Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
I'll create a comprehensive Hugging Face Model Card for the Gradient Field Analyzer project.
|
| 5 |
+
|
| 6 |
+
```markdown
|
| 7 |
+
---
|
| 8 |
+
language:
|
| 9 |
+
- en
|
| 10 |
+
tags:
|
| 11 |
+
- mathematics
|
| 12 |
+
- vector-calculus
|
| 13 |
+
- gradient-fields
|
| 14 |
+
- potential-functions
|
| 15 |
+
- sympy
|
| 16 |
+
- educational
|
| 17 |
+
- scientific-computing
|
| 18 |
+
license: mit
|
| 19 |
+
library_name: pyqt5
|
| 20 |
+
pipeline_tag: text-generation
|
| 21 |
+
---
|
| 22 |
+
|
| 23 |
+
# Gradient Field Analyzer
|
| 24 |
+
|
| 25 |
+
## Model Description
|
| 26 |
+
|
| 27 |
+
The Gradient Field Analyzer is a mathematical tool designed to analyze and construct gradient fields in two dimensions. It implements analytical methods to determine whether a given vector field is a gradient field and, if so, constructs its potential function.
|
| 28 |
+
|
| 29 |
+
This model specializes in two specific cases from vector calculus:
|
| 30 |
+
- **Case 1**: Vector fields where one component is constant
|
| 31 |
+
- **Case 2**: Vector fields where both components are linear functions
|
| 32 |
+
|
| 33 |
+
- **Developed by:** Martin Rivera
|
| 34 |
+
- **Model type:** Mathematical Analysis Tool
|
| 35 |
+
- **Language(s):** Python
|
| 36 |
+
- **License:** MIT
|
| 37 |
+
- **Finetuned from model:** N/A (Original implementation)
|
| 38 |
+
|
| 39 |
+
## Uses
|
| 40 |
+
|
| 41 |
+
### Direct Use
|
| 42 |
+
|
| 43 |
+
This model is intended for:
|
| 44 |
+
- Educational purposes in vector calculus courses
|
| 45 |
+
- Scientific computing applications requiring gradient field analysis
|
| 46 |
+
- Research in mathematical physics and engineering
|
| 47 |
+
- Verification of conservative vector fields
|
| 48 |
+
- Construction of potential functions from gradient fields
|
| 49 |
+
|
| 50 |
+
### Downstream Use
|
| 51 |
+
|
| 52 |
+
The analysis methods can be extended to:
|
| 53 |
+
- Higher-dimensional gradient fields
|
| 54 |
+
- Numerical methods for field analysis
|
| 55 |
+
- Physics simulations involving conservative forces
|
| 56 |
+
- Engineering applications in electromagnetism and fluid dynamics
|
| 57 |
+
|
| 58 |
+
### Out-of-Scope Use
|
| 59 |
+
|
| 60 |
+
- Non-conservative vector fields (beyond verification)
|
| 61 |
+
- Three-dimensional or higher vector fields
|
| 62 |
+
- Numerical optimization without symbolic analysis
|
| 63 |
+
- Real-time physical simulations
|
| 64 |
+
|
| 65 |
+
## How to Use
|
| 66 |
+
|
| 67 |
+
### Installation
|
| 68 |
+
|
| 69 |
+
```bash
|
| 70 |
+
pip install sympy pyqt5
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
### Basic Usage
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
from gradient_field_analyzer import GradientFieldFactory, NumericalExamples
|
| 77 |
+
|
| 78 |
+
# Analyze Case 1: Constant component field
|
| 79 |
+
case1_analyzer = GradientFieldFactory.create_constant_component_field('x')
|
| 80 |
+
Vx, Vy = case1_analyzer.get_vector_field()
|
| 81 |
+
phi = case1_analyzer.find_potential()
|
| 82 |
+
|
| 83 |
+
# Analyze Case 2: Linear component field
|
| 84 |
+
case2_analyzer = GradientFieldFactory.create_linear_component_field()
|
| 85 |
+
Vx, Vy = case2_analyzer.get_vector_field()
|
| 86 |
+
phi = case2_analyzer.find_potential(Vx, Vy)
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
### PyQt5 GUI Application
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
from gradient_field_gui import GradientFieldApp
|
| 93 |
+
import sys
|
| 94 |
+
from PyQt5.QtWidgets import QApplication
|
| 95 |
+
|
| 96 |
+
app = QApplication(sys.argv)
|
| 97 |
+
window = GradientFieldApp()
|
| 98 |
+
window.show()
|
| 99 |
+
sys.exit(app.exec_())
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
## Mathematical Background
|
| 103 |
+
|
| 104 |
+
### Gradient Fields
|
| 105 |
+
|
| 106 |
+
A vector field **F** = [P(x,y), Q(x,y)] is a gradient field if there exists a scalar function φ(x,y) such that:
|
| 107 |
+
|
| 108 |
+
**F** = ∇φ = [∂φ/∂x, ∂φ/∂y]
|
| 109 |
+
|
| 110 |
+
### Case 1: One Constant Component
|
| 111 |
+
|
| 112 |
+
For fields where one component is constant:
|
| 113 |
+
- If P(x,y) = c (constant), then φ(x,y) = c·x + ∫Q(x,y)dy
|
| 114 |
+
- If Q(x,y) = c (constant), then φ(x,y) = c·y + ∫P(x,y)dx
|
| 115 |
+
|
| 116 |
+
### Case 2: Both Linear Components
|
| 117 |
+
|
| 118 |
+
For linear fields **F** = [a₁x + b₁y + c₁, a₂x + b₂y + c₂]:
|
| 119 |
+
- The field is a gradient field **if and only if** a₂ = b₁
|
| 120 |
+
- Potential function takes one of two forms:
|
| 121 |
+
- φ(x,y) = a₁x²/2 + b₂y²/2 + c₂y + x(b₁y + c₁)
|
| 122 |
+
- φ(x,y) = a₂x²/2 + b₁y²/2 + c₁y + x(a₁y + c₂)
|
| 123 |
+
|
| 124 |
+
## Model Architecture
|
| 125 |
+
|
| 126 |
+
The implementation follows an object-oriented design:
|
| 127 |
+
|
| 128 |
+
```
|
| 129 |
+
GradientFieldAnalyzer (ABC)
|
| 130 |
+
├── ConstantComponentField (Case 1)
|
| 131 |
+
└── LinearComponentField (Case 2)
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
Key components:
|
| 135 |
+
- **Abstract base class** with common functionality
|
| 136 |
+
- **Factory pattern** for creating analyzers
|
| 137 |
+
- **Robust verification** of gradient conditions
|
| 138 |
+
- **Symbolic computation** using SymPy
|
| 139 |
+
- **GUI interface** using PyQt5
|
| 140 |
+
|
| 141 |
+
## Training Data
|
| 142 |
+
|
| 143 |
+
This model does not require traditional training data as it implements analytical mathematical methods. The "training" consists of:
|
| 144 |
+
|
| 145 |
+
- Mathematical proofs of gradient field conditions
|
| 146 |
+
- Verification against known analytical solutions
|
| 147 |
+
- Testing with canonical examples from vector calculus
|
| 148 |
+
|
| 149 |
+
## Performance
|
| 150 |
+
|
| 151 |
+
### Analytical Accuracy
|
| 152 |
+
- **Case 1**: 100% accuracy (direct integration method)
|
| 153 |
+
- **Case 2**: 100% accuracy when gradient condition satisfied
|
| 154 |
+
- **Verification**: Built-in gradient verification ensures correctness
|
| 155 |
+
|
| 156 |
+
### Computational Performance
|
| 157 |
+
- Symbolic computation suitable for educational and analytical use
|
| 158 |
+
- Real-time performance for typical vector fields
|
| 159 |
+
- Handles complex symbolic expressions efficiently
|
| 160 |
+
|
| 161 |
+
## Limitations
|
| 162 |
+
|
| 163 |
+
1. **Dimensionality**: Limited to 2D vector fields
|
| 164 |
+
2. **Field Types**: Only handles specific cases (constant or linear components)
|
| 165 |
+
3. **Symbolic Limitations**: Dependent on SymPy's integration capabilities
|
| 166 |
+
4. **Numerical Precision**: Symbolic computation avoids numerical errors but may have expression complexity limits
|
| 167 |
+
|
| 168 |
+
## Environmental Impact
|
| 169 |
+
|
| 170 |
+
- **Hardware Type**: Standard CPU
|
| 171 |
+
- **Cloud Provider**: N/A
|
| 172 |
+
- **Compute Region**: N/A
|
| 173 |
+
- **Carbon Emitted**: Negligible (educational-scale computations)
|
| 174 |
+
|
| 175 |
+
## Technical Specifications
|
| 176 |
+
|
| 177 |
+
### Model Architecture
|
| 178 |
+
- **Framework**: Python 3.7+
|
| 179 |
+
- **Dependencies**: SymPy, PyQt5
|
| 180 |
+
- **Symbolic Engine**: SymPy for mathematical operations
|
| 181 |
+
- **GUI Framework**: PyQt5 for user interface
|
| 182 |
+
|
| 183 |
+
### Compute Requirements
|
| 184 |
+
- **Memory**: < 100 MB for typical use cases
|
| 185 |
+
- **Storage**: < 10 MB for code and dependencies
|
| 186 |
+
- **CPU**: Any modern processor
|
| 187 |
+
|
| 188 |
+
## Citation
|
| 189 |
+
|
| 190 |
+
If you use this model in your research or educational materials, please cite:
|
| 191 |
+
|
| 192 |
+
```bibtex
|
| 193 |
+
@software{gradient_field_analyzer,
|
| 194 |
+
title = {Gradient Field Analyzer: A Symbolic Tool for Vector Calculus},
|
| 195 |
+
author = {Martin Rivera},
|
| 196 |
+
year = {2025},
|
| 197 |
+
url = {https://huggingface.co/TroglodyteDerivations/gradient-field-analyzer},
|
| 198 |
+
note = {Educational tool for analyzing gradient fields and potential functions}
|
| 199 |
+
}
|
| 200 |
+
```
|
| 201 |
+
|
| 202 |
+
## Model Card Authors
|
| 203 |
+
|
| 204 |
+
Martin Rivera
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
## Glossary
|
| 208 |
+
|
| 209 |
+
- **Gradient Field**: A vector field that is the gradient of some scalar potential function
|
| 210 |
+
- **Potential Function**: A scalar function whose gradient equals the given vector field
|
| 211 |
+
- **Conservative Field**: Synonym for gradient field (in physics contexts)
|
| 212 |
+
- **Symbolic Computation**: Mathematical computation using exact symbolic expressions rather than numerical approximations
|
| 213 |
+
|
| 214 |
+
## More Information
|
| 215 |
+
|
| 216 |
+
For more detailed mathematical background, usage examples, and implementation details, please refer to the [documentation](https://github.com/TroglodyteDerivations/gradient-field-analyzer/docs).
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
## Additional Files for Hugging Face
|
| 221 |
+
|
| 222 |
+
You should also create these additional files for your Hugging Face repository:
|
| 223 |
+
|
| 224 |
+
### requirements.txt
|
| 225 |
+
```txt
|
| 226 |
+
sympy>=1.8
|
| 227 |
+
pyqt5>=5.15
|
| 228 |
+
```
|
| 229 |
+
|
| 230 |
+
### README.md (simplified version)
|
| 231 |
+
```markdown
|
| 232 |
+
# Gradient Field Analyzer
|
| 233 |
+
|
| 234 |
+
A Python tool for analyzing and constructing gradient fields in two dimensions.
|
| 235 |
+
|
| 236 |
+
## Features
|
| 237 |
+
|
| 238 |
+
- **Case 1 Analysis**: Vector fields with one constant component
|
| 239 |
+
- **Case 2 Analysis**: Linear vector fields with gradient condition checking
|
| 240 |
+
- **Potential Function Construction**: Symbolic computation of scalar potentials
|
| 241 |
+
- **PyQt5 GUI**: User-friendly interface for interactive analysis
|
| 242 |
+
- **Educational Focus**: Designed for vector calculus education
|
| 243 |
+
|
| 244 |
+
## Quick Start
|
| 245 |
+
|
| 246 |
+
```python
|
| 247 |
+
from gradient_field_analyzer import GradientFieldFactory
|
| 248 |
+
|
| 249 |
+
# Analyze a linear vector field
|
| 250 |
+
analyzer = GradientFieldFactory.create_linear_component_field()
|
| 251 |
+
Vx, Vy = 2*x + 3*y + 1, 3*x + 4*y + 2 # Example field
|
| 252 |
+
phi = analyzer.find_potential_for_specific_field(Vx, Vy)
|
| 253 |
+
print(f"Potential: {phi}")
|
| 254 |
+
```
|
| 255 |
+
|
| 256 |
+
## Installation
|
| 257 |
+
|
| 258 |
+
```bash
|
| 259 |
+
pip install sympy pyqt5
|
| 260 |
+
```
|
| 261 |
+
|
| 262 |
+
## Documentation
|
| 263 |
+
|
| 264 |
+
See the [model card](MODEL_CARD.md) for detailed mathematical background and usage examples.
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
This model card provides comprehensive documentation for your Gradient Field Analyzer, making it suitable for sharing on Hugging Face Hub as an educational and scientific tool.
|