| { | |
| "best_metric": null, | |
| "best_model_checkpoint": null, | |
| "epoch": 25.356576862123614, | |
| "global_step": 2000, | |
| "is_hyper_param_search": false, | |
| "is_local_process_zero": true, | |
| "is_world_process_zero": true, | |
| "log_history": [ | |
| { | |
| "epoch": 0.01, | |
| "learning_rate": 2.5e-06, | |
| "loss": 9.043, | |
| "step": 1 | |
| }, | |
| { | |
| "epoch": 0.03, | |
| "learning_rate": 5e-06, | |
| "loss": 8.9062, | |
| "step": 2 | |
| }, | |
| { | |
| "epoch": 0.04, | |
| "learning_rate": 7.5e-06, | |
| "loss": 9.1133, | |
| "step": 3 | |
| }, | |
| { | |
| "epoch": 0.05, | |
| "learning_rate": 1e-05, | |
| "loss": 9.0039, | |
| "step": 4 | |
| }, | |
| { | |
| "epoch": 0.06, | |
| "learning_rate": 1.25e-05, | |
| "loss": 8.6875, | |
| "step": 5 | |
| }, | |
| { | |
| "epoch": 0.08, | |
| "learning_rate": 1.5e-05, | |
| "loss": 8.2402, | |
| "step": 6 | |
| }, | |
| { | |
| "epoch": 0.09, | |
| "learning_rate": 1.75e-05, | |
| "loss": 7.2227, | |
| "step": 7 | |
| }, | |
| { | |
| "epoch": 0.1, | |
| "learning_rate": 2e-05, | |
| "loss": 6.6484, | |
| "step": 8 | |
| }, | |
| { | |
| "epoch": 0.11, | |
| "learning_rate": 2.25e-05, | |
| "loss": 5.1504, | |
| "step": 9 | |
| }, | |
| { | |
| "epoch": 0.13, | |
| "learning_rate": 2.5e-05, | |
| "loss": 4.666, | |
| "step": 10 | |
| }, | |
| { | |
| "epoch": 0.14, | |
| "learning_rate": 2.7500000000000004e-05, | |
| "loss": 4.5039, | |
| "step": 11 | |
| }, | |
| { | |
| "epoch": 0.15, | |
| "learning_rate": 3e-05, | |
| "loss": 4.3262, | |
| "step": 12 | |
| }, | |
| { | |
| "epoch": 0.16, | |
| "learning_rate": 3.2500000000000004e-05, | |
| "loss": 3.9326, | |
| "step": 13 | |
| }, | |
| { | |
| "epoch": 0.18, | |
| "learning_rate": 3.5e-05, | |
| "loss": 4.0342, | |
| "step": 14 | |
| }, | |
| { | |
| "epoch": 0.19, | |
| "learning_rate": 3.7500000000000003e-05, | |
| "loss": 3.4961, | |
| "step": 15 | |
| }, | |
| { | |
| "epoch": 0.2, | |
| "learning_rate": 4e-05, | |
| "loss": 3.6494, | |
| "step": 16 | |
| }, | |
| { | |
| "epoch": 0.22, | |
| "learning_rate": 4.25e-05, | |
| "loss": 3.7373, | |
| "step": 17 | |
| }, | |
| { | |
| "epoch": 0.23, | |
| "learning_rate": 4.5e-05, | |
| "loss": 3.3711, | |
| "step": 18 | |
| }, | |
| { | |
| "epoch": 0.24, | |
| "learning_rate": 4.75e-05, | |
| "loss": 3.3633, | |
| "step": 19 | |
| }, | |
| { | |
| "epoch": 0.25, | |
| "learning_rate": 5e-05, | |
| "loss": 3.3066, | |
| "step": 20 | |
| }, | |
| { | |
| "epoch": 0.27, | |
| "learning_rate": 5e-05, | |
| "loss": 3.3828, | |
| "step": 21 | |
| }, | |
| { | |
| "epoch": 0.28, | |
| "learning_rate": 5e-05, | |
| "loss": 3.2881, | |
| "step": 22 | |
| }, | |
| { | |
| "epoch": 0.29, | |
| "learning_rate": 5e-05, | |
| "loss": 3.4941, | |
| "step": 23 | |
| }, | |
| { | |
| "epoch": 0.3, | |
| "learning_rate": 5e-05, | |
| "loss": 3.3477, | |
| "step": 24 | |
| }, | |
| { | |
| "epoch": 0.32, | |
| "learning_rate": 5e-05, | |
| "loss": 3.2959, | |
| "step": 25 | |
| }, | |
| { | |
| "epoch": 0.33, | |
| "learning_rate": 5e-05, | |
| "loss": 3.1514, | |
| "step": 26 | |
| }, | |
| { | |
| "epoch": 0.34, | |
| "learning_rate": 5e-05, | |
| "loss": 3.2627, | |
| "step": 27 | |
| }, | |
| { | |
| "epoch": 0.35, | |
| "learning_rate": 5e-05, | |
| "loss": 3.042, | |
| "step": 28 | |
| }, | |
| { | |
| "epoch": 0.37, | |
| "learning_rate": 5e-05, | |
| "loss": 3.083, | |
| "step": 29 | |
| }, | |
| { | |
| "epoch": 0.38, | |
| "learning_rate": 5e-05, | |
| "loss": 3.252, | |
| "step": 30 | |
| }, | |
| { | |
| "epoch": 0.39, | |
| "learning_rate": 5e-05, | |
| "loss": 3.0361, | |
| "step": 31 | |
| }, | |
| { | |
| "epoch": 0.41, | |
| "learning_rate": 5e-05, | |
| "loss": 2.8525, | |
| "step": 32 | |
| }, | |
| { | |
| "epoch": 0.42, | |
| "learning_rate": 5e-05, | |
| "loss": 2.832, | |
| "step": 33 | |
| }, | |
| { | |
| "epoch": 0.43, | |
| "learning_rate": 5e-05, | |
| "loss": 2.5557, | |
| "step": 34 | |
| }, | |
| { | |
| "epoch": 0.44, | |
| "learning_rate": 5e-05, | |
| "loss": 3.0713, | |
| "step": 35 | |
| }, | |
| { | |
| "epoch": 0.46, | |
| "learning_rate": 5e-05, | |
| "loss": 3.1123, | |
| "step": 36 | |
| }, | |
| { | |
| "epoch": 0.47, | |
| "learning_rate": 5e-05, | |
| "loss": 2.7788, | |
| "step": 37 | |
| }, | |
| { | |
| "epoch": 0.48, | |
| "learning_rate": 5e-05, | |
| "loss": 2.3345, | |
| "step": 38 | |
| }, | |
| { | |
| "epoch": 0.49, | |
| "learning_rate": 5e-05, | |
| "loss": 3.0747, | |
| "step": 39 | |
| }, | |
| { | |
| "epoch": 0.51, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1865, | |
| "step": 40 | |
| }, | |
| { | |
| "epoch": 0.52, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1064, | |
| "step": 41 | |
| }, | |
| { | |
| "epoch": 0.53, | |
| "learning_rate": 5e-05, | |
| "loss": 3.1128, | |
| "step": 42 | |
| }, | |
| { | |
| "epoch": 0.55, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9976, | |
| "step": 43 | |
| }, | |
| { | |
| "epoch": 0.56, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0723, | |
| "step": 44 | |
| }, | |
| { | |
| "epoch": 0.57, | |
| "learning_rate": 5e-05, | |
| "loss": 2.3511, | |
| "step": 45 | |
| }, | |
| { | |
| "epoch": 0.58, | |
| "learning_rate": 5e-05, | |
| "loss": 2.4839, | |
| "step": 46 | |
| }, | |
| { | |
| "epoch": 0.6, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1694, | |
| "step": 47 | |
| }, | |
| { | |
| "epoch": 0.61, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0386, | |
| "step": 48 | |
| }, | |
| { | |
| "epoch": 0.62, | |
| "learning_rate": 5e-05, | |
| "loss": 2.856, | |
| "step": 49 | |
| }, | |
| { | |
| "epoch": 0.63, | |
| "learning_rate": 5e-05, | |
| "loss": 2.564, | |
| "step": 50 | |
| }, | |
| { | |
| "epoch": 0.65, | |
| "learning_rate": 5e-05, | |
| "loss": 2.2476, | |
| "step": 51 | |
| }, | |
| { | |
| "epoch": 0.66, | |
| "learning_rate": 5e-05, | |
| "loss": 2.4429, | |
| "step": 52 | |
| }, | |
| { | |
| "epoch": 0.67, | |
| "learning_rate": 5e-05, | |
| "loss": 2.4146, | |
| "step": 53 | |
| }, | |
| { | |
| "epoch": 0.68, | |
| "learning_rate": 5e-05, | |
| "loss": 2.2959, | |
| "step": 54 | |
| }, | |
| { | |
| "epoch": 0.7, | |
| "learning_rate": 5e-05, | |
| "loss": 2.3281, | |
| "step": 55 | |
| }, | |
| { | |
| "epoch": 0.71, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0942, | |
| "step": 56 | |
| }, | |
| { | |
| "epoch": 0.72, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1743, | |
| "step": 57 | |
| }, | |
| { | |
| "epoch": 0.74, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0464, | |
| "step": 58 | |
| }, | |
| { | |
| "epoch": 0.75, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0469, | |
| "step": 59 | |
| }, | |
| { | |
| "epoch": 0.76, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0874, | |
| "step": 60 | |
| }, | |
| { | |
| "epoch": 0.77, | |
| "learning_rate": 5e-05, | |
| "loss": 2.3115, | |
| "step": 61 | |
| }, | |
| { | |
| "epoch": 0.79, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5884, | |
| "step": 62 | |
| }, | |
| { | |
| "epoch": 0.8, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1963, | |
| "step": 63 | |
| }, | |
| { | |
| "epoch": 0.81, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8401, | |
| "step": 64 | |
| }, | |
| { | |
| "epoch": 0.82, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9893, | |
| "step": 65 | |
| }, | |
| { | |
| "epoch": 0.84, | |
| "learning_rate": 5e-05, | |
| "loss": 2.5669, | |
| "step": 66 | |
| }, | |
| { | |
| "epoch": 0.85, | |
| "learning_rate": 5e-05, | |
| "loss": 2.2998, | |
| "step": 67 | |
| }, | |
| { | |
| "epoch": 0.86, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0239, | |
| "step": 68 | |
| }, | |
| { | |
| "epoch": 0.87, | |
| "learning_rate": 5e-05, | |
| "loss": 2.2612, | |
| "step": 69 | |
| }, | |
| { | |
| "epoch": 0.89, | |
| "learning_rate": 5e-05, | |
| "loss": 1.856, | |
| "step": 70 | |
| }, | |
| { | |
| "epoch": 0.9, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7812, | |
| "step": 71 | |
| }, | |
| { | |
| "epoch": 0.91, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0645, | |
| "step": 72 | |
| }, | |
| { | |
| "epoch": 0.93, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1143, | |
| "step": 73 | |
| }, | |
| { | |
| "epoch": 0.94, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7314, | |
| "step": 74 | |
| }, | |
| { | |
| "epoch": 0.95, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8833, | |
| "step": 75 | |
| }, | |
| { | |
| "epoch": 0.96, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8752, | |
| "step": 76 | |
| }, | |
| { | |
| "epoch": 0.98, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5498, | |
| "step": 77 | |
| }, | |
| { | |
| "epoch": 0.99, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1572, | |
| "step": 78 | |
| }, | |
| { | |
| "epoch": 1.0, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7842, | |
| "step": 79 | |
| }, | |
| { | |
| "epoch": 1.01, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9199, | |
| "step": 80 | |
| }, | |
| { | |
| "epoch": 1.03, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8677, | |
| "step": 81 | |
| }, | |
| { | |
| "epoch": 1.04, | |
| "learning_rate": 5e-05, | |
| "loss": 1.866, | |
| "step": 82 | |
| }, | |
| { | |
| "epoch": 1.05, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7832, | |
| "step": 83 | |
| }, | |
| { | |
| "epoch": 1.06, | |
| "learning_rate": 5e-05, | |
| "loss": 2.4292, | |
| "step": 84 | |
| }, | |
| { | |
| "epoch": 1.08, | |
| "learning_rate": 5e-05, | |
| "loss": 2.3906, | |
| "step": 85 | |
| }, | |
| { | |
| "epoch": 1.09, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1914, | |
| "step": 86 | |
| }, | |
| { | |
| "epoch": 1.1, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8486, | |
| "step": 87 | |
| }, | |
| { | |
| "epoch": 1.12, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8213, | |
| "step": 88 | |
| }, | |
| { | |
| "epoch": 1.13, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9126, | |
| "step": 89 | |
| }, | |
| { | |
| "epoch": 1.14, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1084, | |
| "step": 90 | |
| }, | |
| { | |
| "epoch": 1.15, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4355, | |
| "step": 91 | |
| }, | |
| { | |
| "epoch": 1.17, | |
| "learning_rate": 5e-05, | |
| "loss": 2.6309, | |
| "step": 92 | |
| }, | |
| { | |
| "epoch": 1.18, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7529, | |
| "step": 93 | |
| }, | |
| { | |
| "epoch": 1.19, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4246, | |
| "step": 94 | |
| }, | |
| { | |
| "epoch": 1.2, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0332, | |
| "step": 95 | |
| }, | |
| { | |
| "epoch": 1.22, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7593, | |
| "step": 96 | |
| }, | |
| { | |
| "epoch": 1.23, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0186, | |
| "step": 97 | |
| }, | |
| { | |
| "epoch": 1.24, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7654, | |
| "step": 98 | |
| }, | |
| { | |
| "epoch": 1.26, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8352, | |
| "step": 99 | |
| }, | |
| { | |
| "epoch": 1.27, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9382, | |
| "step": 100 | |
| }, | |
| { | |
| "epoch": 1.28, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9531, | |
| "step": 101 | |
| }, | |
| { | |
| "epoch": 1.29, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7942, | |
| "step": 102 | |
| }, | |
| { | |
| "epoch": 1.31, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6328, | |
| "step": 103 | |
| }, | |
| { | |
| "epoch": 1.32, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5959, | |
| "step": 104 | |
| }, | |
| { | |
| "epoch": 1.33, | |
| "learning_rate": 5e-05, | |
| "loss": 1.644, | |
| "step": 105 | |
| }, | |
| { | |
| "epoch": 1.34, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9714, | |
| "step": 106 | |
| }, | |
| { | |
| "epoch": 1.36, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7971, | |
| "step": 107 | |
| }, | |
| { | |
| "epoch": 1.37, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7383, | |
| "step": 108 | |
| }, | |
| { | |
| "epoch": 1.38, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5474, | |
| "step": 109 | |
| }, | |
| { | |
| "epoch": 1.39, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9756, | |
| "step": 110 | |
| }, | |
| { | |
| "epoch": 1.41, | |
| "learning_rate": 5e-05, | |
| "loss": 1.834, | |
| "step": 111 | |
| }, | |
| { | |
| "epoch": 1.42, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0366, | |
| "step": 112 | |
| }, | |
| { | |
| "epoch": 1.43, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5786, | |
| "step": 113 | |
| }, | |
| { | |
| "epoch": 1.45, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8486, | |
| "step": 114 | |
| }, | |
| { | |
| "epoch": 1.46, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8472, | |
| "step": 115 | |
| }, | |
| { | |
| "epoch": 1.47, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7871, | |
| "step": 116 | |
| }, | |
| { | |
| "epoch": 1.48, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7839, | |
| "step": 117 | |
| }, | |
| { | |
| "epoch": 1.5, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6704, | |
| "step": 118 | |
| }, | |
| { | |
| "epoch": 1.51, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9126, | |
| "step": 119 | |
| }, | |
| { | |
| "epoch": 1.52, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8105, | |
| "step": 120 | |
| }, | |
| { | |
| "epoch": 1.53, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8293, | |
| "step": 121 | |
| }, | |
| { | |
| "epoch": 1.55, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6152, | |
| "step": 122 | |
| }, | |
| { | |
| "epoch": 1.56, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6809, | |
| "step": 123 | |
| }, | |
| { | |
| "epoch": 1.57, | |
| "learning_rate": 5e-05, | |
| "loss": 1.592, | |
| "step": 124 | |
| }, | |
| { | |
| "epoch": 1.58, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9656, | |
| "step": 125 | |
| }, | |
| { | |
| "epoch": 1.6, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1069, | |
| "step": 126 | |
| }, | |
| { | |
| "epoch": 1.61, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4539, | |
| "step": 127 | |
| }, | |
| { | |
| "epoch": 1.62, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8301, | |
| "step": 128 | |
| }, | |
| { | |
| "epoch": 1.64, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6951, | |
| "step": 129 | |
| }, | |
| { | |
| "epoch": 1.65, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9124, | |
| "step": 130 | |
| }, | |
| { | |
| "epoch": 1.66, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6172, | |
| "step": 131 | |
| }, | |
| { | |
| "epoch": 1.67, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7207, | |
| "step": 132 | |
| }, | |
| { | |
| "epoch": 1.69, | |
| "learning_rate": 5e-05, | |
| "loss": 1.541, | |
| "step": 133 | |
| }, | |
| { | |
| "epoch": 1.7, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9668, | |
| "step": 134 | |
| }, | |
| { | |
| "epoch": 1.71, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4446, | |
| "step": 135 | |
| }, | |
| { | |
| "epoch": 1.72, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1938, | |
| "step": 136 | |
| }, | |
| { | |
| "epoch": 1.74, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6897, | |
| "step": 137 | |
| }, | |
| { | |
| "epoch": 1.75, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8652, | |
| "step": 138 | |
| }, | |
| { | |
| "epoch": 1.76, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9941, | |
| "step": 139 | |
| }, | |
| { | |
| "epoch": 1.77, | |
| "learning_rate": 5e-05, | |
| "loss": 1.645, | |
| "step": 140 | |
| }, | |
| { | |
| "epoch": 1.79, | |
| "learning_rate": 5e-05, | |
| "loss": 2.1062, | |
| "step": 141 | |
| }, | |
| { | |
| "epoch": 1.8, | |
| "learning_rate": 5e-05, | |
| "loss": 1.696, | |
| "step": 142 | |
| }, | |
| { | |
| "epoch": 1.81, | |
| "learning_rate": 5e-05, | |
| "loss": 1.748, | |
| "step": 143 | |
| }, | |
| { | |
| "epoch": 1.83, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8682, | |
| "step": 144 | |
| }, | |
| { | |
| "epoch": 1.84, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8108, | |
| "step": 145 | |
| }, | |
| { | |
| "epoch": 1.85, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5439, | |
| "step": 146 | |
| }, | |
| { | |
| "epoch": 1.86, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7905, | |
| "step": 147 | |
| }, | |
| { | |
| "epoch": 1.88, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0469, | |
| "step": 148 | |
| }, | |
| { | |
| "epoch": 1.89, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9272, | |
| "step": 149 | |
| }, | |
| { | |
| "epoch": 1.9, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5505, | |
| "step": 150 | |
| }, | |
| { | |
| "epoch": 1.91, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9673, | |
| "step": 151 | |
| }, | |
| { | |
| "epoch": 1.93, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9258, | |
| "step": 152 | |
| }, | |
| { | |
| "epoch": 1.94, | |
| "learning_rate": 5e-05, | |
| "loss": 1.77, | |
| "step": 153 | |
| }, | |
| { | |
| "epoch": 1.95, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9231, | |
| "step": 154 | |
| }, | |
| { | |
| "epoch": 1.97, | |
| "learning_rate": 5e-05, | |
| "loss": 1.855, | |
| "step": 155 | |
| }, | |
| { | |
| "epoch": 1.98, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6724, | |
| "step": 156 | |
| }, | |
| { | |
| "epoch": 1.99, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6978, | |
| "step": 157 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6162, | |
| "step": 158 | |
| }, | |
| { | |
| "epoch": 2.02, | |
| "learning_rate": 5e-05, | |
| "loss": 1.668, | |
| "step": 159 | |
| }, | |
| { | |
| "epoch": 2.03, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6396, | |
| "step": 160 | |
| }, | |
| { | |
| "epoch": 2.04, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4229, | |
| "step": 161 | |
| }, | |
| { | |
| "epoch": 2.05, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4958, | |
| "step": 162 | |
| }, | |
| { | |
| "epoch": 2.07, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7268, | |
| "step": 163 | |
| }, | |
| { | |
| "epoch": 2.08, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3389, | |
| "step": 164 | |
| }, | |
| { | |
| "epoch": 2.09, | |
| "learning_rate": 5e-05, | |
| "loss": 2.2952, | |
| "step": 165 | |
| }, | |
| { | |
| "epoch": 2.1, | |
| "learning_rate": 5e-05, | |
| "loss": 1.616, | |
| "step": 166 | |
| }, | |
| { | |
| "epoch": 2.12, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8743, | |
| "step": 167 | |
| }, | |
| { | |
| "epoch": 2.13, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6609, | |
| "step": 168 | |
| }, | |
| { | |
| "epoch": 2.14, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6138, | |
| "step": 169 | |
| }, | |
| { | |
| "epoch": 2.16, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6819, | |
| "step": 170 | |
| }, | |
| { | |
| "epoch": 2.17, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6897, | |
| "step": 171 | |
| }, | |
| { | |
| "epoch": 2.18, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7712, | |
| "step": 172 | |
| }, | |
| { | |
| "epoch": 2.19, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4998, | |
| "step": 173 | |
| }, | |
| { | |
| "epoch": 2.21, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5398, | |
| "step": 174 | |
| }, | |
| { | |
| "epoch": 2.22, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0825, | |
| "step": 175 | |
| }, | |
| { | |
| "epoch": 2.23, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6025, | |
| "step": 176 | |
| }, | |
| { | |
| "epoch": 2.24, | |
| "learning_rate": 5e-05, | |
| "loss": 1.802, | |
| "step": 177 | |
| }, | |
| { | |
| "epoch": 2.26, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7847, | |
| "step": 178 | |
| }, | |
| { | |
| "epoch": 2.27, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6587, | |
| "step": 179 | |
| }, | |
| { | |
| "epoch": 2.28, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6548, | |
| "step": 180 | |
| }, | |
| { | |
| "epoch": 2.29, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9868, | |
| "step": 181 | |
| }, | |
| { | |
| "epoch": 2.31, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5156, | |
| "step": 182 | |
| }, | |
| { | |
| "epoch": 2.32, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4768, | |
| "step": 183 | |
| }, | |
| { | |
| "epoch": 2.33, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8108, | |
| "step": 184 | |
| }, | |
| { | |
| "epoch": 2.35, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4958, | |
| "step": 185 | |
| }, | |
| { | |
| "epoch": 2.36, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8848, | |
| "step": 186 | |
| }, | |
| { | |
| "epoch": 2.37, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4009, | |
| "step": 187 | |
| }, | |
| { | |
| "epoch": 2.38, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4219, | |
| "step": 188 | |
| }, | |
| { | |
| "epoch": 2.4, | |
| "learning_rate": 5e-05, | |
| "loss": 1.334, | |
| "step": 189 | |
| }, | |
| { | |
| "epoch": 2.41, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5735, | |
| "step": 190 | |
| }, | |
| { | |
| "epoch": 2.42, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7261, | |
| "step": 191 | |
| }, | |
| { | |
| "epoch": 2.43, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4009, | |
| "step": 192 | |
| }, | |
| { | |
| "epoch": 2.45, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2161, | |
| "step": 193 | |
| }, | |
| { | |
| "epoch": 2.46, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0112, | |
| "step": 194 | |
| }, | |
| { | |
| "epoch": 2.47, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4658, | |
| "step": 195 | |
| }, | |
| { | |
| "epoch": 2.48, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8738, | |
| "step": 196 | |
| }, | |
| { | |
| "epoch": 2.5, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9304, | |
| "step": 197 | |
| }, | |
| { | |
| "epoch": 2.51, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7585, | |
| "step": 198 | |
| }, | |
| { | |
| "epoch": 2.52, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7458, | |
| "step": 199 | |
| }, | |
| { | |
| "epoch": 2.54, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5288, | |
| "step": 200 | |
| }, | |
| { | |
| "epoch": 2.55, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4287, | |
| "step": 201 | |
| }, | |
| { | |
| "epoch": 2.56, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6968, | |
| "step": 202 | |
| }, | |
| { | |
| "epoch": 2.57, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7329, | |
| "step": 203 | |
| }, | |
| { | |
| "epoch": 2.59, | |
| "learning_rate": 5e-05, | |
| "loss": 1.585, | |
| "step": 204 | |
| }, | |
| { | |
| "epoch": 2.6, | |
| "learning_rate": 5e-05, | |
| "loss": 2.0723, | |
| "step": 205 | |
| }, | |
| { | |
| "epoch": 2.61, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5513, | |
| "step": 206 | |
| }, | |
| { | |
| "epoch": 2.62, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6028, | |
| "step": 207 | |
| }, | |
| { | |
| "epoch": 2.64, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6194, | |
| "step": 208 | |
| }, | |
| { | |
| "epoch": 2.65, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8682, | |
| "step": 209 | |
| }, | |
| { | |
| "epoch": 2.66, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7119, | |
| "step": 210 | |
| }, | |
| { | |
| "epoch": 2.68, | |
| "learning_rate": 5e-05, | |
| "loss": 1.561, | |
| "step": 211 | |
| }, | |
| { | |
| "epoch": 2.69, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6775, | |
| "step": 212 | |
| }, | |
| { | |
| "epoch": 2.7, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7085, | |
| "step": 213 | |
| }, | |
| { | |
| "epoch": 2.71, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8184, | |
| "step": 214 | |
| }, | |
| { | |
| "epoch": 2.73, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9097, | |
| "step": 215 | |
| }, | |
| { | |
| "epoch": 2.74, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5383, | |
| "step": 216 | |
| }, | |
| { | |
| "epoch": 2.75, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7207, | |
| "step": 217 | |
| }, | |
| { | |
| "epoch": 2.76, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6553, | |
| "step": 218 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1951, | |
| "step": 219 | |
| }, | |
| { | |
| "epoch": 2.79, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4666, | |
| "step": 220 | |
| }, | |
| { | |
| "epoch": 2.8, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5291, | |
| "step": 221 | |
| }, | |
| { | |
| "epoch": 2.81, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2676, | |
| "step": 222 | |
| }, | |
| { | |
| "epoch": 2.83, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7742, | |
| "step": 223 | |
| }, | |
| { | |
| "epoch": 2.84, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8682, | |
| "step": 224 | |
| }, | |
| { | |
| "epoch": 2.85, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4187, | |
| "step": 225 | |
| }, | |
| { | |
| "epoch": 2.87, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8169, | |
| "step": 226 | |
| }, | |
| { | |
| "epoch": 2.88, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8091, | |
| "step": 227 | |
| }, | |
| { | |
| "epoch": 2.89, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6699, | |
| "step": 228 | |
| }, | |
| { | |
| "epoch": 2.9, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6289, | |
| "step": 229 | |
| }, | |
| { | |
| "epoch": 2.92, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7617, | |
| "step": 230 | |
| }, | |
| { | |
| "epoch": 2.93, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6008, | |
| "step": 231 | |
| }, | |
| { | |
| "epoch": 2.94, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6143, | |
| "step": 232 | |
| }, | |
| { | |
| "epoch": 2.95, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6729, | |
| "step": 233 | |
| }, | |
| { | |
| "epoch": 2.97, | |
| "learning_rate": 5e-05, | |
| "loss": 1.553, | |
| "step": 234 | |
| }, | |
| { | |
| "epoch": 2.98, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3635, | |
| "step": 235 | |
| }, | |
| { | |
| "epoch": 2.99, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5159, | |
| "step": 236 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4727, | |
| "step": 237 | |
| }, | |
| { | |
| "epoch": 3.02, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4629, | |
| "step": 238 | |
| }, | |
| { | |
| "epoch": 3.03, | |
| "learning_rate": 5e-05, | |
| "loss": 1.373, | |
| "step": 239 | |
| }, | |
| { | |
| "epoch": 3.04, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6309, | |
| "step": 240 | |
| }, | |
| { | |
| "epoch": 3.06, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4705, | |
| "step": 241 | |
| }, | |
| { | |
| "epoch": 3.07, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2559, | |
| "step": 242 | |
| }, | |
| { | |
| "epoch": 3.08, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2842, | |
| "step": 243 | |
| }, | |
| { | |
| "epoch": 3.09, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5884, | |
| "step": 244 | |
| }, | |
| { | |
| "epoch": 3.11, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6172, | |
| "step": 245 | |
| }, | |
| { | |
| "epoch": 3.12, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8439, | |
| "step": 246 | |
| }, | |
| { | |
| "epoch": 3.13, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4701, | |
| "step": 247 | |
| }, | |
| { | |
| "epoch": 3.14, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4697, | |
| "step": 248 | |
| }, | |
| { | |
| "epoch": 3.16, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4583, | |
| "step": 249 | |
| }, | |
| { | |
| "epoch": 3.17, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2957, | |
| "step": 250 | |
| }, | |
| { | |
| "epoch": 3.18, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5305, | |
| "step": 251 | |
| }, | |
| { | |
| "epoch": 3.19, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6843, | |
| "step": 252 | |
| }, | |
| { | |
| "epoch": 3.21, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6582, | |
| "step": 253 | |
| }, | |
| { | |
| "epoch": 3.22, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4143, | |
| "step": 254 | |
| }, | |
| { | |
| "epoch": 3.23, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7776, | |
| "step": 255 | |
| }, | |
| { | |
| "epoch": 3.25, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3401, | |
| "step": 256 | |
| }, | |
| { | |
| "epoch": 3.26, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3796, | |
| "step": 257 | |
| }, | |
| { | |
| "epoch": 3.27, | |
| "learning_rate": 5e-05, | |
| "loss": 1.748, | |
| "step": 258 | |
| }, | |
| { | |
| "epoch": 3.28, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6765, | |
| "step": 259 | |
| }, | |
| { | |
| "epoch": 3.3, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2087, | |
| "step": 260 | |
| }, | |
| { | |
| "epoch": 3.31, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2397, | |
| "step": 261 | |
| }, | |
| { | |
| "epoch": 3.32, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5796, | |
| "step": 262 | |
| }, | |
| { | |
| "epoch": 3.33, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5437, | |
| "step": 263 | |
| }, | |
| { | |
| "epoch": 3.35, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2051, | |
| "step": 264 | |
| }, | |
| { | |
| "epoch": 3.36, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4612, | |
| "step": 265 | |
| }, | |
| { | |
| "epoch": 3.37, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3948, | |
| "step": 266 | |
| }, | |
| { | |
| "epoch": 3.39, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3843, | |
| "step": 267 | |
| }, | |
| { | |
| "epoch": 3.4, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2458, | |
| "step": 268 | |
| }, | |
| { | |
| "epoch": 3.41, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4883, | |
| "step": 269 | |
| }, | |
| { | |
| "epoch": 3.42, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3499, | |
| "step": 270 | |
| }, | |
| { | |
| "epoch": 3.44, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5173, | |
| "step": 271 | |
| }, | |
| { | |
| "epoch": 3.45, | |
| "learning_rate": 5e-05, | |
| "loss": 1.198, | |
| "step": 272 | |
| }, | |
| { | |
| "epoch": 3.46, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5085, | |
| "step": 273 | |
| }, | |
| { | |
| "epoch": 3.47, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3892, | |
| "step": 274 | |
| }, | |
| { | |
| "epoch": 3.49, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7917, | |
| "step": 275 | |
| }, | |
| { | |
| "epoch": 3.5, | |
| "learning_rate": 5e-05, | |
| "loss": 1.509, | |
| "step": 276 | |
| }, | |
| { | |
| "epoch": 3.51, | |
| "learning_rate": 5e-05, | |
| "loss": 1.8389, | |
| "step": 277 | |
| }, | |
| { | |
| "epoch": 3.52, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2966, | |
| "step": 278 | |
| }, | |
| { | |
| "epoch": 3.54, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6704, | |
| "step": 279 | |
| }, | |
| { | |
| "epoch": 3.55, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3864, | |
| "step": 280 | |
| }, | |
| { | |
| "epoch": 3.56, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7454, | |
| "step": 281 | |
| }, | |
| { | |
| "epoch": 3.58, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3401, | |
| "step": 282 | |
| }, | |
| { | |
| "epoch": 3.59, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6721, | |
| "step": 283 | |
| }, | |
| { | |
| "epoch": 3.6, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3755, | |
| "step": 284 | |
| }, | |
| { | |
| "epoch": 3.61, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4204, | |
| "step": 285 | |
| }, | |
| { | |
| "epoch": 3.63, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5044, | |
| "step": 286 | |
| }, | |
| { | |
| "epoch": 3.64, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3423, | |
| "step": 287 | |
| }, | |
| { | |
| "epoch": 3.65, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3213, | |
| "step": 288 | |
| }, | |
| { | |
| "epoch": 3.66, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4752, | |
| "step": 289 | |
| }, | |
| { | |
| "epoch": 3.68, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3779, | |
| "step": 290 | |
| }, | |
| { | |
| "epoch": 3.69, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3022, | |
| "step": 291 | |
| }, | |
| { | |
| "epoch": 3.7, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5862, | |
| "step": 292 | |
| }, | |
| { | |
| "epoch": 3.71, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3879, | |
| "step": 293 | |
| }, | |
| { | |
| "epoch": 3.73, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6495, | |
| "step": 294 | |
| }, | |
| { | |
| "epoch": 3.74, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3733, | |
| "step": 295 | |
| }, | |
| { | |
| "epoch": 3.75, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6184, | |
| "step": 296 | |
| }, | |
| { | |
| "epoch": 3.77, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3611, | |
| "step": 297 | |
| }, | |
| { | |
| "epoch": 3.78, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3248, | |
| "step": 298 | |
| }, | |
| { | |
| "epoch": 3.79, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4023, | |
| "step": 299 | |
| }, | |
| { | |
| "epoch": 3.8, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4833, | |
| "step": 300 | |
| }, | |
| { | |
| "epoch": 3.82, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3478, | |
| "step": 301 | |
| }, | |
| { | |
| "epoch": 3.83, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4612, | |
| "step": 302 | |
| }, | |
| { | |
| "epoch": 3.84, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2048, | |
| "step": 303 | |
| }, | |
| { | |
| "epoch": 3.85, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5564, | |
| "step": 304 | |
| }, | |
| { | |
| "epoch": 3.87, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7966, | |
| "step": 305 | |
| }, | |
| { | |
| "epoch": 3.88, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4214, | |
| "step": 306 | |
| }, | |
| { | |
| "epoch": 3.89, | |
| "learning_rate": 5e-05, | |
| "loss": 1.7578, | |
| "step": 307 | |
| }, | |
| { | |
| "epoch": 3.9, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3619, | |
| "step": 308 | |
| }, | |
| { | |
| "epoch": 3.92, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6614, | |
| "step": 309 | |
| }, | |
| { | |
| "epoch": 3.93, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2427, | |
| "step": 310 | |
| }, | |
| { | |
| "epoch": 3.94, | |
| "learning_rate": 5e-05, | |
| "loss": 1.9487, | |
| "step": 311 | |
| }, | |
| { | |
| "epoch": 3.96, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6064, | |
| "step": 312 | |
| }, | |
| { | |
| "epoch": 3.97, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6147, | |
| "step": 313 | |
| }, | |
| { | |
| "epoch": 3.98, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3103, | |
| "step": 314 | |
| }, | |
| { | |
| "epoch": 3.99, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4141, | |
| "step": 315 | |
| }, | |
| { | |
| "epoch": 4.01, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6216, | |
| "step": 316 | |
| }, | |
| { | |
| "epoch": 4.02, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3606, | |
| "step": 317 | |
| }, | |
| { | |
| "epoch": 4.03, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3246, | |
| "step": 318 | |
| }, | |
| { | |
| "epoch": 4.04, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3274, | |
| "step": 319 | |
| }, | |
| { | |
| "epoch": 4.06, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3033, | |
| "step": 320 | |
| }, | |
| { | |
| "epoch": 4.07, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4629, | |
| "step": 321 | |
| }, | |
| { | |
| "epoch": 4.08, | |
| "learning_rate": 5e-05, | |
| "loss": 1.368, | |
| "step": 322 | |
| }, | |
| { | |
| "epoch": 4.1, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2075, | |
| "step": 323 | |
| }, | |
| { | |
| "epoch": 4.11, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4302, | |
| "step": 324 | |
| }, | |
| { | |
| "epoch": 4.12, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1218, | |
| "step": 325 | |
| }, | |
| { | |
| "epoch": 4.13, | |
| "learning_rate": 5e-05, | |
| "loss": 1.6167, | |
| "step": 326 | |
| }, | |
| { | |
| "epoch": 4.15, | |
| "learning_rate": 5e-05, | |
| "loss": 1.355, | |
| "step": 327 | |
| }, | |
| { | |
| "epoch": 4.16, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3278, | |
| "step": 328 | |
| }, | |
| { | |
| "epoch": 4.17, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2373, | |
| "step": 329 | |
| }, | |
| { | |
| "epoch": 4.18, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2812, | |
| "step": 330 | |
| }, | |
| { | |
| "epoch": 4.2, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4514, | |
| "step": 331 | |
| }, | |
| { | |
| "epoch": 4.21, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3529, | |
| "step": 332 | |
| }, | |
| { | |
| "epoch": 4.22, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4648, | |
| "step": 333 | |
| }, | |
| { | |
| "epoch": 4.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9886, | |
| "step": 334 | |
| }, | |
| { | |
| "epoch": 4.25, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3233, | |
| "step": 335 | |
| }, | |
| { | |
| "epoch": 4.26, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4673, | |
| "step": 336 | |
| }, | |
| { | |
| "epoch": 4.27, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1567, | |
| "step": 337 | |
| }, | |
| { | |
| "epoch": 4.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9458, | |
| "step": 338 | |
| }, | |
| { | |
| "epoch": 4.3, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3669, | |
| "step": 339 | |
| }, | |
| { | |
| "epoch": 4.31, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3571, | |
| "step": 340 | |
| }, | |
| { | |
| "epoch": 4.32, | |
| "learning_rate": 5e-05, | |
| "loss": 1.187, | |
| "step": 341 | |
| }, | |
| { | |
| "epoch": 4.34, | |
| "learning_rate": 5e-05, | |
| "loss": 1.434, | |
| "step": 342 | |
| }, | |
| { | |
| "epoch": 4.35, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1541, | |
| "step": 343 | |
| }, | |
| { | |
| "epoch": 4.36, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2866, | |
| "step": 344 | |
| }, | |
| { | |
| "epoch": 4.37, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2463, | |
| "step": 345 | |
| }, | |
| { | |
| "epoch": 4.39, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0688, | |
| "step": 346 | |
| }, | |
| { | |
| "epoch": 4.4, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4114, | |
| "step": 347 | |
| }, | |
| { | |
| "epoch": 4.41, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3093, | |
| "step": 348 | |
| }, | |
| { | |
| "epoch": 4.42, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3925, | |
| "step": 349 | |
| }, | |
| { | |
| "epoch": 4.44, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3931, | |
| "step": 350 | |
| }, | |
| { | |
| "epoch": 4.45, | |
| "learning_rate": 5e-05, | |
| "loss": 1.332, | |
| "step": 351 | |
| }, | |
| { | |
| "epoch": 4.46, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3589, | |
| "step": 352 | |
| }, | |
| { | |
| "epoch": 4.48, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3401, | |
| "step": 353 | |
| }, | |
| { | |
| "epoch": 4.49, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2417, | |
| "step": 354 | |
| }, | |
| { | |
| "epoch": 4.5, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2009, | |
| "step": 355 | |
| }, | |
| { | |
| "epoch": 4.51, | |
| "learning_rate": 5e-05, | |
| "loss": 1.834, | |
| "step": 356 | |
| }, | |
| { | |
| "epoch": 4.53, | |
| "learning_rate": 5e-05, | |
| "loss": 1.146, | |
| "step": 357 | |
| }, | |
| { | |
| "epoch": 4.54, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4711, | |
| "step": 358 | |
| }, | |
| { | |
| "epoch": 4.55, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3916, | |
| "step": 359 | |
| }, | |
| { | |
| "epoch": 4.56, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0986, | |
| "step": 360 | |
| }, | |
| { | |
| "epoch": 4.58, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0406, | |
| "step": 361 | |
| }, | |
| { | |
| "epoch": 4.59, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1685, | |
| "step": 362 | |
| }, | |
| { | |
| "epoch": 4.6, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4353, | |
| "step": 363 | |
| }, | |
| { | |
| "epoch": 4.61, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2482, | |
| "step": 364 | |
| }, | |
| { | |
| "epoch": 4.63, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1086, | |
| "step": 365 | |
| }, | |
| { | |
| "epoch": 4.64, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3533, | |
| "step": 366 | |
| }, | |
| { | |
| "epoch": 4.65, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2775, | |
| "step": 367 | |
| }, | |
| { | |
| "epoch": 4.67, | |
| "learning_rate": 5e-05, | |
| "loss": 1.251, | |
| "step": 368 | |
| }, | |
| { | |
| "epoch": 4.68, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2703, | |
| "step": 369 | |
| }, | |
| { | |
| "epoch": 4.69, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5557, | |
| "step": 370 | |
| }, | |
| { | |
| "epoch": 4.7, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3955, | |
| "step": 371 | |
| }, | |
| { | |
| "epoch": 4.72, | |
| "learning_rate": 5e-05, | |
| "loss": 1.405, | |
| "step": 372 | |
| }, | |
| { | |
| "epoch": 4.73, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4375, | |
| "step": 373 | |
| }, | |
| { | |
| "epoch": 4.74, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1005, | |
| "step": 374 | |
| }, | |
| { | |
| "epoch": 4.75, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3351, | |
| "step": 375 | |
| }, | |
| { | |
| "epoch": 4.77, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3782, | |
| "step": 376 | |
| }, | |
| { | |
| "epoch": 4.78, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4373, | |
| "step": 377 | |
| }, | |
| { | |
| "epoch": 4.79, | |
| "learning_rate": 5e-05, | |
| "loss": 1.271, | |
| "step": 378 | |
| }, | |
| { | |
| "epoch": 4.81, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3931, | |
| "step": 379 | |
| }, | |
| { | |
| "epoch": 4.82, | |
| "learning_rate": 5e-05, | |
| "loss": 1.418, | |
| "step": 380 | |
| }, | |
| { | |
| "epoch": 4.83, | |
| "learning_rate": 5e-05, | |
| "loss": 1.448, | |
| "step": 381 | |
| }, | |
| { | |
| "epoch": 4.84, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3296, | |
| "step": 382 | |
| }, | |
| { | |
| "epoch": 4.86, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2343, | |
| "step": 383 | |
| }, | |
| { | |
| "epoch": 4.87, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2234, | |
| "step": 384 | |
| }, | |
| { | |
| "epoch": 4.88, | |
| "learning_rate": 5e-05, | |
| "loss": 1.12, | |
| "step": 385 | |
| }, | |
| { | |
| "epoch": 4.89, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2791, | |
| "step": 386 | |
| }, | |
| { | |
| "epoch": 4.91, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5156, | |
| "step": 387 | |
| }, | |
| { | |
| "epoch": 4.92, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4131, | |
| "step": 388 | |
| }, | |
| { | |
| "epoch": 4.93, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0717, | |
| "step": 389 | |
| }, | |
| { | |
| "epoch": 4.94, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3638, | |
| "step": 390 | |
| }, | |
| { | |
| "epoch": 4.96, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2627, | |
| "step": 391 | |
| }, | |
| { | |
| "epoch": 4.97, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2263, | |
| "step": 392 | |
| }, | |
| { | |
| "epoch": 4.98, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1666, | |
| "step": 393 | |
| }, | |
| { | |
| "epoch": 5.0, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1797, | |
| "step": 394 | |
| }, | |
| { | |
| "epoch": 5.01, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0352, | |
| "step": 395 | |
| }, | |
| { | |
| "epoch": 5.02, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1233, | |
| "step": 396 | |
| }, | |
| { | |
| "epoch": 5.03, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0109, | |
| "step": 397 | |
| }, | |
| { | |
| "epoch": 5.05, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2725, | |
| "step": 398 | |
| }, | |
| { | |
| "epoch": 5.06, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0253, | |
| "step": 399 | |
| }, | |
| { | |
| "epoch": 5.07, | |
| "learning_rate": 5e-05, | |
| "loss": 1.5437, | |
| "step": 400 | |
| }, | |
| { | |
| "epoch": 5.08, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0244, | |
| "step": 401 | |
| }, | |
| { | |
| "epoch": 5.1, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1301, | |
| "step": 402 | |
| }, | |
| { | |
| "epoch": 5.11, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1255, | |
| "step": 403 | |
| }, | |
| { | |
| "epoch": 5.12, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1585, | |
| "step": 404 | |
| }, | |
| { | |
| "epoch": 5.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9051, | |
| "step": 405 | |
| }, | |
| { | |
| "epoch": 5.15, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0485, | |
| "step": 406 | |
| }, | |
| { | |
| "epoch": 5.16, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0323, | |
| "step": 407 | |
| }, | |
| { | |
| "epoch": 5.17, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0601, | |
| "step": 408 | |
| }, | |
| { | |
| "epoch": 5.19, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0352, | |
| "step": 409 | |
| }, | |
| { | |
| "epoch": 5.2, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1669, | |
| "step": 410 | |
| }, | |
| { | |
| "epoch": 5.21, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1257, | |
| "step": 411 | |
| }, | |
| { | |
| "epoch": 5.22, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2361, | |
| "step": 412 | |
| }, | |
| { | |
| "epoch": 5.24, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0942, | |
| "step": 413 | |
| }, | |
| { | |
| "epoch": 5.25, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0406, | |
| "step": 414 | |
| }, | |
| { | |
| "epoch": 5.26, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1814, | |
| "step": 415 | |
| }, | |
| { | |
| "epoch": 5.27, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2825, | |
| "step": 416 | |
| }, | |
| { | |
| "epoch": 5.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9783, | |
| "step": 417 | |
| }, | |
| { | |
| "epoch": 5.3, | |
| "learning_rate": 5e-05, | |
| "loss": 1.059, | |
| "step": 418 | |
| }, | |
| { | |
| "epoch": 5.31, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0726, | |
| "step": 419 | |
| }, | |
| { | |
| "epoch": 5.32, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3308, | |
| "step": 420 | |
| }, | |
| { | |
| "epoch": 5.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.959, | |
| "step": 421 | |
| }, | |
| { | |
| "epoch": 5.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8518, | |
| "step": 422 | |
| }, | |
| { | |
| "epoch": 5.36, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0836, | |
| "step": 423 | |
| }, | |
| { | |
| "epoch": 5.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8994, | |
| "step": 424 | |
| }, | |
| { | |
| "epoch": 5.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9929, | |
| "step": 425 | |
| }, | |
| { | |
| "epoch": 5.4, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0156, | |
| "step": 426 | |
| }, | |
| { | |
| "epoch": 5.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9542, | |
| "step": 427 | |
| }, | |
| { | |
| "epoch": 5.43, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0391, | |
| "step": 428 | |
| }, | |
| { | |
| "epoch": 5.44, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3759, | |
| "step": 429 | |
| }, | |
| { | |
| "epoch": 5.45, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0764, | |
| "step": 430 | |
| }, | |
| { | |
| "epoch": 5.46, | |
| "learning_rate": 5e-05, | |
| "loss": 1.415, | |
| "step": 431 | |
| }, | |
| { | |
| "epoch": 5.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8115, | |
| "step": 432 | |
| }, | |
| { | |
| "epoch": 5.49, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2021, | |
| "step": 433 | |
| }, | |
| { | |
| "epoch": 5.5, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1346, | |
| "step": 434 | |
| }, | |
| { | |
| "epoch": 5.52, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1128, | |
| "step": 435 | |
| }, | |
| { | |
| "epoch": 5.53, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1196, | |
| "step": 436 | |
| }, | |
| { | |
| "epoch": 5.54, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1588, | |
| "step": 437 | |
| }, | |
| { | |
| "epoch": 5.55, | |
| "learning_rate": 5e-05, | |
| "loss": 1.29, | |
| "step": 438 | |
| }, | |
| { | |
| "epoch": 5.57, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0735, | |
| "step": 439 | |
| }, | |
| { | |
| "epoch": 5.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9816, | |
| "step": 440 | |
| }, | |
| { | |
| "epoch": 5.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9113, | |
| "step": 441 | |
| }, | |
| { | |
| "epoch": 5.6, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2759, | |
| "step": 442 | |
| }, | |
| { | |
| "epoch": 5.62, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2019, | |
| "step": 443 | |
| }, | |
| { | |
| "epoch": 5.63, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3916, | |
| "step": 444 | |
| }, | |
| { | |
| "epoch": 5.64, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1307, | |
| "step": 445 | |
| }, | |
| { | |
| "epoch": 5.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8333, | |
| "step": 446 | |
| }, | |
| { | |
| "epoch": 5.67, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2332, | |
| "step": 447 | |
| }, | |
| { | |
| "epoch": 5.68, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3669, | |
| "step": 448 | |
| }, | |
| { | |
| "epoch": 5.69, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0098, | |
| "step": 449 | |
| }, | |
| { | |
| "epoch": 5.71, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1978, | |
| "step": 450 | |
| }, | |
| { | |
| "epoch": 5.72, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1589, | |
| "step": 451 | |
| }, | |
| { | |
| "epoch": 5.73, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0649, | |
| "step": 452 | |
| }, | |
| { | |
| "epoch": 5.74, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4026, | |
| "step": 453 | |
| }, | |
| { | |
| "epoch": 5.76, | |
| "learning_rate": 5e-05, | |
| "loss": 1.259, | |
| "step": 454 | |
| }, | |
| { | |
| "epoch": 5.77, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0715, | |
| "step": 455 | |
| }, | |
| { | |
| "epoch": 5.78, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3926, | |
| "step": 456 | |
| }, | |
| { | |
| "epoch": 5.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.989, | |
| "step": 457 | |
| }, | |
| { | |
| "epoch": 5.81, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3079, | |
| "step": 458 | |
| }, | |
| { | |
| "epoch": 5.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9657, | |
| "step": 459 | |
| }, | |
| { | |
| "epoch": 5.83, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0565, | |
| "step": 460 | |
| }, | |
| { | |
| "epoch": 5.84, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2346, | |
| "step": 461 | |
| }, | |
| { | |
| "epoch": 5.86, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0129, | |
| "step": 462 | |
| }, | |
| { | |
| "epoch": 5.87, | |
| "learning_rate": 5e-05, | |
| "loss": 1.3492, | |
| "step": 463 | |
| }, | |
| { | |
| "epoch": 5.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9885, | |
| "step": 464 | |
| }, | |
| { | |
| "epoch": 5.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9617, | |
| "step": 465 | |
| }, | |
| { | |
| "epoch": 5.91, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1428, | |
| "step": 466 | |
| }, | |
| { | |
| "epoch": 5.92, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0911, | |
| "step": 467 | |
| }, | |
| { | |
| "epoch": 5.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.98, | |
| "step": 468 | |
| }, | |
| { | |
| "epoch": 5.95, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0477, | |
| "step": 469 | |
| }, | |
| { | |
| "epoch": 5.96, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2196, | |
| "step": 470 | |
| }, | |
| { | |
| "epoch": 5.97, | |
| "learning_rate": 5e-05, | |
| "loss": 1.4609, | |
| "step": 471 | |
| }, | |
| { | |
| "epoch": 5.98, | |
| "learning_rate": 5e-05, | |
| "loss": 1.105, | |
| "step": 472 | |
| }, | |
| { | |
| "epoch": 6.0, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0371, | |
| "step": 473 | |
| }, | |
| { | |
| "epoch": 6.01, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2643, | |
| "step": 474 | |
| }, | |
| { | |
| "epoch": 6.02, | |
| "learning_rate": 5e-05, | |
| "loss": 1.27, | |
| "step": 475 | |
| }, | |
| { | |
| "epoch": 6.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9491, | |
| "step": 476 | |
| }, | |
| { | |
| "epoch": 6.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9374, | |
| "step": 477 | |
| }, | |
| { | |
| "epoch": 6.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9541, | |
| "step": 478 | |
| }, | |
| { | |
| "epoch": 6.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8734, | |
| "step": 479 | |
| }, | |
| { | |
| "epoch": 6.09, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0566, | |
| "step": 480 | |
| }, | |
| { | |
| "epoch": 6.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9071, | |
| "step": 481 | |
| }, | |
| { | |
| "epoch": 6.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8359, | |
| "step": 482 | |
| }, | |
| { | |
| "epoch": 6.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9695, | |
| "step": 483 | |
| }, | |
| { | |
| "epoch": 6.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7808, | |
| "step": 484 | |
| }, | |
| { | |
| "epoch": 6.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7584, | |
| "step": 485 | |
| }, | |
| { | |
| "epoch": 6.16, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0564, | |
| "step": 486 | |
| }, | |
| { | |
| "epoch": 6.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8324, | |
| "step": 487 | |
| }, | |
| { | |
| "epoch": 6.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9714, | |
| "step": 488 | |
| }, | |
| { | |
| "epoch": 6.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9785, | |
| "step": 489 | |
| }, | |
| { | |
| "epoch": 6.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.95, | |
| "step": 490 | |
| }, | |
| { | |
| "epoch": 6.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.806, | |
| "step": 491 | |
| }, | |
| { | |
| "epoch": 6.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8848, | |
| "step": 492 | |
| }, | |
| { | |
| "epoch": 6.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.824, | |
| "step": 493 | |
| }, | |
| { | |
| "epoch": 6.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.969, | |
| "step": 494 | |
| }, | |
| { | |
| "epoch": 6.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8861, | |
| "step": 495 | |
| }, | |
| { | |
| "epoch": 6.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6434, | |
| "step": 496 | |
| }, | |
| { | |
| "epoch": 6.3, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0431, | |
| "step": 497 | |
| }, | |
| { | |
| "epoch": 6.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9127, | |
| "step": 498 | |
| }, | |
| { | |
| "epoch": 6.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9074, | |
| "step": 499 | |
| }, | |
| { | |
| "epoch": 6.34, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0694, | |
| "step": 500 | |
| }, | |
| { | |
| "epoch": 6.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9895, | |
| "step": 501 | |
| }, | |
| { | |
| "epoch": 6.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9509, | |
| "step": 502 | |
| }, | |
| { | |
| "epoch": 6.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9293, | |
| "step": 503 | |
| }, | |
| { | |
| "epoch": 6.39, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0732, | |
| "step": 504 | |
| }, | |
| { | |
| "epoch": 6.4, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2473, | |
| "step": 505 | |
| }, | |
| { | |
| "epoch": 6.42, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0963, | |
| "step": 506 | |
| }, | |
| { | |
| "epoch": 6.43, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0005, | |
| "step": 507 | |
| }, | |
| { | |
| "epoch": 6.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8832, | |
| "step": 508 | |
| }, | |
| { | |
| "epoch": 6.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.983, | |
| "step": 509 | |
| }, | |
| { | |
| "epoch": 6.47, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0771, | |
| "step": 510 | |
| }, | |
| { | |
| "epoch": 6.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.851, | |
| "step": 511 | |
| }, | |
| { | |
| "epoch": 6.49, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0426, | |
| "step": 512 | |
| }, | |
| { | |
| "epoch": 6.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7806, | |
| "step": 513 | |
| }, | |
| { | |
| "epoch": 6.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8573, | |
| "step": 514 | |
| }, | |
| { | |
| "epoch": 6.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9017, | |
| "step": 515 | |
| }, | |
| { | |
| "epoch": 6.54, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0674, | |
| "step": 516 | |
| }, | |
| { | |
| "epoch": 6.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8411, | |
| "step": 517 | |
| }, | |
| { | |
| "epoch": 6.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7642, | |
| "step": 518 | |
| }, | |
| { | |
| "epoch": 6.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7722, | |
| "step": 519 | |
| }, | |
| { | |
| "epoch": 6.59, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0848, | |
| "step": 520 | |
| }, | |
| { | |
| "epoch": 6.61, | |
| "learning_rate": 5e-05, | |
| "loss": 1.1509, | |
| "step": 521 | |
| }, | |
| { | |
| "epoch": 6.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9004, | |
| "step": 522 | |
| }, | |
| { | |
| "epoch": 6.63, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0056, | |
| "step": 523 | |
| }, | |
| { | |
| "epoch": 6.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7882, | |
| "step": 524 | |
| }, | |
| { | |
| "epoch": 6.66, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0292, | |
| "step": 525 | |
| }, | |
| { | |
| "epoch": 6.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8975, | |
| "step": 526 | |
| }, | |
| { | |
| "epoch": 6.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7839, | |
| "step": 527 | |
| }, | |
| { | |
| "epoch": 6.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6125, | |
| "step": 528 | |
| }, | |
| { | |
| "epoch": 6.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8376, | |
| "step": 529 | |
| }, | |
| { | |
| "epoch": 6.72, | |
| "learning_rate": 5e-05, | |
| "loss": 1.2618, | |
| "step": 530 | |
| }, | |
| { | |
| "epoch": 6.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9618, | |
| "step": 531 | |
| }, | |
| { | |
| "epoch": 6.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8689, | |
| "step": 532 | |
| }, | |
| { | |
| "epoch": 6.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9085, | |
| "step": 533 | |
| }, | |
| { | |
| "epoch": 6.77, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0693, | |
| "step": 534 | |
| }, | |
| { | |
| "epoch": 6.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8101, | |
| "step": 535 | |
| }, | |
| { | |
| "epoch": 6.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.723, | |
| "step": 536 | |
| }, | |
| { | |
| "epoch": 6.81, | |
| "learning_rate": 5e-05, | |
| "loss": 1.139, | |
| "step": 537 | |
| }, | |
| { | |
| "epoch": 6.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8303, | |
| "step": 538 | |
| }, | |
| { | |
| "epoch": 6.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8186, | |
| "step": 539 | |
| }, | |
| { | |
| "epoch": 6.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9393, | |
| "step": 540 | |
| }, | |
| { | |
| "epoch": 6.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.876, | |
| "step": 541 | |
| }, | |
| { | |
| "epoch": 6.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.898, | |
| "step": 542 | |
| }, | |
| { | |
| "epoch": 6.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7925, | |
| "step": 543 | |
| }, | |
| { | |
| "epoch": 6.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.832, | |
| "step": 544 | |
| }, | |
| { | |
| "epoch": 6.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9486, | |
| "step": 545 | |
| }, | |
| { | |
| "epoch": 6.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.895, | |
| "step": 546 | |
| }, | |
| { | |
| "epoch": 6.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.905, | |
| "step": 547 | |
| }, | |
| { | |
| "epoch": 6.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.875, | |
| "step": 548 | |
| }, | |
| { | |
| "epoch": 6.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9828, | |
| "step": 549 | |
| }, | |
| { | |
| "epoch": 6.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8679, | |
| "step": 550 | |
| }, | |
| { | |
| "epoch": 6.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9418, | |
| "step": 551 | |
| }, | |
| { | |
| "epoch": 7.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9807, | |
| "step": 552 | |
| }, | |
| { | |
| "epoch": 7.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8455, | |
| "step": 553 | |
| }, | |
| { | |
| "epoch": 7.02, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0291, | |
| "step": 554 | |
| }, | |
| { | |
| "epoch": 7.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7048, | |
| "step": 555 | |
| }, | |
| { | |
| "epoch": 7.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7972, | |
| "step": 556 | |
| }, | |
| { | |
| "epoch": 7.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6609, | |
| "step": 557 | |
| }, | |
| { | |
| "epoch": 7.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5593, | |
| "step": 558 | |
| }, | |
| { | |
| "epoch": 7.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.757, | |
| "step": 559 | |
| }, | |
| { | |
| "epoch": 7.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9493, | |
| "step": 560 | |
| }, | |
| { | |
| "epoch": 7.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7764, | |
| "step": 561 | |
| }, | |
| { | |
| "epoch": 7.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7507, | |
| "step": 562 | |
| }, | |
| { | |
| "epoch": 7.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6658, | |
| "step": 563 | |
| }, | |
| { | |
| "epoch": 7.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8028, | |
| "step": 564 | |
| }, | |
| { | |
| "epoch": 7.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8905, | |
| "step": 565 | |
| }, | |
| { | |
| "epoch": 7.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8983, | |
| "step": 566 | |
| }, | |
| { | |
| "epoch": 7.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8674, | |
| "step": 567 | |
| }, | |
| { | |
| "epoch": 7.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8704, | |
| "step": 568 | |
| }, | |
| { | |
| "epoch": 7.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6869, | |
| "step": 569 | |
| }, | |
| { | |
| "epoch": 7.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6305, | |
| "step": 570 | |
| }, | |
| { | |
| "epoch": 7.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5664, | |
| "step": 571 | |
| }, | |
| { | |
| "epoch": 7.25, | |
| "learning_rate": 5e-05, | |
| "loss": 1.0355, | |
| "step": 572 | |
| }, | |
| { | |
| "epoch": 7.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6752, | |
| "step": 573 | |
| }, | |
| { | |
| "epoch": 7.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8231, | |
| "step": 574 | |
| }, | |
| { | |
| "epoch": 7.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7209, | |
| "step": 575 | |
| }, | |
| { | |
| "epoch": 7.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7499, | |
| "step": 576 | |
| }, | |
| { | |
| "epoch": 7.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.649, | |
| "step": 577 | |
| }, | |
| { | |
| "epoch": 7.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6372, | |
| "step": 578 | |
| }, | |
| { | |
| "epoch": 7.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8981, | |
| "step": 579 | |
| }, | |
| { | |
| "epoch": 7.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5923, | |
| "step": 580 | |
| }, | |
| { | |
| "epoch": 7.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7766, | |
| "step": 581 | |
| }, | |
| { | |
| "epoch": 7.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8104, | |
| "step": 582 | |
| }, | |
| { | |
| "epoch": 7.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5765, | |
| "step": 583 | |
| }, | |
| { | |
| "epoch": 7.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6414, | |
| "step": 584 | |
| }, | |
| { | |
| "epoch": 7.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7383, | |
| "step": 585 | |
| }, | |
| { | |
| "epoch": 7.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7659, | |
| "step": 586 | |
| }, | |
| { | |
| "epoch": 7.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9116, | |
| "step": 587 | |
| }, | |
| { | |
| "epoch": 7.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8367, | |
| "step": 588 | |
| }, | |
| { | |
| "epoch": 7.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.692, | |
| "step": 589 | |
| }, | |
| { | |
| "epoch": 7.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5653, | |
| "step": 590 | |
| }, | |
| { | |
| "epoch": 7.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6509, | |
| "step": 591 | |
| }, | |
| { | |
| "epoch": 7.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8573, | |
| "step": 592 | |
| }, | |
| { | |
| "epoch": 7.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5039, | |
| "step": 593 | |
| }, | |
| { | |
| "epoch": 7.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5755, | |
| "step": 594 | |
| }, | |
| { | |
| "epoch": 7.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6116, | |
| "step": 595 | |
| }, | |
| { | |
| "epoch": 7.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.82, | |
| "step": 596 | |
| }, | |
| { | |
| "epoch": 7.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7148, | |
| "step": 597 | |
| }, | |
| { | |
| "epoch": 7.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9592, | |
| "step": 598 | |
| }, | |
| { | |
| "epoch": 7.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6801, | |
| "step": 599 | |
| }, | |
| { | |
| "epoch": 7.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.762, | |
| "step": 600 | |
| }, | |
| { | |
| "epoch": 7.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7289, | |
| "step": 601 | |
| }, | |
| { | |
| "epoch": 7.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.808, | |
| "step": 602 | |
| }, | |
| { | |
| "epoch": 7.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5103, | |
| "step": 603 | |
| }, | |
| { | |
| "epoch": 7.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7641, | |
| "step": 604 | |
| }, | |
| { | |
| "epoch": 7.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8445, | |
| "step": 605 | |
| }, | |
| { | |
| "epoch": 7.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7042, | |
| "step": 606 | |
| }, | |
| { | |
| "epoch": 7.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6248, | |
| "step": 607 | |
| }, | |
| { | |
| "epoch": 7.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6974, | |
| "step": 608 | |
| }, | |
| { | |
| "epoch": 7.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7323, | |
| "step": 609 | |
| }, | |
| { | |
| "epoch": 7.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6591, | |
| "step": 610 | |
| }, | |
| { | |
| "epoch": 7.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8257, | |
| "step": 611 | |
| }, | |
| { | |
| "epoch": 7.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7774, | |
| "step": 612 | |
| }, | |
| { | |
| "epoch": 7.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9021, | |
| "step": 613 | |
| }, | |
| { | |
| "epoch": 7.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6187, | |
| "step": 614 | |
| }, | |
| { | |
| "epoch": 7.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5164, | |
| "step": 615 | |
| }, | |
| { | |
| "epoch": 7.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.605, | |
| "step": 616 | |
| }, | |
| { | |
| "epoch": 7.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8193, | |
| "step": 617 | |
| }, | |
| { | |
| "epoch": 7.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7986, | |
| "step": 618 | |
| }, | |
| { | |
| "epoch": 7.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8107, | |
| "step": 619 | |
| }, | |
| { | |
| "epoch": 7.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6984, | |
| "step": 620 | |
| }, | |
| { | |
| "epoch": 7.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8126, | |
| "step": 621 | |
| }, | |
| { | |
| "epoch": 7.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6204, | |
| "step": 622 | |
| }, | |
| { | |
| "epoch": 7.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6644, | |
| "step": 623 | |
| }, | |
| { | |
| "epoch": 7.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.9012, | |
| "step": 624 | |
| }, | |
| { | |
| "epoch": 7.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7433, | |
| "step": 625 | |
| }, | |
| { | |
| "epoch": 7.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5367, | |
| "step": 626 | |
| }, | |
| { | |
| "epoch": 7.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7661, | |
| "step": 627 | |
| }, | |
| { | |
| "epoch": 7.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6797, | |
| "step": 628 | |
| }, | |
| { | |
| "epoch": 7.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8271, | |
| "step": 629 | |
| }, | |
| { | |
| "epoch": 7.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6868, | |
| "step": 630 | |
| }, | |
| { | |
| "epoch": 8.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7044, | |
| "step": 631 | |
| }, | |
| { | |
| "epoch": 8.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6336, | |
| "step": 632 | |
| }, | |
| { | |
| "epoch": 8.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7318, | |
| "step": 633 | |
| }, | |
| { | |
| "epoch": 8.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6107, | |
| "step": 634 | |
| }, | |
| { | |
| "epoch": 8.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6628, | |
| "step": 635 | |
| }, | |
| { | |
| "epoch": 8.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7153, | |
| "step": 636 | |
| }, | |
| { | |
| "epoch": 8.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6462, | |
| "step": 637 | |
| }, | |
| { | |
| "epoch": 8.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6727, | |
| "step": 638 | |
| }, | |
| { | |
| "epoch": 8.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5637, | |
| "step": 639 | |
| }, | |
| { | |
| "epoch": 8.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5032, | |
| "step": 640 | |
| }, | |
| { | |
| "epoch": 8.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8464, | |
| "step": 641 | |
| }, | |
| { | |
| "epoch": 8.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6292, | |
| "step": 642 | |
| }, | |
| { | |
| "epoch": 8.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5012, | |
| "step": 643 | |
| }, | |
| { | |
| "epoch": 8.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7806, | |
| "step": 644 | |
| }, | |
| { | |
| "epoch": 8.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7304, | |
| "step": 645 | |
| }, | |
| { | |
| "epoch": 8.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6582, | |
| "step": 646 | |
| }, | |
| { | |
| "epoch": 8.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7004, | |
| "step": 647 | |
| }, | |
| { | |
| "epoch": 8.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6578, | |
| "step": 648 | |
| }, | |
| { | |
| "epoch": 8.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7305, | |
| "step": 649 | |
| }, | |
| { | |
| "epoch": 8.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5677, | |
| "step": 650 | |
| }, | |
| { | |
| "epoch": 8.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7588, | |
| "step": 651 | |
| }, | |
| { | |
| "epoch": 8.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6982, | |
| "step": 652 | |
| }, | |
| { | |
| "epoch": 8.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5543, | |
| "step": 653 | |
| }, | |
| { | |
| "epoch": 8.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5165, | |
| "step": 654 | |
| }, | |
| { | |
| "epoch": 8.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4101, | |
| "step": 655 | |
| }, | |
| { | |
| "epoch": 8.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6526, | |
| "step": 656 | |
| }, | |
| { | |
| "epoch": 8.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4875, | |
| "step": 657 | |
| }, | |
| { | |
| "epoch": 8.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6135, | |
| "step": 658 | |
| }, | |
| { | |
| "epoch": 8.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5615, | |
| "step": 659 | |
| }, | |
| { | |
| "epoch": 8.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.8262, | |
| "step": 660 | |
| }, | |
| { | |
| "epoch": 8.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5992, | |
| "step": 661 | |
| }, | |
| { | |
| "epoch": 8.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7123, | |
| "step": 662 | |
| }, | |
| { | |
| "epoch": 8.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6752, | |
| "step": 663 | |
| }, | |
| { | |
| "epoch": 8.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7463, | |
| "step": 664 | |
| }, | |
| { | |
| "epoch": 8.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5771, | |
| "step": 665 | |
| }, | |
| { | |
| "epoch": 8.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5872, | |
| "step": 666 | |
| }, | |
| { | |
| "epoch": 8.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6154, | |
| "step": 667 | |
| }, | |
| { | |
| "epoch": 8.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7467, | |
| "step": 668 | |
| }, | |
| { | |
| "epoch": 8.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6267, | |
| "step": 669 | |
| }, | |
| { | |
| "epoch": 8.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5279, | |
| "step": 670 | |
| }, | |
| { | |
| "epoch": 8.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5716, | |
| "step": 671 | |
| }, | |
| { | |
| "epoch": 8.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6625, | |
| "step": 672 | |
| }, | |
| { | |
| "epoch": 8.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6882, | |
| "step": 673 | |
| }, | |
| { | |
| "epoch": 8.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7455, | |
| "step": 674 | |
| }, | |
| { | |
| "epoch": 8.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6188, | |
| "step": 675 | |
| }, | |
| { | |
| "epoch": 8.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5472, | |
| "step": 676 | |
| }, | |
| { | |
| "epoch": 8.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5699, | |
| "step": 677 | |
| }, | |
| { | |
| "epoch": 8.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5967, | |
| "step": 678 | |
| }, | |
| { | |
| "epoch": 8.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.666, | |
| "step": 679 | |
| }, | |
| { | |
| "epoch": 8.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6593, | |
| "step": 680 | |
| }, | |
| { | |
| "epoch": 8.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5339, | |
| "step": 681 | |
| }, | |
| { | |
| "epoch": 8.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5736, | |
| "step": 682 | |
| }, | |
| { | |
| "epoch": 8.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.594, | |
| "step": 683 | |
| }, | |
| { | |
| "epoch": 8.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.679, | |
| "step": 684 | |
| }, | |
| { | |
| "epoch": 8.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.847, | |
| "step": 685 | |
| }, | |
| { | |
| "epoch": 8.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6812, | |
| "step": 686 | |
| }, | |
| { | |
| "epoch": 8.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6936, | |
| "step": 687 | |
| }, | |
| { | |
| "epoch": 8.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6807, | |
| "step": 688 | |
| }, | |
| { | |
| "epoch": 8.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4848, | |
| "step": 689 | |
| }, | |
| { | |
| "epoch": 8.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6636, | |
| "step": 690 | |
| }, | |
| { | |
| "epoch": 8.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6176, | |
| "step": 691 | |
| }, | |
| { | |
| "epoch": 8.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6465, | |
| "step": 692 | |
| }, | |
| { | |
| "epoch": 8.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6425, | |
| "step": 693 | |
| }, | |
| { | |
| "epoch": 8.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5508, | |
| "step": 694 | |
| }, | |
| { | |
| "epoch": 8.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6239, | |
| "step": 695 | |
| }, | |
| { | |
| "epoch": 8.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7543, | |
| "step": 696 | |
| }, | |
| { | |
| "epoch": 8.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6024, | |
| "step": 697 | |
| }, | |
| { | |
| "epoch": 8.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.73, | |
| "step": 698 | |
| }, | |
| { | |
| "epoch": 8.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6318, | |
| "step": 699 | |
| }, | |
| { | |
| "epoch": 8.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6396, | |
| "step": 700 | |
| }, | |
| { | |
| "epoch": 8.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5022, | |
| "step": 701 | |
| }, | |
| { | |
| "epoch": 8.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5851, | |
| "step": 702 | |
| }, | |
| { | |
| "epoch": 8.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6386, | |
| "step": 703 | |
| }, | |
| { | |
| "epoch": 8.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5703, | |
| "step": 704 | |
| }, | |
| { | |
| "epoch": 8.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6477, | |
| "step": 705 | |
| }, | |
| { | |
| "epoch": 8.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6033, | |
| "step": 706 | |
| }, | |
| { | |
| "epoch": 8.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7205, | |
| "step": 707 | |
| }, | |
| { | |
| "epoch": 8.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6237, | |
| "step": 708 | |
| }, | |
| { | |
| "epoch": 8.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6492, | |
| "step": 709 | |
| }, | |
| { | |
| "epoch": 9.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3812, | |
| "step": 710 | |
| }, | |
| { | |
| "epoch": 9.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5149, | |
| "step": 711 | |
| }, | |
| { | |
| "epoch": 9.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5416, | |
| "step": 712 | |
| }, | |
| { | |
| "epoch": 9.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6983, | |
| "step": 713 | |
| }, | |
| { | |
| "epoch": 9.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5732, | |
| "step": 714 | |
| }, | |
| { | |
| "epoch": 9.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.603, | |
| "step": 715 | |
| }, | |
| { | |
| "epoch": 9.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5342, | |
| "step": 716 | |
| }, | |
| { | |
| "epoch": 9.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4529, | |
| "step": 717 | |
| }, | |
| { | |
| "epoch": 9.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5396, | |
| "step": 718 | |
| }, | |
| { | |
| "epoch": 9.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5394, | |
| "step": 719 | |
| }, | |
| { | |
| "epoch": 9.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6228, | |
| "step": 720 | |
| }, | |
| { | |
| "epoch": 9.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.618, | |
| "step": 721 | |
| }, | |
| { | |
| "epoch": 9.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5387, | |
| "step": 722 | |
| }, | |
| { | |
| "epoch": 9.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6755, | |
| "step": 723 | |
| }, | |
| { | |
| "epoch": 9.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5405, | |
| "step": 724 | |
| }, | |
| { | |
| "epoch": 9.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5071, | |
| "step": 725 | |
| }, | |
| { | |
| "epoch": 9.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.452, | |
| "step": 726 | |
| }, | |
| { | |
| "epoch": 9.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4978, | |
| "step": 727 | |
| }, | |
| { | |
| "epoch": 9.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5898, | |
| "step": 728 | |
| }, | |
| { | |
| "epoch": 9.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4939, | |
| "step": 729 | |
| }, | |
| { | |
| "epoch": 9.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6207, | |
| "step": 730 | |
| }, | |
| { | |
| "epoch": 9.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5715, | |
| "step": 731 | |
| }, | |
| { | |
| "epoch": 9.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5505, | |
| "step": 732 | |
| }, | |
| { | |
| "epoch": 9.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5795, | |
| "step": 733 | |
| }, | |
| { | |
| "epoch": 9.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.606, | |
| "step": 734 | |
| }, | |
| { | |
| "epoch": 9.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5188, | |
| "step": 735 | |
| }, | |
| { | |
| "epoch": 9.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5559, | |
| "step": 736 | |
| }, | |
| { | |
| "epoch": 9.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5515, | |
| "step": 737 | |
| }, | |
| { | |
| "epoch": 9.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5927, | |
| "step": 738 | |
| }, | |
| { | |
| "epoch": 9.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4682, | |
| "step": 739 | |
| }, | |
| { | |
| "epoch": 9.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4223, | |
| "step": 740 | |
| }, | |
| { | |
| "epoch": 9.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6277, | |
| "step": 741 | |
| }, | |
| { | |
| "epoch": 9.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6748, | |
| "step": 742 | |
| }, | |
| { | |
| "epoch": 9.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6284, | |
| "step": 743 | |
| }, | |
| { | |
| "epoch": 9.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6585, | |
| "step": 744 | |
| }, | |
| { | |
| "epoch": 9.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5709, | |
| "step": 745 | |
| }, | |
| { | |
| "epoch": 9.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6085, | |
| "step": 746 | |
| }, | |
| { | |
| "epoch": 9.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6371, | |
| "step": 747 | |
| }, | |
| { | |
| "epoch": 9.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6223, | |
| "step": 748 | |
| }, | |
| { | |
| "epoch": 9.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5335, | |
| "step": 749 | |
| }, | |
| { | |
| "epoch": 9.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6281, | |
| "step": 750 | |
| }, | |
| { | |
| "epoch": 9.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5711, | |
| "step": 751 | |
| }, | |
| { | |
| "epoch": 9.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4897, | |
| "step": 752 | |
| }, | |
| { | |
| "epoch": 9.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6711, | |
| "step": 753 | |
| }, | |
| { | |
| "epoch": 9.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4947, | |
| "step": 754 | |
| }, | |
| { | |
| "epoch": 9.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3919, | |
| "step": 755 | |
| }, | |
| { | |
| "epoch": 9.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6627, | |
| "step": 756 | |
| }, | |
| { | |
| "epoch": 9.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5762, | |
| "step": 757 | |
| }, | |
| { | |
| "epoch": 9.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6124, | |
| "step": 758 | |
| }, | |
| { | |
| "epoch": 9.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6042, | |
| "step": 759 | |
| }, | |
| { | |
| "epoch": 9.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6709, | |
| "step": 760 | |
| }, | |
| { | |
| "epoch": 9.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5055, | |
| "step": 761 | |
| }, | |
| { | |
| "epoch": 9.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6379, | |
| "step": 762 | |
| }, | |
| { | |
| "epoch": 9.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5237, | |
| "step": 763 | |
| }, | |
| { | |
| "epoch": 9.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6292, | |
| "step": 764 | |
| }, | |
| { | |
| "epoch": 9.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4818, | |
| "step": 765 | |
| }, | |
| { | |
| "epoch": 9.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6838, | |
| "step": 766 | |
| }, | |
| { | |
| "epoch": 9.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.651, | |
| "step": 767 | |
| }, | |
| { | |
| "epoch": 9.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.531, | |
| "step": 768 | |
| }, | |
| { | |
| "epoch": 9.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7369, | |
| "step": 769 | |
| }, | |
| { | |
| "epoch": 9.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6574, | |
| "step": 770 | |
| }, | |
| { | |
| "epoch": 9.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5632, | |
| "step": 771 | |
| }, | |
| { | |
| "epoch": 9.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5956, | |
| "step": 772 | |
| }, | |
| { | |
| "epoch": 9.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7866, | |
| "step": 773 | |
| }, | |
| { | |
| "epoch": 9.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.587, | |
| "step": 774 | |
| }, | |
| { | |
| "epoch": 9.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6711, | |
| "step": 775 | |
| }, | |
| { | |
| "epoch": 9.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6587, | |
| "step": 776 | |
| }, | |
| { | |
| "epoch": 9.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7639, | |
| "step": 777 | |
| }, | |
| { | |
| "epoch": 9.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5661, | |
| "step": 778 | |
| }, | |
| { | |
| "epoch": 9.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6012, | |
| "step": 779 | |
| }, | |
| { | |
| "epoch": 9.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4672, | |
| "step": 780 | |
| }, | |
| { | |
| "epoch": 9.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5804, | |
| "step": 781 | |
| }, | |
| { | |
| "epoch": 9.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5762, | |
| "step": 782 | |
| }, | |
| { | |
| "epoch": 9.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5283, | |
| "step": 783 | |
| }, | |
| { | |
| "epoch": 9.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5313, | |
| "step": 784 | |
| }, | |
| { | |
| "epoch": 9.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3967, | |
| "step": 785 | |
| }, | |
| { | |
| "epoch": 9.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.712, | |
| "step": 786 | |
| }, | |
| { | |
| "epoch": 9.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.645, | |
| "step": 787 | |
| }, | |
| { | |
| "epoch": 9.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.606, | |
| "step": 788 | |
| }, | |
| { | |
| "epoch": 10.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5231, | |
| "step": 789 | |
| }, | |
| { | |
| "epoch": 10.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5255, | |
| "step": 790 | |
| }, | |
| { | |
| "epoch": 10.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5819, | |
| "step": 791 | |
| }, | |
| { | |
| "epoch": 10.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6257, | |
| "step": 792 | |
| }, | |
| { | |
| "epoch": 10.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6124, | |
| "step": 793 | |
| }, | |
| { | |
| "epoch": 10.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4842, | |
| "step": 794 | |
| }, | |
| { | |
| "epoch": 10.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4978, | |
| "step": 795 | |
| }, | |
| { | |
| "epoch": 10.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5709, | |
| "step": 796 | |
| }, | |
| { | |
| "epoch": 10.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6196, | |
| "step": 797 | |
| }, | |
| { | |
| "epoch": 10.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5189, | |
| "step": 798 | |
| }, | |
| { | |
| "epoch": 10.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5959, | |
| "step": 799 | |
| }, | |
| { | |
| "epoch": 10.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5035, | |
| "step": 800 | |
| }, | |
| { | |
| "epoch": 10.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6525, | |
| "step": 801 | |
| }, | |
| { | |
| "epoch": 10.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6511, | |
| "step": 802 | |
| }, | |
| { | |
| "epoch": 10.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.432, | |
| "step": 803 | |
| }, | |
| { | |
| "epoch": 10.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4594, | |
| "step": 804 | |
| }, | |
| { | |
| "epoch": 10.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4679, | |
| "step": 805 | |
| }, | |
| { | |
| "epoch": 10.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5258, | |
| "step": 806 | |
| }, | |
| { | |
| "epoch": 10.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7523, | |
| "step": 807 | |
| }, | |
| { | |
| "epoch": 10.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.629, | |
| "step": 808 | |
| }, | |
| { | |
| "epoch": 10.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5258, | |
| "step": 809 | |
| }, | |
| { | |
| "epoch": 10.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5151, | |
| "step": 810 | |
| }, | |
| { | |
| "epoch": 10.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6367, | |
| "step": 811 | |
| }, | |
| { | |
| "epoch": 10.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5675, | |
| "step": 812 | |
| }, | |
| { | |
| "epoch": 10.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6341, | |
| "step": 813 | |
| }, | |
| { | |
| "epoch": 10.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5514, | |
| "step": 814 | |
| }, | |
| { | |
| "epoch": 10.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5146, | |
| "step": 815 | |
| }, | |
| { | |
| "epoch": 10.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4999, | |
| "step": 816 | |
| }, | |
| { | |
| "epoch": 10.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.399, | |
| "step": 817 | |
| }, | |
| { | |
| "epoch": 10.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5131, | |
| "step": 818 | |
| }, | |
| { | |
| "epoch": 10.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6276, | |
| "step": 819 | |
| }, | |
| { | |
| "epoch": 10.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6068, | |
| "step": 820 | |
| }, | |
| { | |
| "epoch": 10.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5765, | |
| "step": 821 | |
| }, | |
| { | |
| "epoch": 10.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4395, | |
| "step": 822 | |
| }, | |
| { | |
| "epoch": 10.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5028, | |
| "step": 823 | |
| }, | |
| { | |
| "epoch": 10.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4159, | |
| "step": 824 | |
| }, | |
| { | |
| "epoch": 10.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5623, | |
| "step": 825 | |
| }, | |
| { | |
| "epoch": 10.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6216, | |
| "step": 826 | |
| }, | |
| { | |
| "epoch": 10.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5637, | |
| "step": 827 | |
| }, | |
| { | |
| "epoch": 10.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4251, | |
| "step": 828 | |
| }, | |
| { | |
| "epoch": 10.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6422, | |
| "step": 829 | |
| }, | |
| { | |
| "epoch": 10.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.421, | |
| "step": 830 | |
| }, | |
| { | |
| "epoch": 10.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5367, | |
| "step": 831 | |
| }, | |
| { | |
| "epoch": 10.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4775, | |
| "step": 832 | |
| }, | |
| { | |
| "epoch": 10.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7163, | |
| "step": 833 | |
| }, | |
| { | |
| "epoch": 10.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5123, | |
| "step": 834 | |
| }, | |
| { | |
| "epoch": 10.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4816, | |
| "step": 835 | |
| }, | |
| { | |
| "epoch": 10.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5764, | |
| "step": 836 | |
| }, | |
| { | |
| "epoch": 10.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4854, | |
| "step": 837 | |
| }, | |
| { | |
| "epoch": 10.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5264, | |
| "step": 838 | |
| }, | |
| { | |
| "epoch": 10.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4726, | |
| "step": 839 | |
| }, | |
| { | |
| "epoch": 10.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4714, | |
| "step": 840 | |
| }, | |
| { | |
| "epoch": 10.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.647, | |
| "step": 841 | |
| }, | |
| { | |
| "epoch": 10.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6007, | |
| "step": 842 | |
| }, | |
| { | |
| "epoch": 10.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.57, | |
| "step": 843 | |
| }, | |
| { | |
| "epoch": 10.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5966, | |
| "step": 844 | |
| }, | |
| { | |
| "epoch": 10.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4865, | |
| "step": 845 | |
| }, | |
| { | |
| "epoch": 10.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5159, | |
| "step": 846 | |
| }, | |
| { | |
| "epoch": 10.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.458, | |
| "step": 847 | |
| }, | |
| { | |
| "epoch": 10.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.431, | |
| "step": 848 | |
| }, | |
| { | |
| "epoch": 10.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4846, | |
| "step": 849 | |
| }, | |
| { | |
| "epoch": 10.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4295, | |
| "step": 850 | |
| }, | |
| { | |
| "epoch": 10.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7443, | |
| "step": 851 | |
| }, | |
| { | |
| "epoch": 10.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.446, | |
| "step": 852 | |
| }, | |
| { | |
| "epoch": 10.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5116, | |
| "step": 853 | |
| }, | |
| { | |
| "epoch": 10.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5221, | |
| "step": 854 | |
| }, | |
| { | |
| "epoch": 10.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5675, | |
| "step": 855 | |
| }, | |
| { | |
| "epoch": 10.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5102, | |
| "step": 856 | |
| }, | |
| { | |
| "epoch": 10.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6235, | |
| "step": 857 | |
| }, | |
| { | |
| "epoch": 10.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.53, | |
| "step": 858 | |
| }, | |
| { | |
| "epoch": 10.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4925, | |
| "step": 859 | |
| }, | |
| { | |
| "epoch": 10.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6401, | |
| "step": 860 | |
| }, | |
| { | |
| "epoch": 10.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5017, | |
| "step": 861 | |
| }, | |
| { | |
| "epoch": 10.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4983, | |
| "step": 862 | |
| }, | |
| { | |
| "epoch": 10.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6534, | |
| "step": 863 | |
| }, | |
| { | |
| "epoch": 10.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5763, | |
| "step": 864 | |
| }, | |
| { | |
| "epoch": 10.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5763, | |
| "step": 865 | |
| }, | |
| { | |
| "epoch": 10.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4669, | |
| "step": 866 | |
| }, | |
| { | |
| "epoch": 10.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6519, | |
| "step": 867 | |
| }, | |
| { | |
| "epoch": 11.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5764, | |
| "step": 868 | |
| }, | |
| { | |
| "epoch": 11.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6319, | |
| "step": 869 | |
| }, | |
| { | |
| "epoch": 11.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4754, | |
| "step": 870 | |
| }, | |
| { | |
| "epoch": 11.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4764, | |
| "step": 871 | |
| }, | |
| { | |
| "epoch": 11.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5356, | |
| "step": 872 | |
| }, | |
| { | |
| "epoch": 11.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5807, | |
| "step": 873 | |
| }, | |
| { | |
| "epoch": 11.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4799, | |
| "step": 874 | |
| }, | |
| { | |
| "epoch": 11.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6319, | |
| "step": 875 | |
| }, | |
| { | |
| "epoch": 11.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4283, | |
| "step": 876 | |
| }, | |
| { | |
| "epoch": 11.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4271, | |
| "step": 877 | |
| }, | |
| { | |
| "epoch": 11.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4639, | |
| "step": 878 | |
| }, | |
| { | |
| "epoch": 11.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5665, | |
| "step": 879 | |
| }, | |
| { | |
| "epoch": 11.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5105, | |
| "step": 880 | |
| }, | |
| { | |
| "epoch": 11.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4494, | |
| "step": 881 | |
| }, | |
| { | |
| "epoch": 11.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5205, | |
| "step": 882 | |
| }, | |
| { | |
| "epoch": 11.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5538, | |
| "step": 883 | |
| }, | |
| { | |
| "epoch": 11.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5935, | |
| "step": 884 | |
| }, | |
| { | |
| "epoch": 11.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4685, | |
| "step": 885 | |
| }, | |
| { | |
| "epoch": 11.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5145, | |
| "step": 886 | |
| }, | |
| { | |
| "epoch": 11.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.585, | |
| "step": 887 | |
| }, | |
| { | |
| "epoch": 11.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3645, | |
| "step": 888 | |
| }, | |
| { | |
| "epoch": 11.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.502, | |
| "step": 889 | |
| }, | |
| { | |
| "epoch": 11.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5752, | |
| "step": 890 | |
| }, | |
| { | |
| "epoch": 11.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5229, | |
| "step": 891 | |
| }, | |
| { | |
| "epoch": 11.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5768, | |
| "step": 892 | |
| }, | |
| { | |
| "epoch": 11.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5751, | |
| "step": 893 | |
| }, | |
| { | |
| "epoch": 11.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4743, | |
| "step": 894 | |
| }, | |
| { | |
| "epoch": 11.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5179, | |
| "step": 895 | |
| }, | |
| { | |
| "epoch": 11.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4811, | |
| "step": 896 | |
| }, | |
| { | |
| "epoch": 11.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.375, | |
| "step": 897 | |
| }, | |
| { | |
| "epoch": 11.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4885, | |
| "step": 898 | |
| }, | |
| { | |
| "epoch": 11.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5356, | |
| "step": 899 | |
| }, | |
| { | |
| "epoch": 11.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.524, | |
| "step": 900 | |
| }, | |
| { | |
| "epoch": 11.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.439, | |
| "step": 901 | |
| }, | |
| { | |
| "epoch": 11.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4821, | |
| "step": 902 | |
| }, | |
| { | |
| "epoch": 11.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4556, | |
| "step": 903 | |
| }, | |
| { | |
| "epoch": 11.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4192, | |
| "step": 904 | |
| }, | |
| { | |
| "epoch": 11.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4317, | |
| "step": 905 | |
| }, | |
| { | |
| "epoch": 11.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5406, | |
| "step": 906 | |
| }, | |
| { | |
| "epoch": 11.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4377, | |
| "step": 907 | |
| }, | |
| { | |
| "epoch": 11.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5314, | |
| "step": 908 | |
| }, | |
| { | |
| "epoch": 11.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5076, | |
| "step": 909 | |
| }, | |
| { | |
| "epoch": 11.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5106, | |
| "step": 910 | |
| }, | |
| { | |
| "epoch": 11.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6748, | |
| "step": 911 | |
| }, | |
| { | |
| "epoch": 11.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5719, | |
| "step": 912 | |
| }, | |
| { | |
| "epoch": 11.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5189, | |
| "step": 913 | |
| }, | |
| { | |
| "epoch": 11.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5477, | |
| "step": 914 | |
| }, | |
| { | |
| "epoch": 11.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5941, | |
| "step": 915 | |
| }, | |
| { | |
| "epoch": 11.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.48, | |
| "step": 916 | |
| }, | |
| { | |
| "epoch": 11.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4149, | |
| "step": 917 | |
| }, | |
| { | |
| "epoch": 11.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4771, | |
| "step": 918 | |
| }, | |
| { | |
| "epoch": 11.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4871, | |
| "step": 919 | |
| }, | |
| { | |
| "epoch": 11.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4545, | |
| "step": 920 | |
| }, | |
| { | |
| "epoch": 11.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4596, | |
| "step": 921 | |
| }, | |
| { | |
| "epoch": 11.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4525, | |
| "step": 922 | |
| }, | |
| { | |
| "epoch": 11.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.437, | |
| "step": 923 | |
| }, | |
| { | |
| "epoch": 11.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5391, | |
| "step": 924 | |
| }, | |
| { | |
| "epoch": 11.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4782, | |
| "step": 925 | |
| }, | |
| { | |
| "epoch": 11.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4787, | |
| "step": 926 | |
| }, | |
| { | |
| "epoch": 11.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.541, | |
| "step": 927 | |
| }, | |
| { | |
| "epoch": 11.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5323, | |
| "step": 928 | |
| }, | |
| { | |
| "epoch": 11.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5033, | |
| "step": 929 | |
| }, | |
| { | |
| "epoch": 11.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5184, | |
| "step": 930 | |
| }, | |
| { | |
| "epoch": 11.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5864, | |
| "step": 931 | |
| }, | |
| { | |
| "epoch": 11.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4332, | |
| "step": 932 | |
| }, | |
| { | |
| "epoch": 11.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5447, | |
| "step": 933 | |
| }, | |
| { | |
| "epoch": 11.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4963, | |
| "step": 934 | |
| }, | |
| { | |
| "epoch": 11.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5365, | |
| "step": 935 | |
| }, | |
| { | |
| "epoch": 11.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4441, | |
| "step": 936 | |
| }, | |
| { | |
| "epoch": 11.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6383, | |
| "step": 937 | |
| }, | |
| { | |
| "epoch": 11.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4645, | |
| "step": 938 | |
| }, | |
| { | |
| "epoch": 11.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5156, | |
| "step": 939 | |
| }, | |
| { | |
| "epoch": 11.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5111, | |
| "step": 940 | |
| }, | |
| { | |
| "epoch": 11.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4814, | |
| "step": 941 | |
| }, | |
| { | |
| "epoch": 11.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6128, | |
| "step": 942 | |
| }, | |
| { | |
| "epoch": 11.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5208, | |
| "step": 943 | |
| }, | |
| { | |
| "epoch": 11.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4339, | |
| "step": 944 | |
| }, | |
| { | |
| "epoch": 11.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5546, | |
| "step": 945 | |
| }, | |
| { | |
| "epoch": 11.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.7077, | |
| "step": 946 | |
| }, | |
| { | |
| "epoch": 12.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5787, | |
| "step": 947 | |
| }, | |
| { | |
| "epoch": 12.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.567, | |
| "step": 948 | |
| }, | |
| { | |
| "epoch": 12.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4588, | |
| "step": 949 | |
| }, | |
| { | |
| "epoch": 12.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4945, | |
| "step": 950 | |
| }, | |
| { | |
| "epoch": 12.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4169, | |
| "step": 951 | |
| }, | |
| { | |
| "epoch": 12.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4474, | |
| "step": 952 | |
| }, | |
| { | |
| "epoch": 12.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4415, | |
| "step": 953 | |
| }, | |
| { | |
| "epoch": 12.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4644, | |
| "step": 954 | |
| }, | |
| { | |
| "epoch": 12.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4588, | |
| "step": 955 | |
| }, | |
| { | |
| "epoch": 12.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3986, | |
| "step": 956 | |
| }, | |
| { | |
| "epoch": 12.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4631, | |
| "step": 957 | |
| }, | |
| { | |
| "epoch": 12.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4516, | |
| "step": 958 | |
| }, | |
| { | |
| "epoch": 12.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5047, | |
| "step": 959 | |
| }, | |
| { | |
| "epoch": 12.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4009, | |
| "step": 960 | |
| }, | |
| { | |
| "epoch": 12.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4851, | |
| "step": 961 | |
| }, | |
| { | |
| "epoch": 12.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4445, | |
| "step": 962 | |
| }, | |
| { | |
| "epoch": 12.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4717, | |
| "step": 963 | |
| }, | |
| { | |
| "epoch": 12.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4124, | |
| "step": 964 | |
| }, | |
| { | |
| "epoch": 12.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4289, | |
| "step": 965 | |
| }, | |
| { | |
| "epoch": 12.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5673, | |
| "step": 966 | |
| }, | |
| { | |
| "epoch": 12.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4995, | |
| "step": 967 | |
| }, | |
| { | |
| "epoch": 12.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5652, | |
| "step": 968 | |
| }, | |
| { | |
| "epoch": 12.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5102, | |
| "step": 969 | |
| }, | |
| { | |
| "epoch": 12.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.527, | |
| "step": 970 | |
| }, | |
| { | |
| "epoch": 12.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4239, | |
| "step": 971 | |
| }, | |
| { | |
| "epoch": 12.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4427, | |
| "step": 972 | |
| }, | |
| { | |
| "epoch": 12.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5881, | |
| "step": 973 | |
| }, | |
| { | |
| "epoch": 12.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.509, | |
| "step": 974 | |
| }, | |
| { | |
| "epoch": 12.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4929, | |
| "step": 975 | |
| }, | |
| { | |
| "epoch": 12.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4273, | |
| "step": 976 | |
| }, | |
| { | |
| "epoch": 12.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5216, | |
| "step": 977 | |
| }, | |
| { | |
| "epoch": 12.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4013, | |
| "step": 978 | |
| }, | |
| { | |
| "epoch": 12.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5181, | |
| "step": 979 | |
| }, | |
| { | |
| "epoch": 12.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4188, | |
| "step": 980 | |
| }, | |
| { | |
| "epoch": 12.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4627, | |
| "step": 981 | |
| }, | |
| { | |
| "epoch": 12.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3966, | |
| "step": 982 | |
| }, | |
| { | |
| "epoch": 12.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4508, | |
| "step": 983 | |
| }, | |
| { | |
| "epoch": 12.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4853, | |
| "step": 984 | |
| }, | |
| { | |
| "epoch": 12.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6032, | |
| "step": 985 | |
| }, | |
| { | |
| "epoch": 12.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.489, | |
| "step": 986 | |
| }, | |
| { | |
| "epoch": 12.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.499, | |
| "step": 987 | |
| }, | |
| { | |
| "epoch": 12.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4286, | |
| "step": 988 | |
| }, | |
| { | |
| "epoch": 12.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3587, | |
| "step": 989 | |
| }, | |
| { | |
| "epoch": 12.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5621, | |
| "step": 990 | |
| }, | |
| { | |
| "epoch": 12.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4773, | |
| "step": 991 | |
| }, | |
| { | |
| "epoch": 12.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4381, | |
| "step": 992 | |
| }, | |
| { | |
| "epoch": 12.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3809, | |
| "step": 993 | |
| }, | |
| { | |
| "epoch": 12.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4647, | |
| "step": 994 | |
| }, | |
| { | |
| "epoch": 12.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.435, | |
| "step": 995 | |
| }, | |
| { | |
| "epoch": 12.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5375, | |
| "step": 996 | |
| }, | |
| { | |
| "epoch": 12.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4973, | |
| "step": 997 | |
| }, | |
| { | |
| "epoch": 12.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4236, | |
| "step": 998 | |
| }, | |
| { | |
| "epoch": 12.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4384, | |
| "step": 999 | |
| }, | |
| { | |
| "epoch": 12.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3213, | |
| "step": 1000 | |
| }, | |
| { | |
| "epoch": 12.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5907, | |
| "step": 1001 | |
| }, | |
| { | |
| "epoch": 12.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.485, | |
| "step": 1002 | |
| }, | |
| { | |
| "epoch": 12.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4278, | |
| "step": 1003 | |
| }, | |
| { | |
| "epoch": 12.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4992, | |
| "step": 1004 | |
| }, | |
| { | |
| "epoch": 12.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6232, | |
| "step": 1005 | |
| }, | |
| { | |
| "epoch": 12.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4068, | |
| "step": 1006 | |
| }, | |
| { | |
| "epoch": 12.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3576, | |
| "step": 1007 | |
| }, | |
| { | |
| "epoch": 12.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.599, | |
| "step": 1008 | |
| }, | |
| { | |
| "epoch": 12.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4189, | |
| "step": 1009 | |
| }, | |
| { | |
| "epoch": 12.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4901, | |
| "step": 1010 | |
| }, | |
| { | |
| "epoch": 12.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5568, | |
| "step": 1011 | |
| }, | |
| { | |
| "epoch": 12.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5632, | |
| "step": 1012 | |
| }, | |
| { | |
| "epoch": 12.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6059, | |
| "step": 1013 | |
| }, | |
| { | |
| "epoch": 12.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4592, | |
| "step": 1014 | |
| }, | |
| { | |
| "epoch": 12.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.478, | |
| "step": 1015 | |
| }, | |
| { | |
| "epoch": 12.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5699, | |
| "step": 1016 | |
| }, | |
| { | |
| "epoch": 12.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3658, | |
| "step": 1017 | |
| }, | |
| { | |
| "epoch": 12.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5251, | |
| "step": 1018 | |
| }, | |
| { | |
| "epoch": 12.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4586, | |
| "step": 1019 | |
| }, | |
| { | |
| "epoch": 12.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5217, | |
| "step": 1020 | |
| }, | |
| { | |
| "epoch": 12.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5115, | |
| "step": 1021 | |
| }, | |
| { | |
| "epoch": 12.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4744, | |
| "step": 1022 | |
| }, | |
| { | |
| "epoch": 12.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4892, | |
| "step": 1023 | |
| }, | |
| { | |
| "epoch": 12.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6366, | |
| "step": 1024 | |
| }, | |
| { | |
| "epoch": 13.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4354, | |
| "step": 1025 | |
| }, | |
| { | |
| "epoch": 13.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.447, | |
| "step": 1026 | |
| }, | |
| { | |
| "epoch": 13.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3776, | |
| "step": 1027 | |
| }, | |
| { | |
| "epoch": 13.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.401, | |
| "step": 1028 | |
| }, | |
| { | |
| "epoch": 13.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4575, | |
| "step": 1029 | |
| }, | |
| { | |
| "epoch": 13.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4085, | |
| "step": 1030 | |
| }, | |
| { | |
| "epoch": 13.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4752, | |
| "step": 1031 | |
| }, | |
| { | |
| "epoch": 13.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3523, | |
| "step": 1032 | |
| }, | |
| { | |
| "epoch": 13.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5191, | |
| "step": 1033 | |
| }, | |
| { | |
| "epoch": 13.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3837, | |
| "step": 1034 | |
| }, | |
| { | |
| "epoch": 13.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4144, | |
| "step": 1035 | |
| }, | |
| { | |
| "epoch": 13.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3981, | |
| "step": 1036 | |
| }, | |
| { | |
| "epoch": 13.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3832, | |
| "step": 1037 | |
| }, | |
| { | |
| "epoch": 13.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6293, | |
| "step": 1038 | |
| }, | |
| { | |
| "epoch": 13.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4895, | |
| "step": 1039 | |
| }, | |
| { | |
| "epoch": 13.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4003, | |
| "step": 1040 | |
| }, | |
| { | |
| "epoch": 13.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5658, | |
| "step": 1041 | |
| }, | |
| { | |
| "epoch": 13.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4552, | |
| "step": 1042 | |
| }, | |
| { | |
| "epoch": 13.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4279, | |
| "step": 1043 | |
| }, | |
| { | |
| "epoch": 13.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3837, | |
| "step": 1044 | |
| }, | |
| { | |
| "epoch": 13.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4808, | |
| "step": 1045 | |
| }, | |
| { | |
| "epoch": 13.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4669, | |
| "step": 1046 | |
| }, | |
| { | |
| "epoch": 13.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3425, | |
| "step": 1047 | |
| }, | |
| { | |
| "epoch": 13.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.372, | |
| "step": 1048 | |
| }, | |
| { | |
| "epoch": 13.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4972, | |
| "step": 1049 | |
| }, | |
| { | |
| "epoch": 13.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4734, | |
| "step": 1050 | |
| }, | |
| { | |
| "epoch": 13.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.444, | |
| "step": 1051 | |
| }, | |
| { | |
| "epoch": 13.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4908, | |
| "step": 1052 | |
| }, | |
| { | |
| "epoch": 13.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5162, | |
| "step": 1053 | |
| }, | |
| { | |
| "epoch": 13.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3781, | |
| "step": 1054 | |
| }, | |
| { | |
| "epoch": 13.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4343, | |
| "step": 1055 | |
| }, | |
| { | |
| "epoch": 13.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3756, | |
| "step": 1056 | |
| }, | |
| { | |
| "epoch": 13.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5252, | |
| "step": 1057 | |
| }, | |
| { | |
| "epoch": 13.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4383, | |
| "step": 1058 | |
| }, | |
| { | |
| "epoch": 13.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4851, | |
| "step": 1059 | |
| }, | |
| { | |
| "epoch": 13.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4927, | |
| "step": 1060 | |
| }, | |
| { | |
| "epoch": 13.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3646, | |
| "step": 1061 | |
| }, | |
| { | |
| "epoch": 13.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5748, | |
| "step": 1062 | |
| }, | |
| { | |
| "epoch": 13.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4436, | |
| "step": 1063 | |
| }, | |
| { | |
| "epoch": 13.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4607, | |
| "step": 1064 | |
| }, | |
| { | |
| "epoch": 13.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4718, | |
| "step": 1065 | |
| }, | |
| { | |
| "epoch": 13.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3709, | |
| "step": 1066 | |
| }, | |
| { | |
| "epoch": 13.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4008, | |
| "step": 1067 | |
| }, | |
| { | |
| "epoch": 13.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4224, | |
| "step": 1068 | |
| }, | |
| { | |
| "epoch": 13.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4314, | |
| "step": 1069 | |
| }, | |
| { | |
| "epoch": 13.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5238, | |
| "step": 1070 | |
| }, | |
| { | |
| "epoch": 13.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.6027, | |
| "step": 1071 | |
| }, | |
| { | |
| "epoch": 13.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4447, | |
| "step": 1072 | |
| }, | |
| { | |
| "epoch": 13.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4908, | |
| "step": 1073 | |
| }, | |
| { | |
| "epoch": 13.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4072, | |
| "step": 1074 | |
| }, | |
| { | |
| "epoch": 13.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2766, | |
| "step": 1075 | |
| }, | |
| { | |
| "epoch": 13.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5846, | |
| "step": 1076 | |
| }, | |
| { | |
| "epoch": 13.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5032, | |
| "step": 1077 | |
| }, | |
| { | |
| "epoch": 13.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4969, | |
| "step": 1078 | |
| }, | |
| { | |
| "epoch": 13.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4611, | |
| "step": 1079 | |
| }, | |
| { | |
| "epoch": 13.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4005, | |
| "step": 1080 | |
| }, | |
| { | |
| "epoch": 13.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4703, | |
| "step": 1081 | |
| }, | |
| { | |
| "epoch": 13.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5163, | |
| "step": 1082 | |
| }, | |
| { | |
| "epoch": 13.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4598, | |
| "step": 1083 | |
| }, | |
| { | |
| "epoch": 13.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4114, | |
| "step": 1084 | |
| }, | |
| { | |
| "epoch": 13.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3698, | |
| "step": 1085 | |
| }, | |
| { | |
| "epoch": 13.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3678, | |
| "step": 1086 | |
| }, | |
| { | |
| "epoch": 13.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5077, | |
| "step": 1087 | |
| }, | |
| { | |
| "epoch": 13.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4167, | |
| "step": 1088 | |
| }, | |
| { | |
| "epoch": 13.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4406, | |
| "step": 1089 | |
| }, | |
| { | |
| "epoch": 13.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4691, | |
| "step": 1090 | |
| }, | |
| { | |
| "epoch": 13.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5019, | |
| "step": 1091 | |
| }, | |
| { | |
| "epoch": 13.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4387, | |
| "step": 1092 | |
| }, | |
| { | |
| "epoch": 13.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5331, | |
| "step": 1093 | |
| }, | |
| { | |
| "epoch": 13.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4941, | |
| "step": 1094 | |
| }, | |
| { | |
| "epoch": 13.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4659, | |
| "step": 1095 | |
| }, | |
| { | |
| "epoch": 13.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4521, | |
| "step": 1096 | |
| }, | |
| { | |
| "epoch": 13.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4481, | |
| "step": 1097 | |
| }, | |
| { | |
| "epoch": 13.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.499, | |
| "step": 1098 | |
| }, | |
| { | |
| "epoch": 13.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4409, | |
| "step": 1099 | |
| }, | |
| { | |
| "epoch": 13.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4139, | |
| "step": 1100 | |
| }, | |
| { | |
| "epoch": 13.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5755, | |
| "step": 1101 | |
| }, | |
| { | |
| "epoch": 13.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4096, | |
| "step": 1102 | |
| }, | |
| { | |
| "epoch": 13.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4603, | |
| "step": 1103 | |
| }, | |
| { | |
| "epoch": 14.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.398, | |
| "step": 1104 | |
| }, | |
| { | |
| "epoch": 14.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4625, | |
| "step": 1105 | |
| }, | |
| { | |
| "epoch": 14.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4837, | |
| "step": 1106 | |
| }, | |
| { | |
| "epoch": 14.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4783, | |
| "step": 1107 | |
| }, | |
| { | |
| "epoch": 14.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3399, | |
| "step": 1108 | |
| }, | |
| { | |
| "epoch": 14.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5306, | |
| "step": 1109 | |
| }, | |
| { | |
| "epoch": 14.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3891, | |
| "step": 1110 | |
| }, | |
| { | |
| "epoch": 14.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4706, | |
| "step": 1111 | |
| }, | |
| { | |
| "epoch": 14.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3787, | |
| "step": 1112 | |
| }, | |
| { | |
| "epoch": 14.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3711, | |
| "step": 1113 | |
| }, | |
| { | |
| "epoch": 14.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4506, | |
| "step": 1114 | |
| }, | |
| { | |
| "epoch": 14.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4384, | |
| "step": 1115 | |
| }, | |
| { | |
| "epoch": 14.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3459, | |
| "step": 1116 | |
| }, | |
| { | |
| "epoch": 14.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.286, | |
| "step": 1117 | |
| }, | |
| { | |
| "epoch": 14.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4046, | |
| "step": 1118 | |
| }, | |
| { | |
| "epoch": 14.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3749, | |
| "step": 1119 | |
| }, | |
| { | |
| "epoch": 14.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4883, | |
| "step": 1120 | |
| }, | |
| { | |
| "epoch": 14.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4656, | |
| "step": 1121 | |
| }, | |
| { | |
| "epoch": 14.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5804, | |
| "step": 1122 | |
| }, | |
| { | |
| "epoch": 14.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4372, | |
| "step": 1123 | |
| }, | |
| { | |
| "epoch": 14.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3496, | |
| "step": 1124 | |
| }, | |
| { | |
| "epoch": 14.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3694, | |
| "step": 1125 | |
| }, | |
| { | |
| "epoch": 14.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4647, | |
| "step": 1126 | |
| }, | |
| { | |
| "epoch": 14.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2855, | |
| "step": 1127 | |
| }, | |
| { | |
| "epoch": 14.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4518, | |
| "step": 1128 | |
| }, | |
| { | |
| "epoch": 14.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5026, | |
| "step": 1129 | |
| }, | |
| { | |
| "epoch": 14.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3875, | |
| "step": 1130 | |
| }, | |
| { | |
| "epoch": 14.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4012, | |
| "step": 1131 | |
| }, | |
| { | |
| "epoch": 14.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3976, | |
| "step": 1132 | |
| }, | |
| { | |
| "epoch": 14.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4651, | |
| "step": 1133 | |
| }, | |
| { | |
| "epoch": 14.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4469, | |
| "step": 1134 | |
| }, | |
| { | |
| "epoch": 14.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2851, | |
| "step": 1135 | |
| }, | |
| { | |
| "epoch": 14.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3696, | |
| "step": 1136 | |
| }, | |
| { | |
| "epoch": 14.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4549, | |
| "step": 1137 | |
| }, | |
| { | |
| "epoch": 14.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3546, | |
| "step": 1138 | |
| }, | |
| { | |
| "epoch": 14.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4238, | |
| "step": 1139 | |
| }, | |
| { | |
| "epoch": 14.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4918, | |
| "step": 1140 | |
| }, | |
| { | |
| "epoch": 14.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4539, | |
| "step": 1141 | |
| }, | |
| { | |
| "epoch": 14.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5216, | |
| "step": 1142 | |
| }, | |
| { | |
| "epoch": 14.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4762, | |
| "step": 1143 | |
| }, | |
| { | |
| "epoch": 14.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3103, | |
| "step": 1144 | |
| }, | |
| { | |
| "epoch": 14.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4122, | |
| "step": 1145 | |
| }, | |
| { | |
| "epoch": 14.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3763, | |
| "step": 1146 | |
| }, | |
| { | |
| "epoch": 14.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.339, | |
| "step": 1147 | |
| }, | |
| { | |
| "epoch": 14.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4981, | |
| "step": 1148 | |
| }, | |
| { | |
| "epoch": 14.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5468, | |
| "step": 1149 | |
| }, | |
| { | |
| "epoch": 14.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3848, | |
| "step": 1150 | |
| }, | |
| { | |
| "epoch": 14.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3347, | |
| "step": 1151 | |
| }, | |
| { | |
| "epoch": 14.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4657, | |
| "step": 1152 | |
| }, | |
| { | |
| "epoch": 14.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3211, | |
| "step": 1153 | |
| }, | |
| { | |
| "epoch": 14.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4712, | |
| "step": 1154 | |
| }, | |
| { | |
| "epoch": 14.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4557, | |
| "step": 1155 | |
| }, | |
| { | |
| "epoch": 14.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4152, | |
| "step": 1156 | |
| }, | |
| { | |
| "epoch": 14.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3626, | |
| "step": 1157 | |
| }, | |
| { | |
| "epoch": 14.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4295, | |
| "step": 1158 | |
| }, | |
| { | |
| "epoch": 14.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5018, | |
| "step": 1159 | |
| }, | |
| { | |
| "epoch": 14.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3661, | |
| "step": 1160 | |
| }, | |
| { | |
| "epoch": 14.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3922, | |
| "step": 1161 | |
| }, | |
| { | |
| "epoch": 14.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3854, | |
| "step": 1162 | |
| }, | |
| { | |
| "epoch": 14.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4796, | |
| "step": 1163 | |
| }, | |
| { | |
| "epoch": 14.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4918, | |
| "step": 1164 | |
| }, | |
| { | |
| "epoch": 14.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3889, | |
| "step": 1165 | |
| }, | |
| { | |
| "epoch": 14.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.454, | |
| "step": 1166 | |
| }, | |
| { | |
| "epoch": 14.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4411, | |
| "step": 1167 | |
| }, | |
| { | |
| "epoch": 14.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4061, | |
| "step": 1168 | |
| }, | |
| { | |
| "epoch": 14.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.456, | |
| "step": 1169 | |
| }, | |
| { | |
| "epoch": 14.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.522, | |
| "step": 1170 | |
| }, | |
| { | |
| "epoch": 14.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4226, | |
| "step": 1171 | |
| }, | |
| { | |
| "epoch": 14.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4414, | |
| "step": 1172 | |
| }, | |
| { | |
| "epoch": 14.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5507, | |
| "step": 1173 | |
| }, | |
| { | |
| "epoch": 14.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4131, | |
| "step": 1174 | |
| }, | |
| { | |
| "epoch": 14.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4105, | |
| "step": 1175 | |
| }, | |
| { | |
| "epoch": 14.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5714, | |
| "step": 1176 | |
| }, | |
| { | |
| "epoch": 14.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4392, | |
| "step": 1177 | |
| }, | |
| { | |
| "epoch": 14.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2773, | |
| "step": 1178 | |
| }, | |
| { | |
| "epoch": 14.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4836, | |
| "step": 1179 | |
| }, | |
| { | |
| "epoch": 14.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3461, | |
| "step": 1180 | |
| }, | |
| { | |
| "epoch": 14.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5077, | |
| "step": 1181 | |
| }, | |
| { | |
| "epoch": 14.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3795, | |
| "step": 1182 | |
| }, | |
| { | |
| "epoch": 15.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4307, | |
| "step": 1183 | |
| }, | |
| { | |
| "epoch": 15.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.366, | |
| "step": 1184 | |
| }, | |
| { | |
| "epoch": 15.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4216, | |
| "step": 1185 | |
| }, | |
| { | |
| "epoch": 15.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3915, | |
| "step": 1186 | |
| }, | |
| { | |
| "epoch": 15.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4084, | |
| "step": 1187 | |
| }, | |
| { | |
| "epoch": 15.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3265, | |
| "step": 1188 | |
| }, | |
| { | |
| "epoch": 15.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4896, | |
| "step": 1189 | |
| }, | |
| { | |
| "epoch": 15.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3416, | |
| "step": 1190 | |
| }, | |
| { | |
| "epoch": 15.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4238, | |
| "step": 1191 | |
| }, | |
| { | |
| "epoch": 15.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4288, | |
| "step": 1192 | |
| }, | |
| { | |
| "epoch": 15.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4676, | |
| "step": 1193 | |
| }, | |
| { | |
| "epoch": 15.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3879, | |
| "step": 1194 | |
| }, | |
| { | |
| "epoch": 15.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3602, | |
| "step": 1195 | |
| }, | |
| { | |
| "epoch": 15.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.37, | |
| "step": 1196 | |
| }, | |
| { | |
| "epoch": 15.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.36, | |
| "step": 1197 | |
| }, | |
| { | |
| "epoch": 15.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3246, | |
| "step": 1198 | |
| }, | |
| { | |
| "epoch": 15.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3777, | |
| "step": 1199 | |
| }, | |
| { | |
| "epoch": 15.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.334, | |
| "step": 1200 | |
| }, | |
| { | |
| "epoch": 15.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3737, | |
| "step": 1201 | |
| }, | |
| { | |
| "epoch": 15.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4866, | |
| "step": 1202 | |
| }, | |
| { | |
| "epoch": 15.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4264, | |
| "step": 1203 | |
| }, | |
| { | |
| "epoch": 15.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3854, | |
| "step": 1204 | |
| }, | |
| { | |
| "epoch": 15.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3793, | |
| "step": 1205 | |
| }, | |
| { | |
| "epoch": 15.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3911, | |
| "step": 1206 | |
| }, | |
| { | |
| "epoch": 15.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4112, | |
| "step": 1207 | |
| }, | |
| { | |
| "epoch": 15.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4049, | |
| "step": 1208 | |
| }, | |
| { | |
| "epoch": 15.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3316, | |
| "step": 1209 | |
| }, | |
| { | |
| "epoch": 15.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3827, | |
| "step": 1210 | |
| }, | |
| { | |
| "epoch": 15.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3905, | |
| "step": 1211 | |
| }, | |
| { | |
| "epoch": 15.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4163, | |
| "step": 1212 | |
| }, | |
| { | |
| "epoch": 15.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3945, | |
| "step": 1213 | |
| }, | |
| { | |
| "epoch": 15.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5054, | |
| "step": 1214 | |
| }, | |
| { | |
| "epoch": 15.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3017, | |
| "step": 1215 | |
| }, | |
| { | |
| "epoch": 15.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.347, | |
| "step": 1216 | |
| }, | |
| { | |
| "epoch": 15.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3823, | |
| "step": 1217 | |
| }, | |
| { | |
| "epoch": 15.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4482, | |
| "step": 1218 | |
| }, | |
| { | |
| "epoch": 15.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4606, | |
| "step": 1219 | |
| }, | |
| { | |
| "epoch": 15.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3733, | |
| "step": 1220 | |
| }, | |
| { | |
| "epoch": 15.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4246, | |
| "step": 1221 | |
| }, | |
| { | |
| "epoch": 15.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4252, | |
| "step": 1222 | |
| }, | |
| { | |
| "epoch": 15.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2923, | |
| "step": 1223 | |
| }, | |
| { | |
| "epoch": 15.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3988, | |
| "step": 1224 | |
| }, | |
| { | |
| "epoch": 15.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4172, | |
| "step": 1225 | |
| }, | |
| { | |
| "epoch": 15.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.459, | |
| "step": 1226 | |
| }, | |
| { | |
| "epoch": 15.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4096, | |
| "step": 1227 | |
| }, | |
| { | |
| "epoch": 15.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3934, | |
| "step": 1228 | |
| }, | |
| { | |
| "epoch": 15.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3579, | |
| "step": 1229 | |
| }, | |
| { | |
| "epoch": 15.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3139, | |
| "step": 1230 | |
| }, | |
| { | |
| "epoch": 15.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4081, | |
| "step": 1231 | |
| }, | |
| { | |
| "epoch": 15.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4139, | |
| "step": 1232 | |
| }, | |
| { | |
| "epoch": 15.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4492, | |
| "step": 1233 | |
| }, | |
| { | |
| "epoch": 15.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3481, | |
| "step": 1234 | |
| }, | |
| { | |
| "epoch": 15.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4285, | |
| "step": 1235 | |
| }, | |
| { | |
| "epoch": 15.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4883, | |
| "step": 1236 | |
| }, | |
| { | |
| "epoch": 15.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4801, | |
| "step": 1237 | |
| }, | |
| { | |
| "epoch": 15.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3815, | |
| "step": 1238 | |
| }, | |
| { | |
| "epoch": 15.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3642, | |
| "step": 1239 | |
| }, | |
| { | |
| "epoch": 15.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4413, | |
| "step": 1240 | |
| }, | |
| { | |
| "epoch": 15.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3482, | |
| "step": 1241 | |
| }, | |
| { | |
| "epoch": 15.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3517, | |
| "step": 1242 | |
| }, | |
| { | |
| "epoch": 15.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3798, | |
| "step": 1243 | |
| }, | |
| { | |
| "epoch": 15.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3234, | |
| "step": 1244 | |
| }, | |
| { | |
| "epoch": 15.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4371, | |
| "step": 1245 | |
| }, | |
| { | |
| "epoch": 15.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4482, | |
| "step": 1246 | |
| }, | |
| { | |
| "epoch": 15.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.327, | |
| "step": 1247 | |
| }, | |
| { | |
| "epoch": 15.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4378, | |
| "step": 1248 | |
| }, | |
| { | |
| "epoch": 15.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4441, | |
| "step": 1249 | |
| }, | |
| { | |
| "epoch": 15.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4397, | |
| "step": 1250 | |
| }, | |
| { | |
| "epoch": 15.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5376, | |
| "step": 1251 | |
| }, | |
| { | |
| "epoch": 15.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4697, | |
| "step": 1252 | |
| }, | |
| { | |
| "epoch": 15.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4065, | |
| "step": 1253 | |
| }, | |
| { | |
| "epoch": 15.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3276, | |
| "step": 1254 | |
| }, | |
| { | |
| "epoch": 15.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4976, | |
| "step": 1255 | |
| }, | |
| { | |
| "epoch": 15.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4434, | |
| "step": 1256 | |
| }, | |
| { | |
| "epoch": 15.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3519, | |
| "step": 1257 | |
| }, | |
| { | |
| "epoch": 15.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2603, | |
| "step": 1258 | |
| }, | |
| { | |
| "epoch": 15.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.465, | |
| "step": 1259 | |
| }, | |
| { | |
| "epoch": 15.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4661, | |
| "step": 1260 | |
| }, | |
| { | |
| "epoch": 15.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5712, | |
| "step": 1261 | |
| }, | |
| { | |
| "epoch": 16.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3966, | |
| "step": 1262 | |
| }, | |
| { | |
| "epoch": 16.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3904, | |
| "step": 1263 | |
| }, | |
| { | |
| "epoch": 16.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3482, | |
| "step": 1264 | |
| }, | |
| { | |
| "epoch": 16.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3397, | |
| "step": 1265 | |
| }, | |
| { | |
| "epoch": 16.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3387, | |
| "step": 1266 | |
| }, | |
| { | |
| "epoch": 16.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4651, | |
| "step": 1267 | |
| }, | |
| { | |
| "epoch": 16.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3306, | |
| "step": 1268 | |
| }, | |
| { | |
| "epoch": 16.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4278, | |
| "step": 1269 | |
| }, | |
| { | |
| "epoch": 16.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3961, | |
| "step": 1270 | |
| }, | |
| { | |
| "epoch": 16.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3782, | |
| "step": 1271 | |
| }, | |
| { | |
| "epoch": 16.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.387, | |
| "step": 1272 | |
| }, | |
| { | |
| "epoch": 16.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3287, | |
| "step": 1273 | |
| }, | |
| { | |
| "epoch": 16.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4089, | |
| "step": 1274 | |
| }, | |
| { | |
| "epoch": 16.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4018, | |
| "step": 1275 | |
| }, | |
| { | |
| "epoch": 16.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4225, | |
| "step": 1276 | |
| }, | |
| { | |
| "epoch": 16.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3874, | |
| "step": 1277 | |
| }, | |
| { | |
| "epoch": 16.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4767, | |
| "step": 1278 | |
| }, | |
| { | |
| "epoch": 16.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3558, | |
| "step": 1279 | |
| }, | |
| { | |
| "epoch": 16.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3216, | |
| "step": 1280 | |
| }, | |
| { | |
| "epoch": 16.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3813, | |
| "step": 1281 | |
| }, | |
| { | |
| "epoch": 16.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4318, | |
| "step": 1282 | |
| }, | |
| { | |
| "epoch": 16.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.402, | |
| "step": 1283 | |
| }, | |
| { | |
| "epoch": 16.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3895, | |
| "step": 1284 | |
| }, | |
| { | |
| "epoch": 16.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3442, | |
| "step": 1285 | |
| }, | |
| { | |
| "epoch": 16.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2807, | |
| "step": 1286 | |
| }, | |
| { | |
| "epoch": 16.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3422, | |
| "step": 1287 | |
| }, | |
| { | |
| "epoch": 16.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.312, | |
| "step": 1288 | |
| }, | |
| { | |
| "epoch": 16.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4428, | |
| "step": 1289 | |
| }, | |
| { | |
| "epoch": 16.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5253, | |
| "step": 1290 | |
| }, | |
| { | |
| "epoch": 16.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3727, | |
| "step": 1291 | |
| }, | |
| { | |
| "epoch": 16.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4031, | |
| "step": 1292 | |
| }, | |
| { | |
| "epoch": 16.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2861, | |
| "step": 1293 | |
| }, | |
| { | |
| "epoch": 16.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4453, | |
| "step": 1294 | |
| }, | |
| { | |
| "epoch": 16.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3882, | |
| "step": 1295 | |
| }, | |
| { | |
| "epoch": 16.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4962, | |
| "step": 1296 | |
| }, | |
| { | |
| "epoch": 16.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.296, | |
| "step": 1297 | |
| }, | |
| { | |
| "epoch": 16.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3031, | |
| "step": 1298 | |
| }, | |
| { | |
| "epoch": 16.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3729, | |
| "step": 1299 | |
| }, | |
| { | |
| "epoch": 16.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3406, | |
| "step": 1300 | |
| }, | |
| { | |
| "epoch": 16.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3255, | |
| "step": 1301 | |
| }, | |
| { | |
| "epoch": 16.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3931, | |
| "step": 1302 | |
| }, | |
| { | |
| "epoch": 16.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3113, | |
| "step": 1303 | |
| }, | |
| { | |
| "epoch": 16.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4105, | |
| "step": 1304 | |
| }, | |
| { | |
| "epoch": 16.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3323, | |
| "step": 1305 | |
| }, | |
| { | |
| "epoch": 16.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4222, | |
| "step": 1306 | |
| }, | |
| { | |
| "epoch": 16.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3945, | |
| "step": 1307 | |
| }, | |
| { | |
| "epoch": 16.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2936, | |
| "step": 1308 | |
| }, | |
| { | |
| "epoch": 16.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2422, | |
| "step": 1309 | |
| }, | |
| { | |
| "epoch": 16.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3322, | |
| "step": 1310 | |
| }, | |
| { | |
| "epoch": 16.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3817, | |
| "step": 1311 | |
| }, | |
| { | |
| "epoch": 16.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4071, | |
| "step": 1312 | |
| }, | |
| { | |
| "epoch": 16.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3631, | |
| "step": 1313 | |
| }, | |
| { | |
| "epoch": 16.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3675, | |
| "step": 1314 | |
| }, | |
| { | |
| "epoch": 16.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3589, | |
| "step": 1315 | |
| }, | |
| { | |
| "epoch": 16.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3211, | |
| "step": 1316 | |
| }, | |
| { | |
| "epoch": 16.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3132, | |
| "step": 1317 | |
| }, | |
| { | |
| "epoch": 16.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3756, | |
| "step": 1318 | |
| }, | |
| { | |
| "epoch": 16.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3201, | |
| "step": 1319 | |
| }, | |
| { | |
| "epoch": 16.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4067, | |
| "step": 1320 | |
| }, | |
| { | |
| "epoch": 16.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4163, | |
| "step": 1321 | |
| }, | |
| { | |
| "epoch": 16.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4683, | |
| "step": 1322 | |
| }, | |
| { | |
| "epoch": 16.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3919, | |
| "step": 1323 | |
| }, | |
| { | |
| "epoch": 16.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3264, | |
| "step": 1324 | |
| }, | |
| { | |
| "epoch": 16.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4432, | |
| "step": 1325 | |
| }, | |
| { | |
| "epoch": 16.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3984, | |
| "step": 1326 | |
| }, | |
| { | |
| "epoch": 16.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2963, | |
| "step": 1327 | |
| }, | |
| { | |
| "epoch": 16.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.502, | |
| "step": 1328 | |
| }, | |
| { | |
| "epoch": 16.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3015, | |
| "step": 1329 | |
| }, | |
| { | |
| "epoch": 16.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3797, | |
| "step": 1330 | |
| }, | |
| { | |
| "epoch": 16.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3689, | |
| "step": 1331 | |
| }, | |
| { | |
| "epoch": 16.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4154, | |
| "step": 1332 | |
| }, | |
| { | |
| "epoch": 16.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4495, | |
| "step": 1333 | |
| }, | |
| { | |
| "epoch": 16.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.5139, | |
| "step": 1334 | |
| }, | |
| { | |
| "epoch": 16.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3568, | |
| "step": 1335 | |
| }, | |
| { | |
| "epoch": 16.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4269, | |
| "step": 1336 | |
| }, | |
| { | |
| "epoch": 16.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3886, | |
| "step": 1337 | |
| }, | |
| { | |
| "epoch": 16.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4385, | |
| "step": 1338 | |
| }, | |
| { | |
| "epoch": 16.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4062, | |
| "step": 1339 | |
| }, | |
| { | |
| "epoch": 16.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4084, | |
| "step": 1340 | |
| }, | |
| { | |
| "epoch": 17.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.299, | |
| "step": 1341 | |
| }, | |
| { | |
| "epoch": 17.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3695, | |
| "step": 1342 | |
| }, | |
| { | |
| "epoch": 17.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3462, | |
| "step": 1343 | |
| }, | |
| { | |
| "epoch": 17.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3537, | |
| "step": 1344 | |
| }, | |
| { | |
| "epoch": 17.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3013, | |
| "step": 1345 | |
| }, | |
| { | |
| "epoch": 17.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2961, | |
| "step": 1346 | |
| }, | |
| { | |
| "epoch": 17.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3329, | |
| "step": 1347 | |
| }, | |
| { | |
| "epoch": 17.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3648, | |
| "step": 1348 | |
| }, | |
| { | |
| "epoch": 17.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2547, | |
| "step": 1349 | |
| }, | |
| { | |
| "epoch": 17.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3743, | |
| "step": 1350 | |
| }, | |
| { | |
| "epoch": 17.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.34, | |
| "step": 1351 | |
| }, | |
| { | |
| "epoch": 17.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4066, | |
| "step": 1352 | |
| }, | |
| { | |
| "epoch": 17.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2486, | |
| "step": 1353 | |
| }, | |
| { | |
| "epoch": 17.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3372, | |
| "step": 1354 | |
| }, | |
| { | |
| "epoch": 17.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3085, | |
| "step": 1355 | |
| }, | |
| { | |
| "epoch": 17.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4211, | |
| "step": 1356 | |
| }, | |
| { | |
| "epoch": 17.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3603, | |
| "step": 1357 | |
| }, | |
| { | |
| "epoch": 17.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3341, | |
| "step": 1358 | |
| }, | |
| { | |
| "epoch": 17.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.41, | |
| "step": 1359 | |
| }, | |
| { | |
| "epoch": 17.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3679, | |
| "step": 1360 | |
| }, | |
| { | |
| "epoch": 17.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3394, | |
| "step": 1361 | |
| }, | |
| { | |
| "epoch": 17.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3449, | |
| "step": 1362 | |
| }, | |
| { | |
| "epoch": 17.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4752, | |
| "step": 1363 | |
| }, | |
| { | |
| "epoch": 17.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3759, | |
| "step": 1364 | |
| }, | |
| { | |
| "epoch": 17.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.246, | |
| "step": 1365 | |
| }, | |
| { | |
| "epoch": 17.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4163, | |
| "step": 1366 | |
| }, | |
| { | |
| "epoch": 17.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3298, | |
| "step": 1367 | |
| }, | |
| { | |
| "epoch": 17.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4717, | |
| "step": 1368 | |
| }, | |
| { | |
| "epoch": 17.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.345, | |
| "step": 1369 | |
| }, | |
| { | |
| "epoch": 17.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3001, | |
| "step": 1370 | |
| }, | |
| { | |
| "epoch": 17.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3764, | |
| "step": 1371 | |
| }, | |
| { | |
| "epoch": 17.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2827, | |
| "step": 1372 | |
| }, | |
| { | |
| "epoch": 17.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3118, | |
| "step": 1373 | |
| }, | |
| { | |
| "epoch": 17.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3234, | |
| "step": 1374 | |
| }, | |
| { | |
| "epoch": 17.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3275, | |
| "step": 1375 | |
| }, | |
| { | |
| "epoch": 17.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3916, | |
| "step": 1376 | |
| }, | |
| { | |
| "epoch": 17.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3566, | |
| "step": 1377 | |
| }, | |
| { | |
| "epoch": 17.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3116, | |
| "step": 1378 | |
| }, | |
| { | |
| "epoch": 17.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3905, | |
| "step": 1379 | |
| }, | |
| { | |
| "epoch": 17.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3094, | |
| "step": 1380 | |
| }, | |
| { | |
| "epoch": 17.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3269, | |
| "step": 1381 | |
| }, | |
| { | |
| "epoch": 17.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3602, | |
| "step": 1382 | |
| }, | |
| { | |
| "epoch": 17.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.391, | |
| "step": 1383 | |
| }, | |
| { | |
| "epoch": 17.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3651, | |
| "step": 1384 | |
| }, | |
| { | |
| "epoch": 17.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3134, | |
| "step": 1385 | |
| }, | |
| { | |
| "epoch": 17.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.449, | |
| "step": 1386 | |
| }, | |
| { | |
| "epoch": 17.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3735, | |
| "step": 1387 | |
| }, | |
| { | |
| "epoch": 17.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3729, | |
| "step": 1388 | |
| }, | |
| { | |
| "epoch": 17.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2881, | |
| "step": 1389 | |
| }, | |
| { | |
| "epoch": 17.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.385, | |
| "step": 1390 | |
| }, | |
| { | |
| "epoch": 17.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.506, | |
| "step": 1391 | |
| }, | |
| { | |
| "epoch": 17.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2769, | |
| "step": 1392 | |
| }, | |
| { | |
| "epoch": 17.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3641, | |
| "step": 1393 | |
| }, | |
| { | |
| "epoch": 17.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2921, | |
| "step": 1394 | |
| }, | |
| { | |
| "epoch": 17.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3031, | |
| "step": 1395 | |
| }, | |
| { | |
| "epoch": 17.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3121, | |
| "step": 1396 | |
| }, | |
| { | |
| "epoch": 17.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3884, | |
| "step": 1397 | |
| }, | |
| { | |
| "epoch": 17.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4109, | |
| "step": 1398 | |
| }, | |
| { | |
| "epoch": 17.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3388, | |
| "step": 1399 | |
| }, | |
| { | |
| "epoch": 17.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3442, | |
| "step": 1400 | |
| }, | |
| { | |
| "epoch": 17.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4407, | |
| "step": 1401 | |
| }, | |
| { | |
| "epoch": 17.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4583, | |
| "step": 1402 | |
| }, | |
| { | |
| "epoch": 17.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2997, | |
| "step": 1403 | |
| }, | |
| { | |
| "epoch": 17.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3579, | |
| "step": 1404 | |
| }, | |
| { | |
| "epoch": 17.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4163, | |
| "step": 1405 | |
| }, | |
| { | |
| "epoch": 17.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3174, | |
| "step": 1406 | |
| }, | |
| { | |
| "epoch": 17.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4205, | |
| "step": 1407 | |
| }, | |
| { | |
| "epoch": 17.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.318, | |
| "step": 1408 | |
| }, | |
| { | |
| "epoch": 17.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3175, | |
| "step": 1409 | |
| }, | |
| { | |
| "epoch": 17.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3885, | |
| "step": 1410 | |
| }, | |
| { | |
| "epoch": 17.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3758, | |
| "step": 1411 | |
| }, | |
| { | |
| "epoch": 17.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3824, | |
| "step": 1412 | |
| }, | |
| { | |
| "epoch": 17.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3653, | |
| "step": 1413 | |
| }, | |
| { | |
| "epoch": 17.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3568, | |
| "step": 1414 | |
| }, | |
| { | |
| "epoch": 17.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3318, | |
| "step": 1415 | |
| }, | |
| { | |
| "epoch": 17.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.301, | |
| "step": 1416 | |
| }, | |
| { | |
| "epoch": 17.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4334, | |
| "step": 1417 | |
| }, | |
| { | |
| "epoch": 17.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4528, | |
| "step": 1418 | |
| }, | |
| { | |
| "epoch": 17.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4518, | |
| "step": 1419 | |
| }, | |
| { | |
| "epoch": 18.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4263, | |
| "step": 1420 | |
| }, | |
| { | |
| "epoch": 18.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2745, | |
| "step": 1421 | |
| }, | |
| { | |
| "epoch": 18.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3926, | |
| "step": 1422 | |
| }, | |
| { | |
| "epoch": 18.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3136, | |
| "step": 1423 | |
| }, | |
| { | |
| "epoch": 18.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2218, | |
| "step": 1424 | |
| }, | |
| { | |
| "epoch": 18.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3466, | |
| "step": 1425 | |
| }, | |
| { | |
| "epoch": 18.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3007, | |
| "step": 1426 | |
| }, | |
| { | |
| "epoch": 18.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3591, | |
| "step": 1427 | |
| }, | |
| { | |
| "epoch": 18.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3561, | |
| "step": 1428 | |
| }, | |
| { | |
| "epoch": 18.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2682, | |
| "step": 1429 | |
| }, | |
| { | |
| "epoch": 18.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4256, | |
| "step": 1430 | |
| }, | |
| { | |
| "epoch": 18.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3125, | |
| "step": 1431 | |
| }, | |
| { | |
| "epoch": 18.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2886, | |
| "step": 1432 | |
| }, | |
| { | |
| "epoch": 18.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2678, | |
| "step": 1433 | |
| }, | |
| { | |
| "epoch": 18.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2858, | |
| "step": 1434 | |
| }, | |
| { | |
| "epoch": 18.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.322, | |
| "step": 1435 | |
| }, | |
| { | |
| "epoch": 18.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2567, | |
| "step": 1436 | |
| }, | |
| { | |
| "epoch": 18.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4295, | |
| "step": 1437 | |
| }, | |
| { | |
| "epoch": 18.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3125, | |
| "step": 1438 | |
| }, | |
| { | |
| "epoch": 18.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2675, | |
| "step": 1439 | |
| }, | |
| { | |
| "epoch": 18.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3444, | |
| "step": 1440 | |
| }, | |
| { | |
| "epoch": 18.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2257, | |
| "step": 1441 | |
| }, | |
| { | |
| "epoch": 18.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3068, | |
| "step": 1442 | |
| }, | |
| { | |
| "epoch": 18.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3322, | |
| "step": 1443 | |
| }, | |
| { | |
| "epoch": 18.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3652, | |
| "step": 1444 | |
| }, | |
| { | |
| "epoch": 18.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3433, | |
| "step": 1445 | |
| }, | |
| { | |
| "epoch": 18.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3204, | |
| "step": 1446 | |
| }, | |
| { | |
| "epoch": 18.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3976, | |
| "step": 1447 | |
| }, | |
| { | |
| "epoch": 18.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.27, | |
| "step": 1448 | |
| }, | |
| { | |
| "epoch": 18.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.457, | |
| "step": 1449 | |
| }, | |
| { | |
| "epoch": 18.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.356, | |
| "step": 1450 | |
| }, | |
| { | |
| "epoch": 18.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3641, | |
| "step": 1451 | |
| }, | |
| { | |
| "epoch": 18.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3934, | |
| "step": 1452 | |
| }, | |
| { | |
| "epoch": 18.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2828, | |
| "step": 1453 | |
| }, | |
| { | |
| "epoch": 18.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.342, | |
| "step": 1454 | |
| }, | |
| { | |
| "epoch": 18.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2701, | |
| "step": 1455 | |
| }, | |
| { | |
| "epoch": 18.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3704, | |
| "step": 1456 | |
| }, | |
| { | |
| "epoch": 18.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3083, | |
| "step": 1457 | |
| }, | |
| { | |
| "epoch": 18.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3224, | |
| "step": 1458 | |
| }, | |
| { | |
| "epoch": 18.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4321, | |
| "step": 1459 | |
| }, | |
| { | |
| "epoch": 18.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4678, | |
| "step": 1460 | |
| }, | |
| { | |
| "epoch": 18.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3911, | |
| "step": 1461 | |
| }, | |
| { | |
| "epoch": 18.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2843, | |
| "step": 1462 | |
| }, | |
| { | |
| "epoch": 18.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3723, | |
| "step": 1463 | |
| }, | |
| { | |
| "epoch": 18.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3211, | |
| "step": 1464 | |
| }, | |
| { | |
| "epoch": 18.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3418, | |
| "step": 1465 | |
| }, | |
| { | |
| "epoch": 18.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3697, | |
| "step": 1466 | |
| }, | |
| { | |
| "epoch": 18.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3075, | |
| "step": 1467 | |
| }, | |
| { | |
| "epoch": 18.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3072, | |
| "step": 1468 | |
| }, | |
| { | |
| "epoch": 18.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3318, | |
| "step": 1469 | |
| }, | |
| { | |
| "epoch": 18.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2997, | |
| "step": 1470 | |
| }, | |
| { | |
| "epoch": 18.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2487, | |
| "step": 1471 | |
| }, | |
| { | |
| "epoch": 18.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3958, | |
| "step": 1472 | |
| }, | |
| { | |
| "epoch": 18.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3189, | |
| "step": 1473 | |
| }, | |
| { | |
| "epoch": 18.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3298, | |
| "step": 1474 | |
| }, | |
| { | |
| "epoch": 18.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3234, | |
| "step": 1475 | |
| }, | |
| { | |
| "epoch": 18.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3622, | |
| "step": 1476 | |
| }, | |
| { | |
| "epoch": 18.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3127, | |
| "step": 1477 | |
| }, | |
| { | |
| "epoch": 18.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3277, | |
| "step": 1478 | |
| }, | |
| { | |
| "epoch": 18.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3103, | |
| "step": 1479 | |
| }, | |
| { | |
| "epoch": 18.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3804, | |
| "step": 1480 | |
| }, | |
| { | |
| "epoch": 18.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2954, | |
| "step": 1481 | |
| }, | |
| { | |
| "epoch": 18.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2949, | |
| "step": 1482 | |
| }, | |
| { | |
| "epoch": 18.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3734, | |
| "step": 1483 | |
| }, | |
| { | |
| "epoch": 18.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2556, | |
| "step": 1484 | |
| }, | |
| { | |
| "epoch": 18.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3064, | |
| "step": 1485 | |
| }, | |
| { | |
| "epoch": 18.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2772, | |
| "step": 1486 | |
| }, | |
| { | |
| "epoch": 18.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3371, | |
| "step": 1487 | |
| }, | |
| { | |
| "epoch": 18.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3357, | |
| "step": 1488 | |
| }, | |
| { | |
| "epoch": 18.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3161, | |
| "step": 1489 | |
| }, | |
| { | |
| "epoch": 18.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3534, | |
| "step": 1490 | |
| }, | |
| { | |
| "epoch": 18.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2867, | |
| "step": 1491 | |
| }, | |
| { | |
| "epoch": 18.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3899, | |
| "step": 1492 | |
| }, | |
| { | |
| "epoch": 18.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3096, | |
| "step": 1493 | |
| }, | |
| { | |
| "epoch": 18.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3989, | |
| "step": 1494 | |
| }, | |
| { | |
| "epoch": 18.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3664, | |
| "step": 1495 | |
| }, | |
| { | |
| "epoch": 18.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3084, | |
| "step": 1496 | |
| }, | |
| { | |
| "epoch": 18.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3496, | |
| "step": 1497 | |
| }, | |
| { | |
| "epoch": 18.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3769, | |
| "step": 1498 | |
| }, | |
| { | |
| "epoch": 19.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2682, | |
| "step": 1499 | |
| }, | |
| { | |
| "epoch": 19.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3359, | |
| "step": 1500 | |
| }, | |
| { | |
| "epoch": 19.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3165, | |
| "step": 1501 | |
| }, | |
| { | |
| "epoch": 19.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2487, | |
| "step": 1502 | |
| }, | |
| { | |
| "epoch": 19.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.307, | |
| "step": 1503 | |
| }, | |
| { | |
| "epoch": 19.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2739, | |
| "step": 1504 | |
| }, | |
| { | |
| "epoch": 19.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2974, | |
| "step": 1505 | |
| }, | |
| { | |
| "epoch": 19.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2712, | |
| "step": 1506 | |
| }, | |
| { | |
| "epoch": 19.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.284, | |
| "step": 1507 | |
| }, | |
| { | |
| "epoch": 19.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3309, | |
| "step": 1508 | |
| }, | |
| { | |
| "epoch": 19.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3223, | |
| "step": 1509 | |
| }, | |
| { | |
| "epoch": 19.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3366, | |
| "step": 1510 | |
| }, | |
| { | |
| "epoch": 19.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3226, | |
| "step": 1511 | |
| }, | |
| { | |
| "epoch": 19.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3629, | |
| "step": 1512 | |
| }, | |
| { | |
| "epoch": 19.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2342, | |
| "step": 1513 | |
| }, | |
| { | |
| "epoch": 19.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3137, | |
| "step": 1514 | |
| }, | |
| { | |
| "epoch": 19.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2988, | |
| "step": 1515 | |
| }, | |
| { | |
| "epoch": 19.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3877, | |
| "step": 1516 | |
| }, | |
| { | |
| "epoch": 19.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.286, | |
| "step": 1517 | |
| }, | |
| { | |
| "epoch": 19.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3368, | |
| "step": 1518 | |
| }, | |
| { | |
| "epoch": 19.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2309, | |
| "step": 1519 | |
| }, | |
| { | |
| "epoch": 19.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.265, | |
| "step": 1520 | |
| }, | |
| { | |
| "epoch": 19.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2512, | |
| "step": 1521 | |
| }, | |
| { | |
| "epoch": 19.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3631, | |
| "step": 1522 | |
| }, | |
| { | |
| "epoch": 19.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3513, | |
| "step": 1523 | |
| }, | |
| { | |
| "epoch": 19.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3052, | |
| "step": 1524 | |
| }, | |
| { | |
| "epoch": 19.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2587, | |
| "step": 1525 | |
| }, | |
| { | |
| "epoch": 19.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3261, | |
| "step": 1526 | |
| }, | |
| { | |
| "epoch": 19.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2936, | |
| "step": 1527 | |
| }, | |
| { | |
| "epoch": 19.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3511, | |
| "step": 1528 | |
| }, | |
| { | |
| "epoch": 19.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3138, | |
| "step": 1529 | |
| }, | |
| { | |
| "epoch": 19.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3452, | |
| "step": 1530 | |
| }, | |
| { | |
| "epoch": 19.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2474, | |
| "step": 1531 | |
| }, | |
| { | |
| "epoch": 19.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3069, | |
| "step": 1532 | |
| }, | |
| { | |
| "epoch": 19.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3045, | |
| "step": 1533 | |
| }, | |
| { | |
| "epoch": 19.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2757, | |
| "step": 1534 | |
| }, | |
| { | |
| "epoch": 19.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.288, | |
| "step": 1535 | |
| }, | |
| { | |
| "epoch": 19.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2452, | |
| "step": 1536 | |
| }, | |
| { | |
| "epoch": 19.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3897, | |
| "step": 1537 | |
| }, | |
| { | |
| "epoch": 19.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1806, | |
| "step": 1538 | |
| }, | |
| { | |
| "epoch": 19.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2861, | |
| "step": 1539 | |
| }, | |
| { | |
| "epoch": 19.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2763, | |
| "step": 1540 | |
| }, | |
| { | |
| "epoch": 19.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2857, | |
| "step": 1541 | |
| }, | |
| { | |
| "epoch": 19.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2454, | |
| "step": 1542 | |
| }, | |
| { | |
| "epoch": 19.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.293, | |
| "step": 1543 | |
| }, | |
| { | |
| "epoch": 19.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.317, | |
| "step": 1544 | |
| }, | |
| { | |
| "epoch": 19.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3071, | |
| "step": 1545 | |
| }, | |
| { | |
| "epoch": 19.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3351, | |
| "step": 1546 | |
| }, | |
| { | |
| "epoch": 19.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2296, | |
| "step": 1547 | |
| }, | |
| { | |
| "epoch": 19.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4136, | |
| "step": 1548 | |
| }, | |
| { | |
| "epoch": 19.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4726, | |
| "step": 1549 | |
| }, | |
| { | |
| "epoch": 19.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.373, | |
| "step": 1550 | |
| }, | |
| { | |
| "epoch": 19.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3009, | |
| "step": 1551 | |
| }, | |
| { | |
| "epoch": 19.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3487, | |
| "step": 1552 | |
| }, | |
| { | |
| "epoch": 19.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3236, | |
| "step": 1553 | |
| }, | |
| { | |
| "epoch": 19.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1818, | |
| "step": 1554 | |
| }, | |
| { | |
| "epoch": 19.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2883, | |
| "step": 1555 | |
| }, | |
| { | |
| "epoch": 19.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2588, | |
| "step": 1556 | |
| }, | |
| { | |
| "epoch": 19.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3389, | |
| "step": 1557 | |
| }, | |
| { | |
| "epoch": 19.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2814, | |
| "step": 1558 | |
| }, | |
| { | |
| "epoch": 19.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3465, | |
| "step": 1559 | |
| }, | |
| { | |
| "epoch": 19.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3318, | |
| "step": 1560 | |
| }, | |
| { | |
| "epoch": 19.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3589, | |
| "step": 1561 | |
| }, | |
| { | |
| "epoch": 19.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3196, | |
| "step": 1562 | |
| }, | |
| { | |
| "epoch": 19.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4132, | |
| "step": 1563 | |
| }, | |
| { | |
| "epoch": 19.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3853, | |
| "step": 1564 | |
| }, | |
| { | |
| "epoch": 19.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2056, | |
| "step": 1565 | |
| }, | |
| { | |
| "epoch": 19.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.296, | |
| "step": 1566 | |
| }, | |
| { | |
| "epoch": 19.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2892, | |
| "step": 1567 | |
| }, | |
| { | |
| "epoch": 19.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3101, | |
| "step": 1568 | |
| }, | |
| { | |
| "epoch": 19.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4169, | |
| "step": 1569 | |
| }, | |
| { | |
| "epoch": 19.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4244, | |
| "step": 1570 | |
| }, | |
| { | |
| "epoch": 19.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.306, | |
| "step": 1571 | |
| }, | |
| { | |
| "epoch": 19.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3005, | |
| "step": 1572 | |
| }, | |
| { | |
| "epoch": 19.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3005, | |
| "step": 1573 | |
| }, | |
| { | |
| "epoch": 19.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2365, | |
| "step": 1574 | |
| }, | |
| { | |
| "epoch": 19.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3382, | |
| "step": 1575 | |
| }, | |
| { | |
| "epoch": 19.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3506, | |
| "step": 1576 | |
| }, | |
| { | |
| "epoch": 19.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3173, | |
| "step": 1577 | |
| }, | |
| { | |
| "epoch": 20.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2177, | |
| "step": 1578 | |
| }, | |
| { | |
| "epoch": 20.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2115, | |
| "step": 1579 | |
| }, | |
| { | |
| "epoch": 20.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2513, | |
| "step": 1580 | |
| }, | |
| { | |
| "epoch": 20.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2082, | |
| "step": 1581 | |
| }, | |
| { | |
| "epoch": 20.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3109, | |
| "step": 1582 | |
| }, | |
| { | |
| "epoch": 20.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3577, | |
| "step": 1583 | |
| }, | |
| { | |
| "epoch": 20.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1344, | |
| "step": 1584 | |
| }, | |
| { | |
| "epoch": 20.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1899, | |
| "step": 1585 | |
| }, | |
| { | |
| "epoch": 20.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.257, | |
| "step": 1586 | |
| }, | |
| { | |
| "epoch": 20.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2409, | |
| "step": 1587 | |
| }, | |
| { | |
| "epoch": 20.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2555, | |
| "step": 1588 | |
| }, | |
| { | |
| "epoch": 20.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2755, | |
| "step": 1589 | |
| }, | |
| { | |
| "epoch": 20.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3005, | |
| "step": 1590 | |
| }, | |
| { | |
| "epoch": 20.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2756, | |
| "step": 1591 | |
| }, | |
| { | |
| "epoch": 20.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.295, | |
| "step": 1592 | |
| }, | |
| { | |
| "epoch": 20.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3251, | |
| "step": 1593 | |
| }, | |
| { | |
| "epoch": 20.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2807, | |
| "step": 1594 | |
| }, | |
| { | |
| "epoch": 20.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3818, | |
| "step": 1595 | |
| }, | |
| { | |
| "epoch": 20.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.21, | |
| "step": 1596 | |
| }, | |
| { | |
| "epoch": 20.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1937, | |
| "step": 1597 | |
| }, | |
| { | |
| "epoch": 20.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2028, | |
| "step": 1598 | |
| }, | |
| { | |
| "epoch": 20.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3418, | |
| "step": 1599 | |
| }, | |
| { | |
| "epoch": 20.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2817, | |
| "step": 1600 | |
| }, | |
| { | |
| "epoch": 20.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2752, | |
| "step": 1601 | |
| }, | |
| { | |
| "epoch": 20.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3664, | |
| "step": 1602 | |
| }, | |
| { | |
| "epoch": 20.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3485, | |
| "step": 1603 | |
| }, | |
| { | |
| "epoch": 20.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2378, | |
| "step": 1604 | |
| }, | |
| { | |
| "epoch": 20.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3606, | |
| "step": 1605 | |
| }, | |
| { | |
| "epoch": 20.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2387, | |
| "step": 1606 | |
| }, | |
| { | |
| "epoch": 20.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3161, | |
| "step": 1607 | |
| }, | |
| { | |
| "epoch": 20.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.256, | |
| "step": 1608 | |
| }, | |
| { | |
| "epoch": 20.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1815, | |
| "step": 1609 | |
| }, | |
| { | |
| "epoch": 20.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2504, | |
| "step": 1610 | |
| }, | |
| { | |
| "epoch": 20.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.27, | |
| "step": 1611 | |
| }, | |
| { | |
| "epoch": 20.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3529, | |
| "step": 1612 | |
| }, | |
| { | |
| "epoch": 20.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2674, | |
| "step": 1613 | |
| }, | |
| { | |
| "epoch": 20.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2587, | |
| "step": 1614 | |
| }, | |
| { | |
| "epoch": 20.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.331, | |
| "step": 1615 | |
| }, | |
| { | |
| "epoch": 20.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.241, | |
| "step": 1616 | |
| }, | |
| { | |
| "epoch": 20.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3235, | |
| "step": 1617 | |
| }, | |
| { | |
| "epoch": 20.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3152, | |
| "step": 1618 | |
| }, | |
| { | |
| "epoch": 20.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2636, | |
| "step": 1619 | |
| }, | |
| { | |
| "epoch": 20.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.227, | |
| "step": 1620 | |
| }, | |
| { | |
| "epoch": 20.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2316, | |
| "step": 1621 | |
| }, | |
| { | |
| "epoch": 20.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3619, | |
| "step": 1622 | |
| }, | |
| { | |
| "epoch": 20.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2473, | |
| "step": 1623 | |
| }, | |
| { | |
| "epoch": 20.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3582, | |
| "step": 1624 | |
| }, | |
| { | |
| "epoch": 20.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4274, | |
| "step": 1625 | |
| }, | |
| { | |
| "epoch": 20.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2947, | |
| "step": 1626 | |
| }, | |
| { | |
| "epoch": 20.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3496, | |
| "step": 1627 | |
| }, | |
| { | |
| "epoch": 20.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2986, | |
| "step": 1628 | |
| }, | |
| { | |
| "epoch": 20.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2653, | |
| "step": 1629 | |
| }, | |
| { | |
| "epoch": 20.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2526, | |
| "step": 1630 | |
| }, | |
| { | |
| "epoch": 20.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3163, | |
| "step": 1631 | |
| }, | |
| { | |
| "epoch": 20.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.356, | |
| "step": 1632 | |
| }, | |
| { | |
| "epoch": 20.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2878, | |
| "step": 1633 | |
| }, | |
| { | |
| "epoch": 20.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2441, | |
| "step": 1634 | |
| }, | |
| { | |
| "epoch": 20.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1991, | |
| "step": 1635 | |
| }, | |
| { | |
| "epoch": 20.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3432, | |
| "step": 1636 | |
| }, | |
| { | |
| "epoch": 20.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2455, | |
| "step": 1637 | |
| }, | |
| { | |
| "epoch": 20.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2698, | |
| "step": 1638 | |
| }, | |
| { | |
| "epoch": 20.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3536, | |
| "step": 1639 | |
| }, | |
| { | |
| "epoch": 20.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2574, | |
| "step": 1640 | |
| }, | |
| { | |
| "epoch": 20.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.342, | |
| "step": 1641 | |
| }, | |
| { | |
| "epoch": 20.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2633, | |
| "step": 1642 | |
| }, | |
| { | |
| "epoch": 20.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2968, | |
| "step": 1643 | |
| }, | |
| { | |
| "epoch": 20.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3373, | |
| "step": 1644 | |
| }, | |
| { | |
| "epoch": 20.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2767, | |
| "step": 1645 | |
| }, | |
| { | |
| "epoch": 20.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3579, | |
| "step": 1646 | |
| }, | |
| { | |
| "epoch": 20.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3292, | |
| "step": 1647 | |
| }, | |
| { | |
| "epoch": 20.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2639, | |
| "step": 1648 | |
| }, | |
| { | |
| "epoch": 20.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.347, | |
| "step": 1649 | |
| }, | |
| { | |
| "epoch": 20.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2889, | |
| "step": 1650 | |
| }, | |
| { | |
| "epoch": 20.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2848, | |
| "step": 1651 | |
| }, | |
| { | |
| "epoch": 20.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4394, | |
| "step": 1652 | |
| }, | |
| { | |
| "epoch": 20.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2353, | |
| "step": 1653 | |
| }, | |
| { | |
| "epoch": 20.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.323, | |
| "step": 1654 | |
| }, | |
| { | |
| "epoch": 20.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2626, | |
| "step": 1655 | |
| }, | |
| { | |
| "epoch": 21.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3107, | |
| "step": 1656 | |
| }, | |
| { | |
| "epoch": 21.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.307, | |
| "step": 1657 | |
| }, | |
| { | |
| "epoch": 21.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1955, | |
| "step": 1658 | |
| }, | |
| { | |
| "epoch": 21.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2498, | |
| "step": 1659 | |
| }, | |
| { | |
| "epoch": 21.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2701, | |
| "step": 1660 | |
| }, | |
| { | |
| "epoch": 21.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2194, | |
| "step": 1661 | |
| }, | |
| { | |
| "epoch": 21.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2837, | |
| "step": 1662 | |
| }, | |
| { | |
| "epoch": 21.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.231, | |
| "step": 1663 | |
| }, | |
| { | |
| "epoch": 21.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3166, | |
| "step": 1664 | |
| }, | |
| { | |
| "epoch": 21.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3352, | |
| "step": 1665 | |
| }, | |
| { | |
| "epoch": 21.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.269, | |
| "step": 1666 | |
| }, | |
| { | |
| "epoch": 21.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2293, | |
| "step": 1667 | |
| }, | |
| { | |
| "epoch": 21.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2385, | |
| "step": 1668 | |
| }, | |
| { | |
| "epoch": 21.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2956, | |
| "step": 1669 | |
| }, | |
| { | |
| "epoch": 21.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2407, | |
| "step": 1670 | |
| }, | |
| { | |
| "epoch": 21.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2597, | |
| "step": 1671 | |
| }, | |
| { | |
| "epoch": 21.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1771, | |
| "step": 1672 | |
| }, | |
| { | |
| "epoch": 21.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3541, | |
| "step": 1673 | |
| }, | |
| { | |
| "epoch": 21.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2445, | |
| "step": 1674 | |
| }, | |
| { | |
| "epoch": 21.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2524, | |
| "step": 1675 | |
| }, | |
| { | |
| "epoch": 21.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2739, | |
| "step": 1676 | |
| }, | |
| { | |
| "epoch": 21.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.223, | |
| "step": 1677 | |
| }, | |
| { | |
| "epoch": 21.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.248, | |
| "step": 1678 | |
| }, | |
| { | |
| "epoch": 21.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2244, | |
| "step": 1679 | |
| }, | |
| { | |
| "epoch": 21.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1994, | |
| "step": 1680 | |
| }, | |
| { | |
| "epoch": 21.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3105, | |
| "step": 1681 | |
| }, | |
| { | |
| "epoch": 21.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2394, | |
| "step": 1682 | |
| }, | |
| { | |
| "epoch": 21.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2846, | |
| "step": 1683 | |
| }, | |
| { | |
| "epoch": 21.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2885, | |
| "step": 1684 | |
| }, | |
| { | |
| "epoch": 21.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2815, | |
| "step": 1685 | |
| }, | |
| { | |
| "epoch": 21.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1875, | |
| "step": 1686 | |
| }, | |
| { | |
| "epoch": 21.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2611, | |
| "step": 1687 | |
| }, | |
| { | |
| "epoch": 21.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2415, | |
| "step": 1688 | |
| }, | |
| { | |
| "epoch": 21.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1967, | |
| "step": 1689 | |
| }, | |
| { | |
| "epoch": 21.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2404, | |
| "step": 1690 | |
| }, | |
| { | |
| "epoch": 21.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2552, | |
| "step": 1691 | |
| }, | |
| { | |
| "epoch": 21.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3171, | |
| "step": 1692 | |
| }, | |
| { | |
| "epoch": 21.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3392, | |
| "step": 1693 | |
| }, | |
| { | |
| "epoch": 21.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1975, | |
| "step": 1694 | |
| }, | |
| { | |
| "epoch": 21.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2263, | |
| "step": 1695 | |
| }, | |
| { | |
| "epoch": 21.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2086, | |
| "step": 1696 | |
| }, | |
| { | |
| "epoch": 21.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2221, | |
| "step": 1697 | |
| }, | |
| { | |
| "epoch": 21.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.296, | |
| "step": 1698 | |
| }, | |
| { | |
| "epoch": 21.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2925, | |
| "step": 1699 | |
| }, | |
| { | |
| "epoch": 21.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.27, | |
| "step": 1700 | |
| }, | |
| { | |
| "epoch": 21.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2856, | |
| "step": 1701 | |
| }, | |
| { | |
| "epoch": 21.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3015, | |
| "step": 1702 | |
| }, | |
| { | |
| "epoch": 21.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2346, | |
| "step": 1703 | |
| }, | |
| { | |
| "epoch": 21.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2778, | |
| "step": 1704 | |
| }, | |
| { | |
| "epoch": 21.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2442, | |
| "step": 1705 | |
| }, | |
| { | |
| "epoch": 21.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2728, | |
| "step": 1706 | |
| }, | |
| { | |
| "epoch": 21.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2566, | |
| "step": 1707 | |
| }, | |
| { | |
| "epoch": 21.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2868, | |
| "step": 1708 | |
| }, | |
| { | |
| "epoch": 21.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2958, | |
| "step": 1709 | |
| }, | |
| { | |
| "epoch": 21.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2633, | |
| "step": 1710 | |
| }, | |
| { | |
| "epoch": 21.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2519, | |
| "step": 1711 | |
| }, | |
| { | |
| "epoch": 21.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2986, | |
| "step": 1712 | |
| }, | |
| { | |
| "epoch": 21.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3082, | |
| "step": 1713 | |
| }, | |
| { | |
| "epoch": 21.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2418, | |
| "step": 1714 | |
| }, | |
| { | |
| "epoch": 21.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.237, | |
| "step": 1715 | |
| }, | |
| { | |
| "epoch": 21.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3279, | |
| "step": 1716 | |
| }, | |
| { | |
| "epoch": 21.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2513, | |
| "step": 1717 | |
| }, | |
| { | |
| "epoch": 21.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1656, | |
| "step": 1718 | |
| }, | |
| { | |
| "epoch": 21.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3231, | |
| "step": 1719 | |
| }, | |
| { | |
| "epoch": 21.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2182, | |
| "step": 1720 | |
| }, | |
| { | |
| "epoch": 21.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2204, | |
| "step": 1721 | |
| }, | |
| { | |
| "epoch": 21.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2752, | |
| "step": 1722 | |
| }, | |
| { | |
| "epoch": 21.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3171, | |
| "step": 1723 | |
| }, | |
| { | |
| "epoch": 21.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2618, | |
| "step": 1724 | |
| }, | |
| { | |
| "epoch": 21.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2199, | |
| "step": 1725 | |
| }, | |
| { | |
| "epoch": 21.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3857, | |
| "step": 1726 | |
| }, | |
| { | |
| "epoch": 21.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2059, | |
| "step": 1727 | |
| }, | |
| { | |
| "epoch": 21.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2264, | |
| "step": 1728 | |
| }, | |
| { | |
| "epoch": 21.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3572, | |
| "step": 1729 | |
| }, | |
| { | |
| "epoch": 21.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3099, | |
| "step": 1730 | |
| }, | |
| { | |
| "epoch": 21.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2686, | |
| "step": 1731 | |
| }, | |
| { | |
| "epoch": 21.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.4122, | |
| "step": 1732 | |
| }, | |
| { | |
| "epoch": 21.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2984, | |
| "step": 1733 | |
| }, | |
| { | |
| "epoch": 21.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1762, | |
| "step": 1734 | |
| }, | |
| { | |
| "epoch": 22.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.344, | |
| "step": 1735 | |
| }, | |
| { | |
| "epoch": 22.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3043, | |
| "step": 1736 | |
| }, | |
| { | |
| "epoch": 22.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2189, | |
| "step": 1737 | |
| }, | |
| { | |
| "epoch": 22.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1782, | |
| "step": 1738 | |
| }, | |
| { | |
| "epoch": 22.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2156, | |
| "step": 1739 | |
| }, | |
| { | |
| "epoch": 22.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1929, | |
| "step": 1740 | |
| }, | |
| { | |
| "epoch": 22.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2193, | |
| "step": 1741 | |
| }, | |
| { | |
| "epoch": 22.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1927, | |
| "step": 1742 | |
| }, | |
| { | |
| "epoch": 22.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2603, | |
| "step": 1743 | |
| }, | |
| { | |
| "epoch": 22.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2099, | |
| "step": 1744 | |
| }, | |
| { | |
| "epoch": 22.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1699, | |
| "step": 1745 | |
| }, | |
| { | |
| "epoch": 22.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2327, | |
| "step": 1746 | |
| }, | |
| { | |
| "epoch": 22.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.209, | |
| "step": 1747 | |
| }, | |
| { | |
| "epoch": 22.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2258, | |
| "step": 1748 | |
| }, | |
| { | |
| "epoch": 22.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2243, | |
| "step": 1749 | |
| }, | |
| { | |
| "epoch": 22.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.223, | |
| "step": 1750 | |
| }, | |
| { | |
| "epoch": 22.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2288, | |
| "step": 1751 | |
| }, | |
| { | |
| "epoch": 22.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3273, | |
| "step": 1752 | |
| }, | |
| { | |
| "epoch": 22.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2858, | |
| "step": 1753 | |
| }, | |
| { | |
| "epoch": 22.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1705, | |
| "step": 1754 | |
| }, | |
| { | |
| "epoch": 22.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2788, | |
| "step": 1755 | |
| }, | |
| { | |
| "epoch": 22.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2295, | |
| "step": 1756 | |
| }, | |
| { | |
| "epoch": 22.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2232, | |
| "step": 1757 | |
| }, | |
| { | |
| "epoch": 22.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1828, | |
| "step": 1758 | |
| }, | |
| { | |
| "epoch": 22.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2698, | |
| "step": 1759 | |
| }, | |
| { | |
| "epoch": 22.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2377, | |
| "step": 1760 | |
| }, | |
| { | |
| "epoch": 22.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.247, | |
| "step": 1761 | |
| }, | |
| { | |
| "epoch": 22.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2077, | |
| "step": 1762 | |
| }, | |
| { | |
| "epoch": 22.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1855, | |
| "step": 1763 | |
| }, | |
| { | |
| "epoch": 22.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2424, | |
| "step": 1764 | |
| }, | |
| { | |
| "epoch": 22.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2727, | |
| "step": 1765 | |
| }, | |
| { | |
| "epoch": 22.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2838, | |
| "step": 1766 | |
| }, | |
| { | |
| "epoch": 22.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2172, | |
| "step": 1767 | |
| }, | |
| { | |
| "epoch": 22.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2351, | |
| "step": 1768 | |
| }, | |
| { | |
| "epoch": 22.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2396, | |
| "step": 1769 | |
| }, | |
| { | |
| "epoch": 22.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2574, | |
| "step": 1770 | |
| }, | |
| { | |
| "epoch": 22.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2789, | |
| "step": 1771 | |
| }, | |
| { | |
| "epoch": 22.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2207, | |
| "step": 1772 | |
| }, | |
| { | |
| "epoch": 22.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.192, | |
| "step": 1773 | |
| }, | |
| { | |
| "epoch": 22.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2551, | |
| "step": 1774 | |
| }, | |
| { | |
| "epoch": 22.5, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2921, | |
| "step": 1775 | |
| }, | |
| { | |
| "epoch": 22.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1525, | |
| "step": 1776 | |
| }, | |
| { | |
| "epoch": 22.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1736, | |
| "step": 1777 | |
| }, | |
| { | |
| "epoch": 22.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2211, | |
| "step": 1778 | |
| }, | |
| { | |
| "epoch": 22.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2406, | |
| "step": 1779 | |
| }, | |
| { | |
| "epoch": 22.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2435, | |
| "step": 1780 | |
| }, | |
| { | |
| "epoch": 22.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2758, | |
| "step": 1781 | |
| }, | |
| { | |
| "epoch": 22.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1668, | |
| "step": 1782 | |
| }, | |
| { | |
| "epoch": 22.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2235, | |
| "step": 1783 | |
| }, | |
| { | |
| "epoch": 22.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2238, | |
| "step": 1784 | |
| }, | |
| { | |
| "epoch": 22.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2744, | |
| "step": 1785 | |
| }, | |
| { | |
| "epoch": 22.64, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2734, | |
| "step": 1786 | |
| }, | |
| { | |
| "epoch": 22.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2212, | |
| "step": 1787 | |
| }, | |
| { | |
| "epoch": 22.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2489, | |
| "step": 1788 | |
| }, | |
| { | |
| "epoch": 22.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2407, | |
| "step": 1789 | |
| }, | |
| { | |
| "epoch": 22.69, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1802, | |
| "step": 1790 | |
| }, | |
| { | |
| "epoch": 22.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2195, | |
| "step": 1791 | |
| }, | |
| { | |
| "epoch": 22.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2827, | |
| "step": 1792 | |
| }, | |
| { | |
| "epoch": 22.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.253, | |
| "step": 1793 | |
| }, | |
| { | |
| "epoch": 22.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3167, | |
| "step": 1794 | |
| }, | |
| { | |
| "epoch": 22.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.329, | |
| "step": 1795 | |
| }, | |
| { | |
| "epoch": 22.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2291, | |
| "step": 1796 | |
| }, | |
| { | |
| "epoch": 22.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2607, | |
| "step": 1797 | |
| }, | |
| { | |
| "epoch": 22.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2761, | |
| "step": 1798 | |
| }, | |
| { | |
| "epoch": 22.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3297, | |
| "step": 1799 | |
| }, | |
| { | |
| "epoch": 22.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3904, | |
| "step": 1800 | |
| }, | |
| { | |
| "epoch": 22.83, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2468, | |
| "step": 1801 | |
| }, | |
| { | |
| "epoch": 22.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.251, | |
| "step": 1802 | |
| }, | |
| { | |
| "epoch": 22.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2622, | |
| "step": 1803 | |
| }, | |
| { | |
| "epoch": 22.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1888, | |
| "step": 1804 | |
| }, | |
| { | |
| "epoch": 22.88, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2433, | |
| "step": 1805 | |
| }, | |
| { | |
| "epoch": 22.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2025, | |
| "step": 1806 | |
| }, | |
| { | |
| "epoch": 22.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2392, | |
| "step": 1807 | |
| }, | |
| { | |
| "epoch": 22.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2675, | |
| "step": 1808 | |
| }, | |
| { | |
| "epoch": 22.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2866, | |
| "step": 1809 | |
| }, | |
| { | |
| "epoch": 22.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2996, | |
| "step": 1810 | |
| }, | |
| { | |
| "epoch": 22.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.274, | |
| "step": 1811 | |
| }, | |
| { | |
| "epoch": 22.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2888, | |
| "step": 1812 | |
| }, | |
| { | |
| "epoch": 22.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2864, | |
| "step": 1813 | |
| }, | |
| { | |
| "epoch": 23.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2985, | |
| "step": 1814 | |
| }, | |
| { | |
| "epoch": 23.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1968, | |
| "step": 1815 | |
| }, | |
| { | |
| "epoch": 23.02, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2475, | |
| "step": 1816 | |
| }, | |
| { | |
| "epoch": 23.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1946, | |
| "step": 1817 | |
| }, | |
| { | |
| "epoch": 23.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2792, | |
| "step": 1818 | |
| }, | |
| { | |
| "epoch": 23.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1875, | |
| "step": 1819 | |
| }, | |
| { | |
| "epoch": 23.07, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2401, | |
| "step": 1820 | |
| }, | |
| { | |
| "epoch": 23.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2543, | |
| "step": 1821 | |
| }, | |
| { | |
| "epoch": 23.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2835, | |
| "step": 1822 | |
| }, | |
| { | |
| "epoch": 23.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1681, | |
| "step": 1823 | |
| }, | |
| { | |
| "epoch": 23.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1869, | |
| "step": 1824 | |
| }, | |
| { | |
| "epoch": 23.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1942, | |
| "step": 1825 | |
| }, | |
| { | |
| "epoch": 23.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1804, | |
| "step": 1826 | |
| }, | |
| { | |
| "epoch": 23.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2466, | |
| "step": 1827 | |
| }, | |
| { | |
| "epoch": 23.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1974, | |
| "step": 1828 | |
| }, | |
| { | |
| "epoch": 23.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2014, | |
| "step": 1829 | |
| }, | |
| { | |
| "epoch": 23.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1476, | |
| "step": 1830 | |
| }, | |
| { | |
| "epoch": 23.21, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1681, | |
| "step": 1831 | |
| }, | |
| { | |
| "epoch": 23.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1854, | |
| "step": 1832 | |
| }, | |
| { | |
| "epoch": 23.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2518, | |
| "step": 1833 | |
| }, | |
| { | |
| "epoch": 23.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2063, | |
| "step": 1834 | |
| }, | |
| { | |
| "epoch": 23.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3458, | |
| "step": 1835 | |
| }, | |
| { | |
| "epoch": 23.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1478, | |
| "step": 1836 | |
| }, | |
| { | |
| "epoch": 23.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2636, | |
| "step": 1837 | |
| }, | |
| { | |
| "epoch": 23.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1188, | |
| "step": 1838 | |
| }, | |
| { | |
| "epoch": 23.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1628, | |
| "step": 1839 | |
| }, | |
| { | |
| "epoch": 23.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1736, | |
| "step": 1840 | |
| }, | |
| { | |
| "epoch": 23.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1637, | |
| "step": 1841 | |
| }, | |
| { | |
| "epoch": 23.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1631, | |
| "step": 1842 | |
| }, | |
| { | |
| "epoch": 23.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1542, | |
| "step": 1843 | |
| }, | |
| { | |
| "epoch": 23.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2349, | |
| "step": 1844 | |
| }, | |
| { | |
| "epoch": 23.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1763, | |
| "step": 1845 | |
| }, | |
| { | |
| "epoch": 23.4, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2482, | |
| "step": 1846 | |
| }, | |
| { | |
| "epoch": 23.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2525, | |
| "step": 1847 | |
| }, | |
| { | |
| "epoch": 23.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2543, | |
| "step": 1848 | |
| }, | |
| { | |
| "epoch": 23.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2391, | |
| "step": 1849 | |
| }, | |
| { | |
| "epoch": 23.45, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2077, | |
| "step": 1850 | |
| }, | |
| { | |
| "epoch": 23.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2366, | |
| "step": 1851 | |
| }, | |
| { | |
| "epoch": 23.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1794, | |
| "step": 1852 | |
| }, | |
| { | |
| "epoch": 23.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2902, | |
| "step": 1853 | |
| }, | |
| { | |
| "epoch": 23.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2629, | |
| "step": 1854 | |
| }, | |
| { | |
| "epoch": 23.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2424, | |
| "step": 1855 | |
| }, | |
| { | |
| "epoch": 23.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1952, | |
| "step": 1856 | |
| }, | |
| { | |
| "epoch": 23.54, | |
| "learning_rate": 5e-05, | |
| "loss": 0.177, | |
| "step": 1857 | |
| }, | |
| { | |
| "epoch": 23.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2585, | |
| "step": 1858 | |
| }, | |
| { | |
| "epoch": 23.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2679, | |
| "step": 1859 | |
| }, | |
| { | |
| "epoch": 23.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2726, | |
| "step": 1860 | |
| }, | |
| { | |
| "epoch": 23.59, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2509, | |
| "step": 1861 | |
| }, | |
| { | |
| "epoch": 23.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2273, | |
| "step": 1862 | |
| }, | |
| { | |
| "epoch": 23.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2023, | |
| "step": 1863 | |
| }, | |
| { | |
| "epoch": 23.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3105, | |
| "step": 1864 | |
| }, | |
| { | |
| "epoch": 23.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1716, | |
| "step": 1865 | |
| }, | |
| { | |
| "epoch": 23.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1618, | |
| "step": 1866 | |
| }, | |
| { | |
| "epoch": 23.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2648, | |
| "step": 1867 | |
| }, | |
| { | |
| "epoch": 23.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2047, | |
| "step": 1868 | |
| }, | |
| { | |
| "epoch": 23.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2024, | |
| "step": 1869 | |
| }, | |
| { | |
| "epoch": 23.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2609, | |
| "step": 1870 | |
| }, | |
| { | |
| "epoch": 23.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.272, | |
| "step": 1871 | |
| }, | |
| { | |
| "epoch": 23.73, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1999, | |
| "step": 1872 | |
| }, | |
| { | |
| "epoch": 23.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2445, | |
| "step": 1873 | |
| }, | |
| { | |
| "epoch": 23.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2999, | |
| "step": 1874 | |
| }, | |
| { | |
| "epoch": 23.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2779, | |
| "step": 1875 | |
| }, | |
| { | |
| "epoch": 23.78, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2032, | |
| "step": 1876 | |
| }, | |
| { | |
| "epoch": 23.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1973, | |
| "step": 1877 | |
| }, | |
| { | |
| "epoch": 23.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2449, | |
| "step": 1878 | |
| }, | |
| { | |
| "epoch": 23.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2927, | |
| "step": 1879 | |
| }, | |
| { | |
| "epoch": 23.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1448, | |
| "step": 1880 | |
| }, | |
| { | |
| "epoch": 23.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1592, | |
| "step": 1881 | |
| }, | |
| { | |
| "epoch": 23.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2308, | |
| "step": 1882 | |
| }, | |
| { | |
| "epoch": 23.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1851, | |
| "step": 1883 | |
| }, | |
| { | |
| "epoch": 23.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3323, | |
| "step": 1884 | |
| }, | |
| { | |
| "epoch": 23.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1954, | |
| "step": 1885 | |
| }, | |
| { | |
| "epoch": 23.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1804, | |
| "step": 1886 | |
| }, | |
| { | |
| "epoch": 23.92, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2445, | |
| "step": 1887 | |
| }, | |
| { | |
| "epoch": 23.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2911, | |
| "step": 1888 | |
| }, | |
| { | |
| "epoch": 23.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.217, | |
| "step": 1889 | |
| }, | |
| { | |
| "epoch": 23.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.3145, | |
| "step": 1890 | |
| }, | |
| { | |
| "epoch": 23.97, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1775, | |
| "step": 1891 | |
| }, | |
| { | |
| "epoch": 23.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2446, | |
| "step": 1892 | |
| }, | |
| { | |
| "epoch": 24.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2406, | |
| "step": 1893 | |
| }, | |
| { | |
| "epoch": 24.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.153, | |
| "step": 1894 | |
| }, | |
| { | |
| "epoch": 24.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2006, | |
| "step": 1895 | |
| }, | |
| { | |
| "epoch": 24.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2094, | |
| "step": 1896 | |
| }, | |
| { | |
| "epoch": 24.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1435, | |
| "step": 1897 | |
| }, | |
| { | |
| "epoch": 24.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2003, | |
| "step": 1898 | |
| }, | |
| { | |
| "epoch": 24.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2608, | |
| "step": 1899 | |
| }, | |
| { | |
| "epoch": 24.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1494, | |
| "step": 1900 | |
| }, | |
| { | |
| "epoch": 24.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.222, | |
| "step": 1901 | |
| }, | |
| { | |
| "epoch": 24.11, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1691, | |
| "step": 1902 | |
| }, | |
| { | |
| "epoch": 24.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2058, | |
| "step": 1903 | |
| }, | |
| { | |
| "epoch": 24.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1036, | |
| "step": 1904 | |
| }, | |
| { | |
| "epoch": 24.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1803, | |
| "step": 1905 | |
| }, | |
| { | |
| "epoch": 24.16, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1212, | |
| "step": 1906 | |
| }, | |
| { | |
| "epoch": 24.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1841, | |
| "step": 1907 | |
| }, | |
| { | |
| "epoch": 24.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2012, | |
| "step": 1908 | |
| }, | |
| { | |
| "epoch": 24.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2818, | |
| "step": 1909 | |
| }, | |
| { | |
| "epoch": 24.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2581, | |
| "step": 1910 | |
| }, | |
| { | |
| "epoch": 24.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2849, | |
| "step": 1911 | |
| }, | |
| { | |
| "epoch": 24.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1937, | |
| "step": 1912 | |
| }, | |
| { | |
| "epoch": 24.25, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1882, | |
| "step": 1913 | |
| }, | |
| { | |
| "epoch": 24.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1698, | |
| "step": 1914 | |
| }, | |
| { | |
| "epoch": 24.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1488, | |
| "step": 1915 | |
| }, | |
| { | |
| "epoch": 24.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1961, | |
| "step": 1916 | |
| }, | |
| { | |
| "epoch": 24.3, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1676, | |
| "step": 1917 | |
| }, | |
| { | |
| "epoch": 24.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1514, | |
| "step": 1918 | |
| }, | |
| { | |
| "epoch": 24.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1978, | |
| "step": 1919 | |
| }, | |
| { | |
| "epoch": 24.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2534, | |
| "step": 1920 | |
| }, | |
| { | |
| "epoch": 24.35, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1005, | |
| "step": 1921 | |
| }, | |
| { | |
| "epoch": 24.37, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1986, | |
| "step": 1922 | |
| }, | |
| { | |
| "epoch": 24.38, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2066, | |
| "step": 1923 | |
| }, | |
| { | |
| "epoch": 24.39, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2759, | |
| "step": 1924 | |
| }, | |
| { | |
| "epoch": 24.41, | |
| "learning_rate": 5e-05, | |
| "loss": 0.204, | |
| "step": 1925 | |
| }, | |
| { | |
| "epoch": 24.42, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2113, | |
| "step": 1926 | |
| }, | |
| { | |
| "epoch": 24.43, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2124, | |
| "step": 1927 | |
| }, | |
| { | |
| "epoch": 24.44, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2739, | |
| "step": 1928 | |
| }, | |
| { | |
| "epoch": 24.46, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1746, | |
| "step": 1929 | |
| }, | |
| { | |
| "epoch": 24.47, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2456, | |
| "step": 1930 | |
| }, | |
| { | |
| "epoch": 24.48, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1732, | |
| "step": 1931 | |
| }, | |
| { | |
| "epoch": 24.49, | |
| "learning_rate": 5e-05, | |
| "loss": 0.231, | |
| "step": 1932 | |
| }, | |
| { | |
| "epoch": 24.51, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2006, | |
| "step": 1933 | |
| }, | |
| { | |
| "epoch": 24.52, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1644, | |
| "step": 1934 | |
| }, | |
| { | |
| "epoch": 24.53, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2304, | |
| "step": 1935 | |
| }, | |
| { | |
| "epoch": 24.55, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2037, | |
| "step": 1936 | |
| }, | |
| { | |
| "epoch": 24.56, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1601, | |
| "step": 1937 | |
| }, | |
| { | |
| "epoch": 24.57, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1968, | |
| "step": 1938 | |
| }, | |
| { | |
| "epoch": 24.58, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1912, | |
| "step": 1939 | |
| }, | |
| { | |
| "epoch": 24.6, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2069, | |
| "step": 1940 | |
| }, | |
| { | |
| "epoch": 24.61, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1518, | |
| "step": 1941 | |
| }, | |
| { | |
| "epoch": 24.62, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2153, | |
| "step": 1942 | |
| }, | |
| { | |
| "epoch": 24.63, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2978, | |
| "step": 1943 | |
| }, | |
| { | |
| "epoch": 24.65, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1987, | |
| "step": 1944 | |
| }, | |
| { | |
| "epoch": 24.66, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2692, | |
| "step": 1945 | |
| }, | |
| { | |
| "epoch": 24.67, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1771, | |
| "step": 1946 | |
| }, | |
| { | |
| "epoch": 24.68, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2638, | |
| "step": 1947 | |
| }, | |
| { | |
| "epoch": 24.7, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1715, | |
| "step": 1948 | |
| }, | |
| { | |
| "epoch": 24.71, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2392, | |
| "step": 1949 | |
| }, | |
| { | |
| "epoch": 24.72, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2175, | |
| "step": 1950 | |
| }, | |
| { | |
| "epoch": 24.74, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1938, | |
| "step": 1951 | |
| }, | |
| { | |
| "epoch": 24.75, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1901, | |
| "step": 1952 | |
| }, | |
| { | |
| "epoch": 24.76, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1909, | |
| "step": 1953 | |
| }, | |
| { | |
| "epoch": 24.77, | |
| "learning_rate": 5e-05, | |
| "loss": 0.217, | |
| "step": 1954 | |
| }, | |
| { | |
| "epoch": 24.79, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2872, | |
| "step": 1955 | |
| }, | |
| { | |
| "epoch": 24.8, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2159, | |
| "step": 1956 | |
| }, | |
| { | |
| "epoch": 24.81, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2022, | |
| "step": 1957 | |
| }, | |
| { | |
| "epoch": 24.82, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1672, | |
| "step": 1958 | |
| }, | |
| { | |
| "epoch": 24.84, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2629, | |
| "step": 1959 | |
| }, | |
| { | |
| "epoch": 24.85, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1835, | |
| "step": 1960 | |
| }, | |
| { | |
| "epoch": 24.86, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1562, | |
| "step": 1961 | |
| }, | |
| { | |
| "epoch": 24.87, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2913, | |
| "step": 1962 | |
| }, | |
| { | |
| "epoch": 24.89, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1545, | |
| "step": 1963 | |
| }, | |
| { | |
| "epoch": 24.9, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2616, | |
| "step": 1964 | |
| }, | |
| { | |
| "epoch": 24.91, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1081, | |
| "step": 1965 | |
| }, | |
| { | |
| "epoch": 24.93, | |
| "learning_rate": 5e-05, | |
| "loss": 0.237, | |
| "step": 1966 | |
| }, | |
| { | |
| "epoch": 24.94, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2414, | |
| "step": 1967 | |
| }, | |
| { | |
| "epoch": 24.95, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2651, | |
| "step": 1968 | |
| }, | |
| { | |
| "epoch": 24.96, | |
| "learning_rate": 5e-05, | |
| "loss": 0.158, | |
| "step": 1969 | |
| }, | |
| { | |
| "epoch": 24.98, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2477, | |
| "step": 1970 | |
| }, | |
| { | |
| "epoch": 24.99, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1836, | |
| "step": 1971 | |
| }, | |
| { | |
| "epoch": 25.0, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1485, | |
| "step": 1972 | |
| }, | |
| { | |
| "epoch": 25.01, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1532, | |
| "step": 1973 | |
| }, | |
| { | |
| "epoch": 25.03, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1454, | |
| "step": 1974 | |
| }, | |
| { | |
| "epoch": 25.04, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1787, | |
| "step": 1975 | |
| }, | |
| { | |
| "epoch": 25.05, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1433, | |
| "step": 1976 | |
| }, | |
| { | |
| "epoch": 25.06, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1635, | |
| "step": 1977 | |
| }, | |
| { | |
| "epoch": 25.08, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1169, | |
| "step": 1978 | |
| }, | |
| { | |
| "epoch": 25.09, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1417, | |
| "step": 1979 | |
| }, | |
| { | |
| "epoch": 25.1, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2019, | |
| "step": 1980 | |
| }, | |
| { | |
| "epoch": 25.12, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1088, | |
| "step": 1981 | |
| }, | |
| { | |
| "epoch": 25.13, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1885, | |
| "step": 1982 | |
| }, | |
| { | |
| "epoch": 25.14, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1823, | |
| "step": 1983 | |
| }, | |
| { | |
| "epoch": 25.15, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1741, | |
| "step": 1984 | |
| }, | |
| { | |
| "epoch": 25.17, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1966, | |
| "step": 1985 | |
| }, | |
| { | |
| "epoch": 25.18, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1877, | |
| "step": 1986 | |
| }, | |
| { | |
| "epoch": 25.19, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1433, | |
| "step": 1987 | |
| }, | |
| { | |
| "epoch": 25.2, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1397, | |
| "step": 1988 | |
| }, | |
| { | |
| "epoch": 25.22, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2733, | |
| "step": 1989 | |
| }, | |
| { | |
| "epoch": 25.23, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1591, | |
| "step": 1990 | |
| }, | |
| { | |
| "epoch": 25.24, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1155, | |
| "step": 1991 | |
| }, | |
| { | |
| "epoch": 25.26, | |
| "learning_rate": 5e-05, | |
| "loss": 0.22, | |
| "step": 1992 | |
| }, | |
| { | |
| "epoch": 25.27, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1074, | |
| "step": 1993 | |
| }, | |
| { | |
| "epoch": 25.28, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1704, | |
| "step": 1994 | |
| }, | |
| { | |
| "epoch": 25.29, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2257, | |
| "step": 1995 | |
| }, | |
| { | |
| "epoch": 25.31, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1605, | |
| "step": 1996 | |
| }, | |
| { | |
| "epoch": 25.32, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2086, | |
| "step": 1997 | |
| }, | |
| { | |
| "epoch": 25.33, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1974, | |
| "step": 1998 | |
| }, | |
| { | |
| "epoch": 25.34, | |
| "learning_rate": 5e-05, | |
| "loss": 0.2178, | |
| "step": 1999 | |
| }, | |
| { | |
| "epoch": 25.36, | |
| "learning_rate": 5e-05, | |
| "loss": 0.1402, | |
| "step": 2000 | |
| } | |
| ], | |
| "max_steps": 3900, | |
| "num_train_epochs": 50, | |
| "total_flos": 0.0, | |
| "trial_name": null, | |
| "trial_params": null | |
| } | |