
sumfrequency = sumfrequency / nuncensored;
muHat = sigmahat * log(sumfrequency);
/* ****************************************** */
/*Those were parameter estimates for the shifted, scaled data, now */
/*transform the parameters back to the original location and scale. */
weibullparms[0]=(range*muHat)+maxx;
weibullparms[1]=(range*sigmahat);
}
}
}
{
int rval;
double nlogL=0, tempVal;
double transfhat[2], se[2], probs[2],acov[4];
probs[0]=alpha/2;
probs[1]=1-alpha/2;
/* ****************************************** */
rval=weibull_neg_log_likelihood(&nlogL,acov,weibullparms,inputData,censoring,frequency,size);
if(rval<0) WEIBULL_ERROR_HANDLER(-5,"Failed to fine final parameters settings MLE failed. Memory leaked");
/* ****************************************** */
/*Compute the Confidence Interval (CI) for mu using a normal approximation for muhat. Compute */
/*the CI for sigma using a normal approximation for log(sigmahat), and */
/*transform back to the original scale. */
transfhat[0]=weibullparms[0];
transfhat[1]=log(weibullparms[1]);
se[0]=sqrt(acov[0]);
se[1]=sqrt(acov[3]);
se[1]=se[1]/weibullparms[1];
rval=wnorminv(wparm_confidenceintervals,probs,transfhat,se,4);
if(rval<0) WEIBULL_ERROR_HANDLER(-7,"Cannot compute confidence interval since wnorminv fails. Memory leaked");
wparm_confidenceintervals[2]=exp(wparm_confidenceintervals[2]);
wparm_confidenceintervals[3]=exp(wparm_confidenceintervals[3]);
tempVal=wparm_confidenceintervals[2];
wparm_confidenceintervals[2]=1/wparm_confidenceintervals[3];
wparm_confidenceintervals[3]=1/tempVal;
wparm_confidenceintervals[0]=exp(wparm_confidenceintervals[0]);
wparm_confidenceintervals[1]=exp(wparm_confidenceintervals[1]);
weibullparms[0]=exp(weibullparms[0]);
weibullparms[1]=1/weibullparms[1];
}
/*free all memory */
free(x0);
free(var);
free(censoring);
free(frequency);
return 1;
}
#ifdef __cplusplus
}
#endif
|