File size: 64,376 Bytes
9dd3461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Spectral feature extraction"""

import numpy as np
import scipy
import scipy.signal
import scipy.fftpack

from .. import util
from .. import filters
from ..util.exceptions import ParameterError
from ..util.decorators import deprecate_positional_args

from ..core.convert import fft_frequencies
from ..core.audio import zero_crossings
from ..core.spectrum import power_to_db, _spectrogram
from ..core.constantq import cqt, hybrid_cqt
from ..core.pitch import estimate_tuning


__all__ = [
    "spectral_centroid",
    "spectral_bandwidth",
    "spectral_contrast",
    "spectral_rolloff",
    "spectral_flatness",
    "poly_features",
    "rms",
    "zero_crossing_rate",
    "chroma_stft",
    "chroma_cqt",
    "chroma_cens",
    "melspectrogram",
    "mfcc",
    "tonnetz",
]


# -- Spectral features -- #
@deprecate_positional_args
def spectral_centroid(
    *,
    y=None,
    sr=22050,
    S=None,
    n_fft=2048,
    hop_length=512,
    freq=None,
    win_length=None,
    window="hann",
    center=True,
    pad_mode="constant",
):
    """Compute the spectral centroid.

    Each frame of a magnitude spectrogram is normalized and treated as a
    distribution over frequency bins, from which the mean (centroid) is
    extracted per frame.

    More precisely, the centroid at frame ``t`` is defined as [#]_::

        centroid[t] = sum_k S[k, t] * freq[k] / (sum_j S[j, t])

    where ``S`` is a magnitude spectrogram, and ``freq`` is the array of
    frequencies (e.g., FFT frequencies in Hz) of the rows of ``S``.

    .. [#] Klapuri, A., & Davy, M. (Eds.). (2007). Signal processing
        methods for music transcription, chapter 5.
        Springer Science & Business Media.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n,)] or None
        audio time series. Multi-channel is supported.

    sr : number > 0 [scalar]
        audio sampling rate of ``y``

    S : np.ndarray [shape=(..., d, t)] or None
        (optional) spectrogram magnitude

    n_fft : int > 0 [scalar]
        FFT window size

    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.

    freq : None or np.ndarray [shape=(d,) or shape=(d, t)]
        Center frequencies for spectrogram bins.
        If `None`, then FFT bin center frequencies are used.

        Otherwise, it can be a single array of ``d`` center frequencies,
        or a matrix of center frequencies as constructed by
        `librosa.reassigned_spectrogram`

    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length ``win_length`` and then padded
        with zeros to match ``n_fft``.

        If unspecified, defaults to ``win_length = n_fft``.

    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``

        .. see also:: `librosa.filters.get_window`

    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          `t` is centered at ``y[t * hop_length]``.
        - If `False`, then frame ``t`` begins at ``y[t * hop_length]``

    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.

    Returns
    -------
    centroid : np.ndarray [shape=(..., 1, t)]
        centroid frequencies

    See Also
    --------
    librosa.stft : Short-time Fourier Transform
    librosa.reassigned_spectrogram : Time-frequency reassigned spectrogram

    Examples
    --------
    From time-series input:

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> cent = librosa.feature.spectral_centroid(y=y, sr=sr)
    >>> cent
    array([[1768.888, 1921.774, ..., 5663.477, 5813.683]])

    From spectrogram input:

    >>> S, phase = librosa.magphase(librosa.stft(y=y))
    >>> librosa.feature.spectral_centroid(S=S)
    array([[1768.888, 1921.774, ..., 5663.477, 5813.683]])

    Using variable bin center frequencies:

    >>> freqs, times, D = librosa.reassigned_spectrogram(y, fill_nan=True)
    >>> librosa.feature.spectral_centroid(S=np.abs(D), freq=freqs)
    array([[1768.838, 1921.801, ..., 5663.513, 5813.747]])

    Plot the result

    >>> import matplotlib.pyplot as plt
    >>> times = librosa.times_like(cent)
    >>> fig, ax = plt.subplots()
    >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax)
    >>> ax.plot(times, cent.T, label='Spectral centroid', color='w')
    >>> ax.legend(loc='upper right')
    >>> ax.set(title='log Power spectrogram')
    """

    # input is time domain:y or spectrogram:s
    #

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    if not np.isrealobj(S):
        raise ParameterError(
            "Spectral centroid is only defined " "with real-valued input"
        )
    elif np.any(S < 0):
        raise ParameterError(
            "Spectral centroid is only defined " "with non-negative energies"
        )

    # Compute the center frequencies of each bin
    if freq is None:
        freq = fft_frequencies(sr=sr, n_fft=n_fft)

    if freq.ndim == 1:
        # reshape for broadcasting
        freq = util.expand_to(freq, ndim=S.ndim, axes=-2)

    # Column-normalize S
    return np.sum(freq * util.normalize(S, norm=1, axis=-2), axis=-2, keepdims=True)


@deprecate_positional_args
def spectral_bandwidth(
    *,
    y=None,
    sr=22050,
    S=None,
    n_fft=2048,
    hop_length=512,
    win_length=None,
    window="hann",
    center=True,
    pad_mode="constant",
    freq=None,
    centroid=None,
    norm=True,
    p=2,
):
    """Compute p'th-order spectral bandwidth.

       The spectral bandwidth [#]_ at frame ``t`` is computed by::

        (sum_k S[k, t] * (freq[k, t] - centroid[t])**p)**(1/p)

    .. [#] Klapuri, A., & Davy, M. (Eds.). (2007). Signal processing
        methods for music transcription, chapter 5.
        Springer Science & Business Media.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.

    sr : number > 0 [scalar]
        audio sampling rate of ``y``

    S : np.ndarray [shape=(..., d, t)] or None
        (optional) spectrogram magnitude

    n_fft : int > 0 [scalar]
        FFT window size

    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.

    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length ``win_length`` and then padded
        with zeros to match ``n_fft``.

        If unspecified, defaults to ``win_length = n_fft``.

    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``

        .. see also:: `librosa.filters.get_window`

    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          ``t`` is centered at ``y[t * hop_length]``.
        - If ``False``, then frame ``t`` begins at ``y[t * hop_length]``

    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.

    freq : None or np.ndarray [shape=(d,) or shape=(..., d, t)]
        Center frequencies for spectrogram bins.

        If `None`, then FFT bin center frequencies are used.
        Otherwise, it can be a single array of ``d`` center frequencies,
        or a matrix of center frequencies as constructed by
        `librosa.reassigned_spectrogram`

    centroid : None or np.ndarray [shape=(..., 1, t)]
        pre-computed centroid frequencies

    norm : bool
        Normalize per-frame spectral energy (sum to one)

    p : float > 0
        Power to raise deviation from spectral centroid.

    Returns
    -------
    bandwidth : np.ndarray [shape=(..., 1, t)]
        frequency bandwidth for each frame

    Examples
    --------
    From time-series input

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> spec_bw = librosa.feature.spectral_bandwidth(y=y, sr=sr)
    >>> spec_bw
    array([[1273.836, 1228.873, ..., 2952.357, 3013.68 ]])

    From spectrogram input

    >>> S, phase = librosa.magphase(librosa.stft(y=y))
    >>> librosa.feature.spectral_bandwidth(S=S)
    array([[1273.836, 1228.873, ..., 2952.357, 3013.68 ]])

    Using variable bin center frequencies

    >>> freqs, times, D = librosa.reassigned_spectrogram(y, fill_nan=True)
    >>> librosa.feature.spectral_bandwidth(S=np.abs(D), freq=freqs)
    array([[1274.637, 1228.786, ..., 2952.4  , 3013.735]])

    Plot the result

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> times = librosa.times_like(spec_bw)
    >>> centroid = librosa.feature.spectral_centroid(S=S)
    >>> ax[0].semilogy(times, spec_bw[0], label='Spectral bandwidth')
    >>> ax[0].set(ylabel='Hz', xticks=[], xlim=[times.min(), times.max()])
    >>> ax[0].legend()
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='log Power spectrogram')
    >>> ax[1].fill_between(times, np.maximum(0, centroid[0] - spec_bw[0]),
    ...                 np.minimum(centroid[0] + spec_bw[0], sr/2),
    ...                 alpha=0.5, label='Centroid +- bandwidth')
    >>> ax[1].plot(times, centroid[0], label='Spectral centroid', color='w')
    >>> ax[1].legend(loc='lower right')
    """

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    if not np.isrealobj(S):
        raise ParameterError(
            "Spectral bandwidth is only defined " "with real-valued input"
        )
    elif np.any(S < 0):
        raise ParameterError(
            "Spectral bandwidth is only defined " "with non-negative energies"
        )

    # centroid or center?
    if centroid is None:
        centroid = spectral_centroid(
            y=y, sr=sr, S=S, n_fft=n_fft, hop_length=hop_length, freq=freq
        )

    # Compute the center frequencies of each bin
    if freq is None:
        freq = fft_frequencies(sr=sr, n_fft=n_fft)

    if freq.ndim == 1:
        deviation = np.abs(
            np.subtract.outer(centroid[..., 0, :], freq).swapaxes(-2, -1)
        )
    else:
        deviation = np.abs(freq - centroid)

    # Column-normalize S
    if norm:
        S = util.normalize(S, norm=1, axis=-2)

    return np.sum(S * deviation ** p, axis=-2, keepdims=True) ** (1.0 / p)


@deprecate_positional_args
def spectral_contrast(
    *,
    y=None,
    sr=22050,
    S=None,
    n_fft=2048,
    hop_length=512,
    win_length=None,
    window="hann",
    center=True,
    pad_mode="constant",
    freq=None,
    fmin=200.0,
    n_bands=6,
    quantile=0.02,
    linear=False,
):
    """Compute spectral contrast

    Each frame of a spectrogram ``S`` is divided into sub-bands.
    For each sub-band, the energy contrast is estimated by comparing
    the mean energy in the top quantile (peak energy) to that of the
    bottom quantile (valley energy).  High contrast values generally
    correspond to clear, narrow-band signals, while low contrast values
    correspond to broad-band noise. [#]_

    .. [#] Jiang, Dan-Ning, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao,
           and Lian-Hong Cai.
           "Music type classification by spectral contrast feature."
           In Multimedia and Expo, 2002. ICME'02. Proceedings.
           2002 IEEE International Conference on, vol. 1, pp. 113-116.
           IEEE, 2002.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.

    sr : number  > 0 [scalar]
        audio sampling rate of ``y``

    S : np.ndarray [shape=(..., d, t)] or None
        (optional) spectrogram magnitude

    n_fft : int > 0 [scalar]
        FFT window size

    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.

    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length `win_length` and then padded
        with zeros to match ``n_fft``.

        If unspecified, defaults to ``win_length = n_fft``.

    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``

        .. see also:: `librosa.filters.get_window`

    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          ``t`` is centered at ``y[t * hop_length]``.
        - If `False`, then frame ``t`` begins at ``y[t * hop_length]``

    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.

    freq : None or np.ndarray [shape=(d,)]
        Center frequencies for spectrogram bins.

        If `None`, then FFT bin center frequencies are used.
        Otherwise, it can be a single array of ``d`` center frequencies.

    fmin : float > 0
        Frequency cutoff for the first bin ``[0, fmin]``
        Subsequent bins will cover ``[fmin, 2*fmin]`, `[2*fmin, 4*fmin]``, etc.

    n_bands : int > 1
        number of frequency bands

    quantile : float in (0, 1)
        quantile for determining peaks and valleys

    linear : bool
        If `True`, return the linear difference of magnitudes:
        ``peaks - valleys``.

        If `False`, return the logarithmic difference:
        ``log(peaks) - log(valleys)``.

    Returns
    -------
    contrast : np.ndarray [shape=(..., n_bands + 1, t)]
        each row of spectral contrast values corresponds to a given
        octave-based frequency

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> S = np.abs(librosa.stft(y))
    >>> contrast = librosa.feature.spectral_contrast(S=S, sr=sr)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> img1 = librosa.display.specshow(librosa.amplitude_to_db(S,
    ...                                                  ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax[0])
    >>> fig.colorbar(img1, ax=[ax[0]], format='%+2.0f dB')
    >>> ax[0].set(title='Power spectrogram')
    >>> ax[0].label_outer()
    >>> img2 = librosa.display.specshow(contrast, x_axis='time', ax=ax[1])
    >>> fig.colorbar(img2, ax=[ax[1]])
    >>> ax[1].set(ylabel='Frequency bands', title='Spectral contrast')
    """

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    # Compute the center frequencies of each bin
    if freq is None:
        freq = fft_frequencies(sr=sr, n_fft=n_fft)

    freq = np.atleast_1d(freq)

    if freq.ndim != 1 or len(freq) != S.shape[-2]:
        raise ParameterError(
            "freq.shape mismatch: expected " "({:d},)".format(S.shape[-2])
        )

    if n_bands < 1 or not isinstance(n_bands, (int, np.integer)):
        raise ParameterError("n_bands must be a positive integer")

    if not 0.0 < quantile < 1.0:
        raise ParameterError("quantile must lie in the range (0, 1)")

    if fmin <= 0:
        raise ParameterError("fmin must be a positive number")

    octa = np.zeros(n_bands + 2)
    octa[1:] = fmin * (2.0 ** np.arange(0, n_bands + 1))

    if np.any(octa[:-1] >= 0.5 * sr):
        raise ParameterError(
            "Frequency band exceeds Nyquist. " "Reduce either fmin or n_bands."
        )

    # shape of valleys and peaks based on spectrogram
    shape = list(S.shape)
    shape[-2] = n_bands + 1

    valley = np.zeros(shape)
    peak = np.zeros_like(valley)

    for k, (f_low, f_high) in enumerate(zip(octa[:-1], octa[1:])):
        current_band = np.logical_and(freq >= f_low, freq <= f_high)

        idx = np.flatnonzero(current_band)

        if k > 0:
            current_band[idx[0] - 1] = True

        if k == n_bands:
            current_band[idx[-1] + 1 :] = True

        sub_band = S[..., current_band, :]

        if k < n_bands:
            sub_band = sub_band[..., :-1, :]

        # Always take at least one bin from each side
        idx = np.rint(quantile * np.sum(current_band))
        idx = int(np.maximum(idx, 1))

        sortedr = np.sort(sub_band, axis=-2)

        valley[..., k, :] = np.mean(sortedr[..., :idx, :], axis=-2)
        peak[..., k, :] = np.mean(sortedr[..., -idx:, :], axis=-2)

    if linear:
        return peak - valley
    else:
        return power_to_db(peak) - power_to_db(valley)


@deprecate_positional_args
def spectral_rolloff(
    *,
    y=None,
    sr=22050,
    S=None,
    n_fft=2048,
    hop_length=512,
    win_length=None,
    window="hann",
    center=True,
    pad_mode="constant",
    freq=None,
    roll_percent=0.85,
):
    """Compute roll-off frequency.

    The roll-off frequency is defined for each frame as the center frequency
    for a spectrogram bin such that at least roll_percent (0.85 by default)
    of the energy of the spectrum in this frame is contained in this bin and
    the bins below. This can be used to, e.g., approximate the maximum (or
    minimum) frequency by setting roll_percent to a value close to 1 (or 0).

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.

    sr : number > 0 [scalar]
        audio sampling rate of ``y``

    S : np.ndarray [shape=(d, t)] or None
        (optional) spectrogram magnitude

    n_fft : int > 0 [scalar]
        FFT window size

    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.

    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length `win_length` and then padded
        with zeros to match ``n_fft``.

        If unspecified, defaults to ``win_length = n_fft``.

    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``

        .. see also:: `librosa.filters.get_window`

    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          ``t`` is centered at ``y[t * hop_length]``.
        - If `False`, then frame ``t`` begins at ``y[t * hop_length]``

    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.

    freq : None or np.ndarray [shape=(d,) or shape=(..., d, t)]
        Center frequencies for spectrogram bins.
        If `None`, then FFT bin center frequencies are used.
        Otherwise, it can be a single array of ``d`` center frequencies,

        .. note:: ``freq`` is assumed to be sorted in increasing order

    roll_percent : float [0 < roll_percent < 1]
        Roll-off percentage.

    Returns
    -------
    rolloff : np.ndarray [shape=(..., 1, t)]
        roll-off frequency for each frame

    Examples
    --------
    From time-series input

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> # Approximate maximum frequencies with roll_percent=0.85 (default)
    >>> librosa.feature.spectral_rolloff(y=y, sr=sr)
    array([[2583.984, 3036.182, ..., 9173.145, 9248.511]])
    >>> # Approximate maximum frequencies with roll_percent=0.99
    >>> rolloff = librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.99)
    >>> rolloff
    array([[ 7192.09 ,  6739.893, ..., 10960.4  , 10992.7  ]])
    >>> # Approximate minimum frequencies with roll_percent=0.01
    >>> rolloff_min = librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.01)
    >>> rolloff_min
    array([[516.797, 538.33 , ..., 764.429, 764.429]])

    From spectrogram input

    >>> S, phase = librosa.magphase(librosa.stft(y))
    >>> librosa.feature.spectral_rolloff(S=S, sr=sr)
    array([[2583.984, 3036.182, ..., 9173.145, 9248.511]])

    >>> # With a higher roll percentage:
    >>> librosa.feature.spectral_rolloff(y=y, sr=sr, roll_percent=0.95)
    array([[ 3919.043,  3994.409, ..., 10443.604, 10594.336]])

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax)
    >>> ax.plot(librosa.times_like(rolloff), rolloff[0], label='Roll-off frequency (0.99)')
    >>> ax.plot(librosa.times_like(rolloff), rolloff_min[0], color='w',
    ...         label='Roll-off frequency (0.01)')
    >>> ax.legend(loc='lower right')
    >>> ax.set(title='log Power spectrogram')
    """

    if not 0.0 < roll_percent < 1.0:
        raise ParameterError("roll_percent must lie in the range (0, 1)")

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    if not np.isrealobj(S):
        raise ParameterError(
            "Spectral rolloff is only defined " "with real-valued input"
        )
    elif np.any(S < 0):
        raise ParameterError(
            "Spectral rolloff is only defined " "with non-negative energies"
        )

    # Compute the center frequencies of each bin
    if freq is None:
        freq = fft_frequencies(sr=sr, n_fft=n_fft)

    # Make sure that frequency can be broadcast
    if freq.ndim == 1:
        # reshape for broadcasting
        freq = util.expand_to(freq, ndim=S.ndim, axes=-2)

    total_energy = np.cumsum(S, axis=-2)
    # (channels,freq,frames)

    threshold = roll_percent * total_energy[..., -1, :]

    # reshape threshold for broadcasting
    threshold = np.expand_dims(threshold, axis=-2)

    ind = np.where(total_energy < threshold, np.nan, 1)

    return np.nanmin(ind * freq, axis=-2, keepdims=True)


@deprecate_positional_args
def spectral_flatness(
    *,
    y=None,
    S=None,
    n_fft=2048,
    hop_length=512,
    win_length=None,
    window="hann",
    center=True,
    pad_mode="constant",
    amin=1e-10,
    power=2.0,
):
    """Compute spectral flatness

    Spectral flatness (or tonality coefficient) is a measure to
    quantify how much noise-like a sound is, as opposed to being
    tone-like [#]_. A high spectral flatness (closer to 1.0)
    indicates the spectrum is similar to white noise.
    It is often converted to decibel.

    .. [#] Dubnov, Shlomo  "Generalization of spectral flatness
           measure for non-gaussian linear processes"
           IEEE Signal Processing Letters, 2004, Vol. 11.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.

    S : np.ndarray [shape=(..., d, t)] or None
        (optional) pre-computed spectrogram magnitude

    n_fft : int > 0 [scalar]
        FFT window size

    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.

    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length `win_length` and then padded
        with zeros to match ``n_fft``.

        If unspecified, defaults to ``win_length = n_fft``.

    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``

        .. see also:: `librosa.filters.get_window`

    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          ``t`` is centered at ``y[t * hop_length]``.
        - If `False`, then frame `t` begins at ``y[t * hop_length]``

    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.

    amin : float > 0 [scalar]
        minimum threshold for ``S`` (=added noise floor for numerical stability)

    power : float > 0 [scalar]
        Exponent for the magnitude spectrogram.
        e.g., 1 for energy, 2 for power, etc.
        Power spectrogram is usually used for computing spectral flatness.

    Returns
    -------
    flatness : np.ndarray [shape=(..., 1, t)]
        spectral flatness for each frame.
        The returned value is in [0, 1] and often converted to dB scale.

    Examples
    --------
    From time-series input

    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> flatness = librosa.feature.spectral_flatness(y=y)
    >>> flatness
    array([[0.001, 0.   , ..., 0.218, 0.184]], dtype=float32)

    From spectrogram input

    >>> S, phase = librosa.magphase(librosa.stft(y))
    >>> librosa.feature.spectral_flatness(S=S)
    array([[0.001, 0.   , ..., 0.218, 0.184]], dtype=float32)

    From power spectrogram input

    >>> S, phase = librosa.magphase(librosa.stft(y))
    >>> S_power = S ** 2
    >>> librosa.feature.spectral_flatness(S=S_power, power=1.0)
    array([[0.001, 0.   , ..., 0.218, 0.184]], dtype=float32)

    """
    if amin <= 0:
        raise ParameterError("amin must be strictly positive")

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        power=1.0,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    if not np.isrealobj(S):
        raise ParameterError(
            "Spectral flatness is only defined " "with real-valued input"
        )
    elif np.any(S < 0):
        raise ParameterError(
            "Spectral flatness is only defined " "with non-negative energies"
        )

    S_thresh = np.maximum(amin, S ** power)
    gmean = np.exp(np.mean(np.log(S_thresh), axis=-2, keepdims=True))
    amean = np.mean(S_thresh, axis=-2, keepdims=True)
    return gmean / amean


@deprecate_positional_args
def rms(
    *,
    y=None,
    S=None,
    frame_length=2048,
    hop_length=512,
    center=True,
    pad_mode="constant",
):
    """Compute root-mean-square (RMS) value for each frame, either from the
    audio samples ``y`` or from a spectrogram ``S``.

    Computing the RMS value from audio samples is faster as it doesn't require
    a STFT calculation. However, using a spectrogram will give a more accurate
    representation of energy over time because its frames can be windowed,
    thus prefer using ``S`` if it's already available.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        (optional) audio time series. Required if ``S`` is not input.
        Multi-channel is supported.

    S : np.ndarray [shape=(..., d, t)] or None
        (optional) spectrogram magnitude. Required if ``y`` is not input.

    frame_length : int > 0 [scalar]
        length of analysis frame (in samples) for energy calculation

    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.

    center : bool
        If `True` and operating on time-domain input (``y``), pad the signal
        by ``frame_length//2`` on either side.

        If operating on spectrogram input, this has no effect.

    pad_mode : str
        Padding mode for centered analysis.  See `numpy.pad` for valid
        values.

    Returns
    -------
    rms : np.ndarray [shape=(..., 1, t)]
        RMS value for each frame

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> librosa.feature.rms(y=y)
    array([[1.248e-01, 1.259e-01, ..., 1.845e-05, 1.796e-05]],
          dtype=float32)

    Or from spectrogram input

    >>> S, phase = librosa.magphase(librosa.stft(y))
    >>> rms = librosa.feature.rms(S=S)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> times = librosa.times_like(rms)
    >>> ax[0].semilogy(times, rms[0], label='RMS Energy')
    >>> ax[0].set(xticks=[])
    >>> ax[0].legend()
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='log Power spectrogram')

    Use a STFT window of constant ones and no frame centering to get consistent
    results with the RMS computed from the audio samples ``y``

    >>> S = librosa.magphase(librosa.stft(y, window=np.ones, center=False))[0]
    >>> librosa.feature.rms(S=S)
    >>> plt.show()

    """
    if y is not None:
        if center:
            padding = [(0, 0) for _ in range(y.ndim)]
            padding[-1] = (int(frame_length // 2), int(frame_length // 2))
            y = np.pad(y, padding, mode=pad_mode)

        x = util.frame(y, frame_length=frame_length, hop_length=hop_length)

        # Calculate power
        power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
    elif S is not None:
        # Check the frame length
        if S.shape[-2] != frame_length // 2 + 1:
            raise ParameterError(
                "Since S.shape[-2] is {}, "
                "frame_length is expected to be {} or {}; "
                "found {}".format(
                    S.shape[-2], S.shape[-2] * 2 - 2, S.shape[-2] * 2 - 1, frame_length
                )
            )

        # power spectrogram
        x = np.abs(S) ** 2

        # Adjust the DC and sr/2 component
        x[..., 0, :] *= 0.5
        if frame_length % 2 == 0:
            x[..., -1, :] *= 0.5

        # Calculate power
        power = 2 * np.sum(x, axis=-2, keepdims=True) / frame_length ** 2
    else:
        raise ParameterError("Either `y` or `S` must be input.")

    return np.sqrt(power)


@deprecate_positional_args
def poly_features(
    *,
    y=None,
    sr=22050,
    S=None,
    n_fft=2048,
    hop_length=512,
    win_length=None,
    window="hann",
    center=True,
    pad_mode="constant",
    order=1,
    freq=None,
):
    """Get coefficients of fitting an nth-order polynomial to the columns
    of a spectrogram.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.

    sr : number > 0 [scalar]
        audio sampling rate of ``y``

    S : np.ndarray [shape=(..., d, t)] or None
        (optional) spectrogram magnitude

    n_fft : int > 0 [scalar]
        FFT window size

    hop_length : int > 0 [scalar]
        hop length for STFT. See `librosa.stft` for details.

    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length `win_length` and then padded
        with zeros to match ``n_fft``.

        If unspecified, defaults to ``win_length = n_fft``.

    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``

        .. see also:: `librosa.filters.get_window`

    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          `t` is centered at ``y[t * hop_length]``.
        - If `False`, then frame ``t`` begins at ``y[t * hop_length]``

    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.

    order : int > 0
        order of the polynomial to fit

    freq : None or np.ndarray [shape=(d,) or shape=(..., d, t)]
        Center frequencies for spectrogram bins.
        If `None`, then FFT bin center frequencies are used.
        Otherwise, it can be a single array of ``d`` center frequencies,
        or a matrix of center frequencies as constructed by
        `librosa.reassigned_spectrogram`

    Returns
    -------
    coefficients : np.ndarray [shape=(..., order+1, t)]
        polynomial coefficients for each frame.

        ``coefficients[..., 0, :]`` corresponds to the highest degree (``order``),

        ``coefficients[..., 1, :]`` corresponds to the next highest degree (``order-1``),

        down to the constant term ``coefficients[..., order, :]``.

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> S = np.abs(librosa.stft(y))

    Fit a degree-0 polynomial (constant) to each frame

    >>> p0 = librosa.feature.poly_features(S=S, order=0)

    Fit a linear polynomial to each frame

    >>> p1 = librosa.feature.poly_features(S=S, order=1)

    Fit a quadratic to each frame

    >>> p2 = librosa.feature.poly_features(S=S, order=2)

    Plot the results for comparison

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=4, sharex=True, figsize=(8, 8))
    >>> times = librosa.times_like(p0)
    >>> ax[0].plot(times, p0[0], label='order=0', alpha=0.8)
    >>> ax[0].plot(times, p1[1], label='order=1', alpha=0.8)
    >>> ax[0].plot(times, p2[2], label='order=2', alpha=0.8)
    >>> ax[0].legend()
    >>> ax[0].label_outer()
    >>> ax[0].set(ylabel='Constant term ')
    >>> ax[1].plot(times, p1[0], label='order=1', alpha=0.8)
    >>> ax[1].plot(times, p2[1], label='order=2', alpha=0.8)
    >>> ax[1].set(ylabel='Linear term')
    >>> ax[1].label_outer()
    >>> ax[1].legend()
    >>> ax[2].plot(times, p2[0], label='order=2', alpha=0.8)
    >>> ax[2].set(ylabel='Quadratic term')
    >>> ax[2].legend()
    >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                          y_axis='log', x_axis='time', ax=ax[3])
    """

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    # Compute the center frequencies of each bin
    if freq is None:
        freq = fft_frequencies(sr=sr, n_fft=n_fft)

    if freq.ndim == 1:
        # If frequencies are constant over frames, then we only need to fit once
        fitter = np.vectorize(
            lambda y: np.polyfit(freq, y, order), signature="(f,t)->(d,t)"
        )
        coefficients = fitter(S)
    else:
        # Otherwise, we have variable frequencies, and need to fit independently
        fitter = np.vectorize(
            lambda x, y: np.polyfit(x, y, order), signature="(f),(f)->(d)"
        )

        # We have to do some axis swapping to preserve layout
        # otherwise, the new dimension gets put at the end instead of the penultimate position
        coefficients = fitter(freq.swapaxes(-2, -1), S.swapaxes(-2, -1)).swapaxes(
            -2, -1
        )

    return coefficients


@deprecate_positional_args
def zero_crossing_rate(y, *, frame_length=2048, hop_length=512, center=True, **kwargs):
    """Compute the zero-crossing rate of an audio time series.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)]
        Audio time series. Multi-channel is supported.

    frame_length : int > 0
        Length of the frame over which to compute zero crossing rates

    hop_length : int > 0
        Number of samples to advance for each frame

    center : bool
        If `True`, frames are centered by padding the edges of ``y``.
        This is similar to the padding in `librosa.stft`,
        but uses edge-value copies instead of zero-padding.

    **kwargs : additional keyword arguments
        See `librosa.zero_crossings`

        .. note:: By default, the ``pad`` parameter is set to `False`, which
            differs from the default specified by
            `librosa.zero_crossings`.

    Returns
    -------
    zcr : np.ndarray [shape=(..., 1, t)]
        ``zcr[..., 0, i]`` is the fraction of zero crossings in frame ``i``

    See Also
    --------
    librosa.zero_crossings : Compute zero-crossings in a time-series

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> librosa.feature.zero_crossing_rate(y)
    array([[0.044, 0.074, ..., 0.488, 0.355]])

    """

    # check if audio is valid
    util.valid_audio(y, mono=False)

    if center:
        padding = [(0, 0) for _ in range(y.ndim)]
        padding[-1] = (int(frame_length // 2), int(frame_length // 2))
        y = np.pad(y, padding, mode="edge")

    y_framed = util.frame(y, frame_length=frame_length, hop_length=hop_length)

    kwargs["axis"] = -2
    kwargs.setdefault("pad", False)

    crossings = zero_crossings(y_framed, **kwargs)

    return np.mean(crossings, axis=-2, keepdims=True)


# -- Chroma --#
@deprecate_positional_args
def chroma_stft(
    *,
    y=None,
    sr=22050,
    S=None,
    norm=np.inf,
    n_fft=2048,
    hop_length=512,
    win_length=None,
    window="hann",
    center=True,
    pad_mode="constant",
    tuning=None,
    n_chroma=12,
    **kwargs,
):
    """Compute a chromagram from a waveform or power spectrogram.

    This implementation is derived from ``chromagram_E`` [#]_

    .. [#] Ellis, Daniel P.W.  "Chroma feature analysis and synthesis"
           2007/04/21
           http://labrosa.ee.columbia.edu/matlab/chroma-ansyn/

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time series. Multi-channel is supported.

    sr : number > 0 [scalar]
        sampling rate of ``y``

    S : np.ndarray [shape=(..., d, t)] or None
        power spectrogram

    norm : float or None
        Column-wise normalization.
        See `librosa.util.normalize` for details.

        If `None`, no normalization is performed.

    n_fft : int  > 0 [scalar]
        FFT window size if provided ``y, sr`` instead of ``S``

    hop_length : int > 0 [scalar]
        hop length if provided ``y, sr`` instead of ``S``

    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length `win_length` and then padded
        with zeros to match ``n_fft``.

        If unspecified, defaults to ``win_length = n_fft``.

    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``

        .. see also:: `librosa.filters.get_window`

    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          ``t`` is centered at ``y[t * hop_length]``.
        - If `False`, then frame ``t`` begins at ``y[t * hop_length]``

    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.
        By default, STFT uses zero padding.

    tuning : float [scalar] or None.
        Deviation from A440 tuning in fractional chroma bins.
        If `None`, it is automatically estimated.

    n_chroma : int > 0 [scalar]
        Number of chroma bins to produce (12 by default).

    **kwargs : additional keyword arguments
        Arguments to parameterize chroma filters.
        See `librosa.filters.chroma` for details.

    Returns
    -------
    chromagram : np.ndarray [shape=(..., n_chroma, t)]
        Normalized energy for each chroma bin at each frame.

    See Also
    --------
    librosa.filters.chroma : Chroma filter bank construction
    librosa.util.normalize : Vector normalization

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
    >>> librosa.feature.chroma_stft(y=y, sr=sr)
    array([[1.   , 0.962, ..., 0.143, 0.278],
           [0.688, 0.745, ..., 0.103, 0.162],
           ...,
           [0.468, 0.598, ..., 0.18 , 0.342],
           [0.681, 0.702, ..., 0.553, 1.   ]], dtype=float32)

    Use an energy (magnitude) spectrum instead of power spectrogram

    >>> S = np.abs(librosa.stft(y))
    >>> chroma = librosa.feature.chroma_stft(S=S, sr=sr)
    >>> chroma
    array([[1.   , 0.973, ..., 0.527, 0.569],
           [0.774, 0.81 , ..., 0.518, 0.506],
           ...,
           [0.624, 0.73 , ..., 0.611, 0.644],
           [0.766, 0.822, ..., 0.92 , 1.   ]], dtype=float32)

    Use a pre-computed power spectrogram with a larger frame

    >>> S = np.abs(librosa.stft(y, n_fft=4096))**2
    >>> chroma = librosa.feature.chroma_stft(S=S, sr=sr)
    >>> chroma
    array([[0.994, 0.873, ..., 0.169, 0.227],
           [0.735, 0.64 , ..., 0.141, 0.135],
           ...,
           [0.6  , 0.937, ..., 0.214, 0.257],
           [0.743, 0.937, ..., 0.684, 0.815]], dtype=float32)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> img = librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                                y_axis='log', x_axis='time', ax=ax[0])
    >>> fig.colorbar(img, ax=[ax[0]])
    >>> ax[0].label_outer()
    >>> img = librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax[1])
    >>> fig.colorbar(img, ax=[ax[1]])
    """

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        power=2,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    if tuning is None:
        tuning = estimate_tuning(S=S, sr=sr, bins_per_octave=n_chroma)

    # Get the filter bank
    chromafb = filters.chroma(
        sr=sr, n_fft=n_fft, tuning=tuning, n_chroma=n_chroma, **kwargs
    )

    # Compute raw chroma
    raw_chroma = np.einsum("cf,...ft->...ct", chromafb, S, optimize=True)

    # Compute normalization factor for each frame
    return util.normalize(raw_chroma, norm=norm, axis=-2)


@deprecate_positional_args
def chroma_cqt(
    *,
    y=None,
    sr=22050,
    C=None,
    hop_length=512,
    fmin=None,
    norm=np.inf,
    threshold=0.0,
    tuning=None,
    n_chroma=12,
    n_octaves=7,
    window=None,
    bins_per_octave=36,
    cqt_mode="full",
):
    r"""Constant-Q chromagram

    Parameters
    ----------
    y : np.ndarray [shape=(..., n,)]
        audio time series. Multi-channel is supported.

    sr : number > 0
        sampling rate of ``y``

    C : np.ndarray [shape=(..., d, t)] [Optional]
        a pre-computed constant-Q spectrogram

    hop_length : int > 0
        number of samples between successive chroma frames

    fmin : float > 0
        minimum frequency to analyze in the CQT.

        Default: `C1 ~= 32.7 Hz`

    norm : int > 0, +-np.inf, or None
        Column-wise normalization of the chromagram.

    threshold : float
        Pre-normalization energy threshold.  Values below the
        threshold are discarded, resulting in a sparse chromagram.

    tuning : float
        Deviation (in fractions of a CQT bin) from A440 tuning

    n_chroma : int > 0
        Number of chroma bins to produce

    n_octaves : int > 0
        Number of octaves to analyze above ``fmin``

    window : None or np.ndarray
        Optional window parameter to `filters.cq_to_chroma`

    bins_per_octave : int > 0, optional
        Number of bins per octave in the CQT.
        Must be an integer multiple of ``n_chroma``.
        Default: 36 (3 bins per semitone)

        If `None`, it will match ``n_chroma``.

    cqt_mode : ['full', 'hybrid']
        Constant-Q transform mode

    Returns
    -------
    chromagram : np.ndarray [shape=(..., n_chroma, t)]
        The output chromagram

    See Also
    --------
    librosa.util.normalize
    librosa.cqt
    librosa.hybrid_cqt
    chroma_stft

    Examples
    --------
    Compare a long-window STFT chromagram to the CQT chromagram

    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
    >>> chroma_stft = librosa.feature.chroma_stft(y=y, sr=sr,
    ...                                           n_chroma=12, n_fft=4096)
    >>> chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
    >>> librosa.display.specshow(chroma_stft, y_axis='chroma', x_axis='time', ax=ax[0])
    >>> ax[0].set(title='chroma_stft')
    >>> ax[0].label_outer()
    >>> img = librosa.display.specshow(chroma_cq, y_axis='chroma', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='chroma_cqt')
    >>> fig.colorbar(img, ax=ax)
    """

    cqt_func = {"full": cqt, "hybrid": hybrid_cqt}

    if bins_per_octave is None:
        bins_per_octave = n_chroma
    elif np.remainder(bins_per_octave, n_chroma) != 0:
        raise ParameterError(
            "bins_per_octave={} must be an integer "
            "multiple of n_chroma={}".format(bins_per_octave, n_chroma)
        )

    # Build the CQT if we don't have one already
    if C is None:
        C = np.abs(
            cqt_func[cqt_mode](
                y,
                sr=sr,
                hop_length=hop_length,
                fmin=fmin,
                n_bins=n_octaves * bins_per_octave,
                bins_per_octave=bins_per_octave,
                tuning=tuning,
            )
        )

    # Map to chroma
    cq_to_chr = filters.cq_to_chroma(
        C.shape[-2],
        bins_per_octave=bins_per_octave,
        n_chroma=n_chroma,
        fmin=fmin,
        window=window,
    )

    chroma = np.einsum("cf,...ft->...ct", cq_to_chr, C, optimize=True)

    if threshold is not None:
        chroma[chroma < threshold] = 0.0

    # Normalize
    if norm is not None:
        chroma = util.normalize(chroma, norm=norm, axis=-2)

    return chroma


@deprecate_positional_args
def chroma_cens(
    *,
    y=None,
    sr=22050,
    C=None,
    hop_length=512,
    fmin=None,
    tuning=None,
    n_chroma=12,
    n_octaves=7,
    bins_per_octave=36,
    cqt_mode="full",
    window=None,
    norm=2,
    win_len_smooth=41,
    smoothing_window="hann",
):
    r"""Computes the chroma variant "Chroma Energy Normalized" (CENS)

    To compute CENS features, following steps are taken after obtaining chroma vectors
    using `chroma_cqt`: [#]_.

        1. L-1 normalization of each chroma vector
        2. Quantization of amplitude based on "log-like" amplitude thresholds
        3. (optional) Smoothing with sliding window. Default window length = 41 frames
        4. (not implemented) Downsampling

    CENS features are robust to dynamics, timbre and articulation, thus these are commonly used in audio
    matching and retrieval applications.

    .. [#] Meinard Müller and Sebastian Ewert
           "Chroma Toolbox: MATLAB implementations for extracting variants of chroma-based audio features"
           In Proceedings of the International Conference on Music Information Retrieval (ISMIR), 2011.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n,)]
        audio time series. Multi-channel is supported.

    sr : number > 0
        sampling rate of ``y``

    C : np.ndarray [shape=(d, t)] [Optional]
        a pre-computed constant-Q spectrogram

    hop_length : int > 0
        number of samples between successive chroma frames

    fmin : float > 0
        minimum frequency to analyze in the CQT.
        Default: `C1 ~= 32.7 Hz`

    norm : int > 0, +-np.inf, or None
        Column-wise normalization of the chromagram.

    tuning : float
        Deviation (in fractions of a CQT bin) from A440 tuning

    n_chroma : int > 0
        Number of chroma bins to produce

    n_octaves : int > 0
        Number of octaves to analyze above ``fmin``

    window : None or np.ndarray
        Optional window parameter to `filters.cq_to_chroma`

    bins_per_octave : int > 0
        Number of bins per octave in the CQT.

        Default: 36

    cqt_mode : ['full', 'hybrid']
        Constant-Q transform mode

    win_len_smooth : int > 0 or None
        Length of temporal smoothing window. `None` disables temporal smoothing.
        Default: 41

    smoothing_window : str, float or tuple
        Type of window function for temporal smoothing. See `librosa.filters.get_window` for possible inputs.
        Default: 'hann'

    Returns
    -------
    cens : np.ndarray [shape=(..., n_chroma, t)]
        The output cens-chromagram

    See Also
    --------
    chroma_cqt : Compute a chromagram from a constant-Q transform.
    chroma_stft : Compute a chromagram from an STFT spectrogram or waveform.
    librosa.filters.get_window : Compute a window function.

    Examples
    --------
    Compare standard cqt chroma to CENS.

    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
    >>> chroma_cens = librosa.feature.chroma_cens(y=y, sr=sr)
    >>> chroma_cq = librosa.feature.chroma_cqt(y=y, sr=sr)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
    >>> img = librosa.display.specshow(chroma_cq, y_axis='chroma', x_axis='time', ax=ax[0])
    >>> ax[0].set(title='chroma_cq')
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(chroma_cens, y_axis='chroma', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='chroma_cens')
    >>> fig.colorbar(img, ax=ax)
    """

    if not (
        (win_len_smooth is None)
        or (isinstance(win_len_smooth, (int, np.integer)) and win_len_smooth > 0)
    ):
        raise ParameterError(
            "win_len_smooth={} must be a positive integer or None".format(
                win_len_smooth
            )
        )

    chroma = chroma_cqt(
        y=y,
        C=C,
        sr=sr,
        hop_length=hop_length,
        fmin=fmin,
        bins_per_octave=bins_per_octave,
        tuning=tuning,
        norm=None,
        n_chroma=n_chroma,
        n_octaves=n_octaves,
        cqt_mode=cqt_mode,
        window=window,
    )

    # L1-Normalization
    chroma = util.normalize(chroma, norm=1, axis=-2)

    # Quantize amplitudes
    QUANT_STEPS = [0.4, 0.2, 0.1, 0.05]
    QUANT_WEIGHTS = [0.25, 0.25, 0.25, 0.25]

    chroma_quant = np.zeros_like(chroma)

    for cur_quant_step_idx, cur_quant_step in enumerate(QUANT_STEPS):
        chroma_quant += (chroma > cur_quant_step) * QUANT_WEIGHTS[cur_quant_step_idx]

    if win_len_smooth:
        # Apply temporal smoothing
        win = filters.get_window(smoothing_window, win_len_smooth + 2, fftbins=False)
        win /= np.sum(win)

        # reshape for broadcasting
        win = util.expand_to(win, ndim=chroma_quant.ndim, axes=-1)

        cens = scipy.ndimage.convolve(chroma_quant, win, mode="constant")
    else:
        cens = chroma_quant

    # L2-Normalization
    return util.normalize(cens, norm=norm, axis=-2)


@deprecate_positional_args
def tonnetz(*, y=None, sr=22050, chroma=None, **kwargs):
    """Computes the tonal centroid features (tonnetz)

    This representation uses the method of [#]_ to project chroma features
    onto a 6-dimensional basis representing the perfect fifth, minor third,
    and major third each as two-dimensional coordinates.

    .. [#] Harte, C., Sandler, M., & Gasser, M. (2006). "Detecting Harmonic
           Change in Musical Audio." In Proceedings of the 1st ACM Workshop
           on Audio and Music Computing Multimedia (pp. 21-26).
           Santa Barbara, CA, USA: ACM Press. doi:10.1145/1178723.1178727.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n,)] or None
        Audio time series. Multi-channel is supported.

    sr : number > 0 [scalar]
        sampling rate of ``y``

    chroma : np.ndarray [shape=(n_chroma, t)] or None
        Normalized energy for each chroma bin at each frame.

        If `None`, a cqt chromagram is performed.

    **kwargs
        Additional keyword arguments to `chroma_cqt`, if ``chroma`` is not
        pre-computed.

    Returns
    -------
    tonnetz : np.ndarray [shape(..., 6, t)]
        Tonal centroid features for each frame.

        Tonnetz dimensions:
            - 0: Fifth x-axis
            - 1: Fifth y-axis
            - 2: Minor x-axis
            - 3: Minor y-axis
            - 4: Major x-axis
            - 5: Major y-axis

    See Also
    --------
    chroma_cqt : Compute a chromagram from a constant-Q transform.
    chroma_stft : Compute a chromagram from an STFT spectrogram or waveform.

    Examples
    --------
    Compute tonnetz features from the harmonic component of a song

    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=10, offset=10)
    >>> y = librosa.effects.harmonic(y)
    >>> tonnetz = librosa.feature.tonnetz(y=y, sr=sr)
    >>> tonnetz
    array([[ 0.007, -0.026, ...,  0.055,  0.056],
           [-0.01 , -0.009, ..., -0.012, -0.017],
           ...,
           [ 0.006, -0.021, ..., -0.012, -0.01 ],
           [-0.009,  0.031, ..., -0.05 , -0.037]])

    Compare the tonnetz features to `chroma_cqt`

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> img1 = librosa.display.specshow(tonnetz,
    ...                                 y_axis='tonnetz', x_axis='time', ax=ax[0])
    >>> ax[0].set(title='Tonal Centroids (Tonnetz)')
    >>> ax[0].label_outer()
    >>> img2 = librosa.display.specshow(librosa.feature.chroma_cqt(y=y, sr=sr),
    ...                                 y_axis='chroma', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='Chroma')
    >>> fig.colorbar(img1, ax=[ax[0]])
    >>> fig.colorbar(img2, ax=[ax[1]])
    """

    if y is None and chroma is None:
        raise ParameterError(
            "Either the audio samples or the chromagram must be "
            "passed as an argument."
        )

    if chroma is None:
        chroma = chroma_cqt(y=y, sr=sr, **kwargs)

    # Generate Transformation matrix
    dim_map = np.linspace(0, 12, num=chroma.shape[-2], endpoint=False)

    scale = np.asarray([7.0 / 6, 7.0 / 6, 3.0 / 2, 3.0 / 2, 2.0 / 3, 2.0 / 3])

    V = np.multiply.outer(scale, dim_map)

    # Even rows compute sin()
    V[::2] -= 0.5

    R = np.array([1, 1, 1, 1, 0.5, 0.5])  # Fifths  # Minor  # Major

    phi = R[:, np.newaxis] * np.cos(np.pi * V)

    # Do the transform to tonnetz
    return np.einsum(
        "pc,...ci->...pi", phi, util.normalize(chroma, norm=1, axis=-2), optimize=True
    )


# -- Mel spectrogram and MFCCs -- #
@deprecate_positional_args
def mfcc(
    *, y=None, sr=22050, S=None, n_mfcc=20, dct_type=2, norm="ortho", lifter=0, **kwargs
):
    """Mel-frequency cepstral coefficients (MFCCs)

    .. warning:: If multi-channel audio input ``y`` is provided, the MFCC
        calculation will depend on the peak loudness (in decibels) across
        all channels.  The result may differ from independent MFCC calculation
        of each channel.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n,)] or None
        audio time series. Multi-channel is supported..

    sr : number > 0 [scalar]
        sampling rate of ``y``

    S : np.ndarray [shape=(..., d, t)] or None
        log-power Mel spectrogram

    n_mfcc : int > 0 [scalar]
        number of MFCCs to return

    dct_type : {1, 2, 3}
        Discrete cosine transform (DCT) type.
        By default, DCT type-2 is used.

    norm : None or 'ortho'
        If ``dct_type`` is `2 or 3`, setting ``norm='ortho'`` uses an ortho-normal
        DCT basis.

        Normalization is not supported for ``dct_type=1``.

    lifter : number >= 0
        If ``lifter>0``, apply *liftering* (cepstral filtering) to the MFCCs::

            M[n, :] <- M[n, :] * (1 + sin(pi * (n + 1) / lifter) * lifter / 2)

        Setting ``lifter >= 2 * n_mfcc`` emphasizes the higher-order coefficients.
        As ``lifter`` increases, the coefficient weighting becomes approximately linear.

    **kwargs : additional keyword arguments
        Arguments to `melspectrogram`, if operating
        on time series input

    Returns
    -------
    M : np.ndarray [shape=(..., n_mfcc, t)]
        MFCC sequence

    See Also
    --------
    melspectrogram
    scipy.fftpack.dct

    Examples
    --------
    Generate mfccs from a time series

    >>> y, sr = librosa.load(librosa.ex('libri1'))
    >>> librosa.feature.mfcc(y=y, sr=sr)
    array([[-565.919, -564.288, ..., -426.484, -434.668],
           [  10.305,   12.509, ...,   88.43 ,   90.12 ],
           ...,
           [   2.807,    2.068, ...,   -6.725,   -5.159],
           [   2.822,    2.244, ...,   -6.198,   -6.177]], dtype=float32)

    Using a different hop length and HTK-style Mel frequencies

    >>> librosa.feature.mfcc(y=y, sr=sr, hop_length=1024, htk=True)
    array([[-5.471e+02, -5.464e+02, ..., -4.446e+02, -4.200e+02],
           [ 1.361e+01,  1.402e+01, ...,  9.764e+01,  9.869e+01],
           ...,
           [ 4.097e-01, -2.029e+00, ..., -1.051e+01, -1.130e+01],
           [-1.119e-01, -1.688e+00, ..., -3.442e+00, -4.687e+00]],
          dtype=float32)

    Use a pre-computed log-power Mel spectrogram

    >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128,
    ...                                    fmax=8000)
    >>> librosa.feature.mfcc(S=librosa.power_to_db(S))
    array([[-559.974, -558.449, ..., -411.96 , -420.458],
           [  11.018,   13.046, ...,   76.972,   80.888],
           ...,
           [   2.713,    2.379, ...,    1.464,   -2.835],
           [   2.712,    2.619, ...,    2.209,    0.648]], dtype=float32)

    Get more components

    >>> mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40)

    Visualize the MFCC series

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> img = librosa.display.specshow(librosa.power_to_db(S, ref=np.max),
    ...                                x_axis='time', y_axis='mel', fmax=8000,
    ...                                ax=ax[0])
    >>> fig.colorbar(img, ax=[ax[0]])
    >>> ax[0].set(title='Mel spectrogram')
    >>> ax[0].label_outer()
    >>> img = librosa.display.specshow(mfccs, x_axis='time', ax=ax[1])
    >>> fig.colorbar(img, ax=[ax[1]])
    >>> ax[1].set(title='MFCC')

    Compare different DCT bases

    >>> m_slaney = librosa.feature.mfcc(y=y, sr=sr, dct_type=2)
    >>> m_htk = librosa.feature.mfcc(y=y, sr=sr, dct_type=3)
    >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
    >>> img1 = librosa.display.specshow(m_slaney, x_axis='time', ax=ax[0])
    >>> ax[0].set(title='RASTAMAT / Auditory toolbox (dct_type=2)')
    >>> fig.colorbar(img, ax=[ax[0]])
    >>> img2 = librosa.display.specshow(m_htk, x_axis='time', ax=ax[1])
    >>> ax[1].set(title='HTK-style (dct_type=3)')
    >>> fig.colorbar(img2, ax=[ax[1]])
    """

    if S is None:
        # multichannel behavior may be different due to relative noise floor differences between channels
        S = power_to_db(melspectrogram(y=y, sr=sr, **kwargs))

    M = scipy.fftpack.dct(S, axis=-2, type=dct_type, norm=norm)[..., :n_mfcc, :]

    if lifter > 0:
        # shape lifter for broadcasting
        LI = np.sin(np.pi * np.arange(1, 1 + n_mfcc, dtype=M.dtype) / lifter)
        LI = util.expand_to(LI, ndim=S.ndim, axes=-2)

        M *= 1 + (lifter / 2) * LI
        return M
    elif lifter == 0:
        return M
    else:
        raise ParameterError(
            "MFCC lifter={} must be a non-negative number".format(lifter)
        )


@deprecate_positional_args
def melspectrogram(
    *,
    y=None,
    sr=22050,
    S=None,
    n_fft=2048,
    hop_length=512,
    win_length=None,
    window="hann",
    center=True,
    pad_mode="constant",
    power=2.0,
    **kwargs,
):
    """Compute a mel-scaled spectrogram.

    If a spectrogram input ``S`` is provided, then it is mapped directly onto
    the mel basis by ``mel_f.dot(S)``.

    If a time-series input ``y, sr`` is provided, then its magnitude spectrogram
    ``S`` is first computed, and then mapped onto the mel scale by
    ``mel_f.dot(S**power)``.

    By default, ``power=2`` operates on a power spectrum.

    Parameters
    ----------
    y : np.ndarray [shape=(..., n)] or None
        audio time-series. Multi-channel is supported.

    sr : number > 0 [scalar]
        sampling rate of ``y``

    S : np.ndarray [shape=(..., d, t)]
        spectrogram

    n_fft : int > 0 [scalar]
        length of the FFT window

    hop_length : int > 0 [scalar]
        number of samples between successive frames.
        See `librosa.stft`

    win_length : int <= n_fft [scalar]
        Each frame of audio is windowed by `window()`.
        The window will be of length `win_length` and then padded
        with zeros to match ``n_fft``.

        If unspecified, defaults to ``win_length = n_fft``.

    window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)]
        - a window specification (string, tuple, or number);
          see `scipy.signal.get_window`
        - a window function, such as `scipy.signal.windows.hann`
        - a vector or array of length ``n_fft``

        .. see also:: `librosa.filters.get_window`

    center : boolean
        - If `True`, the signal ``y`` is padded so that frame
          ``t`` is centered at ``y[t * hop_length]``.
        - If `False`, then frame ``t`` begins at ``y[t * hop_length]``

    pad_mode : string
        If ``center=True``, the padding mode to use at the edges of the signal.

        By default, STFT uses zero padding.

    power : float > 0 [scalar]
        Exponent for the magnitude melspectrogram.
        e.g., 1 for energy, 2 for power, etc.

    **kwargs : additional keyword arguments
        Mel filter bank parameters.

        See `librosa.filters.mel` for details.

    Returns
    -------
    S : np.ndarray [shape=(..., n_mels, t)]
        Mel spectrogram

    See Also
    --------
    librosa.filters.mel : Mel filter bank construction
    librosa.stft : Short-time Fourier Transform

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'))
    >>> librosa.feature.melspectrogram(y=y, sr=sr)
    array([[3.837e-06, 1.451e-06, ..., 8.352e-14, 1.296e-11],
           [2.213e-05, 7.866e-06, ..., 8.532e-14, 1.329e-11],
           ...,
           [1.115e-05, 5.192e-06, ..., 3.675e-08, 2.470e-08],
           [6.473e-07, 4.402e-07, ..., 1.794e-08, 2.908e-08]],
          dtype=float32)

    Using a pre-computed power spectrogram would give the same result:

    >>> D = np.abs(librosa.stft(y))**2
    >>> S = librosa.feature.melspectrogram(S=D, sr=sr)

    Display of mel-frequency spectrogram coefficients, with custom
    arguments for mel filterbank construction (default is fmax=sr/2):

    >>> # Passing through arguments to the Mel filters
    >>> S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128,
    ...                                     fmax=8000)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> S_dB = librosa.power_to_db(S, ref=np.max)
    >>> img = librosa.display.specshow(S_dB, x_axis='time',
    ...                          y_axis='mel', sr=sr,
    ...                          fmax=8000, ax=ax)
    >>> fig.colorbar(img, ax=ax, format='%+2.0f dB')
    >>> ax.set(title='Mel-frequency spectrogram')
    """

    S, n_fft = _spectrogram(
        y=y,
        S=S,
        n_fft=n_fft,
        hop_length=hop_length,
        power=power,
        win_length=win_length,
        window=window,
        center=center,
        pad_mode=pad_mode,
    )

    # Build a Mel filter
    mel_basis = filters.mel(sr=sr, n_fft=n_fft, **kwargs)

    return np.einsum("...ft,mf->...mt", S, mel_basis, optimize=True)