import sympy as sp # Test the corrected numerical examples separately def test_corrected_examples(): x, y = sp.symbols('x y') print("Testing Corrected Numerical Examples:") print("=" * 50) # Case 1 Example: F(x,y) = [2, 3y²] print("Case 1: F(x,y) = [2, 3y²]") Vx = 2 Vy = 3 * y**2 # Manual calculation: φ = ∫2 dx + ∫3y² dy = 2x + y³ phi_manual = 2*x + y**3 # Verify print(f"∂φ/∂x = {sp.diff(phi_manual, x)} = Vx? {sp.diff(phi_manual, x) == Vx}") print(f"∂φ/∂y = {sp.diff(phi_manual, y)} = Vy? {sp.diff(phi_manual, y) == Vy}") print() # Case 2 Example: F(x,y) = [2x + 3y + 1, 3x + 4y + 2] print("Case 2: F(x,y) = [2x + 3y + 1, 3x + 4y + 2]") Vx2 = 2*x + 3*y + 1 Vy2 = 3*x + 4*y + 2 # Check gradient condition: ∂P/∂y = 3, ∂Q/∂x = 3 → equal, so gradient field exists print(f"Gradient condition: ∂P/∂y = {sp.diff(Vx2, y)}, ∂Q/∂x = {sp.diff(Vy2, x)}") print(f"Field is gradient? {sp.diff(Vx2, y) == sp.diff(Vy2, x)}") # Find potential using our method phi_x = sp.integrate(Vx2, x) # ∫(2x + 3y + 1)dx = x² + 3xy + x remaining = Vy2 - sp.diff(phi_x, y) # (3x + 4y + 2) - 3x = 4y + 2 phi_y = sp.integrate(remaining, y) # ∫(4y + 2)dy = 2y² + 2y phi_calculated = phi_x + phi_y # x² + 3xy + x + 2y² + 2y print(f"Calculated potential: φ = {phi_calculated}") print(f"∂φ/∂x = {sp.diff(phi_calculated, x)} = Vx? {sp.diff(phi_calculated, x) == Vx2}") print(f"∂φ/∂y = {sp.diff(phi_calculated, y)} = Vy? {sp.diff(phi_calculated, y) == Vy2}") # Run the test test_corrected_examples()