English
SU-T / utils /utils.py
Vranlee's picture
Upload 552 files
0985519 verified
import numpy as np
"""
Utilities for bounding box manipulation and GIoU.
"""
import torch
from torchvision.ops.boxes import box_area
from loguru import logger
def write_results(filename, results):
save_format = '{frame},{id},{x1},{y1},{w},{h},{s},-1,-1,-1\n'
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids, scores in results:
for tlwh, track_id, score in zip(tlwhs, track_ids, scores):
if track_id < 0:
continue
x1, y1, w, h = tlwh
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1), s=round(score, 2))
f.write(line)
logger.info('save results to {}'.format(filename))
def write_results_no_score(filename, results):
save_format = '{frame},{id},{x1},{y1},{w},{h},-1,-1,-1,-1\n'
with open(filename, 'w') as f:
for frame_id, tlwhs, track_ids in results:
for tlwh, track_id in zip(tlwhs, track_ids):
if track_id < 0:
continue
x1, y1, w, h = tlwh
line = save_format.format(frame=frame_id, id=track_id, x1=round(x1, 1), y1=round(y1, 1), w=round(w, 1), h=round(h, 1))
f.write(line)
logger.info('save results to {}'.format(filename))
def get_iou(bb1, bb2):
"""
Calculate the Intersection over Union (IoU) of two bounding boxes.
Parameters
----------
bb1 : dict
Keys: {'x1', 'x2', 'y1', 'y2'}
The (x1, y1) position is at the top left corner,
the (x2, y2) position is at the bottom right corner
bb2 : dict
Keys: {'x1', 'x2', 'y1', 'y2'}
The (x, y) position is at the top left corner,
the (x2, y2) position is at the bottom right corner
Returns
-------
float
in [0, 1]
"""
assert bb1['x1'] < bb1['x2']
assert bb1['y1'] < bb1['y2']
assert bb2['x1'] < bb2['x2']
assert bb2['y1'] < bb2['y2']
# determine the coordinates of the intersection rectangle
x_left = max(bb1['x1'], bb2['x1'])
y_top = max(bb1['y1'], bb2['y1'])
x_right = min(bb1['x2'], bb2['x2'])
y_bottom = min(bb1['y2'], bb2['y2'])
if x_right < x_left or y_bottom < y_top:
return 0.0
# The intersection of two axis-aligned bounding boxes is always an
# axis-aligned bounding box
intersection_area = (x_right - x_left) * (y_bottom - y_top)
# compute the area of both AABBs
bb1_area = (bb1['x2'] - bb1['x1']) * (bb1['y2'] - bb1['y1'])
bb2_area = (bb2['x2'] - bb2['x1']) * (bb2['y2'] - bb2['y1'])
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = intersection_area / float(bb1_area + bb2_area - intersection_area)
assert iou >= 0.0
assert iou <= 1.0
return iou
def vectorized_iou(boxes1, boxes2):
'''
this is not a standard implementation, but to incorporate with the main function
'''
x11, y11, x12, y12 = boxes1
x21, y21, x22, y22 = boxes2
xA = np.maximum(x11, np.transpose(x21))
yA = np.maximum(y11, np.transpose(y21))
xB = np.maximum(x12, np.transpose(x22))
yB = np.maximum(y12, np.transpose(y22))
interArea = np.maximum((xB-xA+1), 0) * np.maximum((yB-yA+1), 0)
boxAArea = (x12-x11+1) * (y12-y11+1)
boxBArea = (x22-x21+1) * (y22-y21+1)
iou = interArea / (boxAArea + np.transpose(boxBArea) - interArea)
return iou
def batch_iou(a, b, epsilon=1e-5):
""" Given two arrays `a` and `b` where each row contains a bounding
box defined as a list of four numbers:
[x1,y1,x2,y2]
where:
x1,y1 represent the upper left corner
x2,y2 represent the lower right corner
It returns the Intersect of Union scores for each corresponding
pair of boxes.
Args:
a: (numpy array) each row containing [x1,y1,x2,y2] coordinates
b: (numpy array) each row containing [x1,y1,x2,y2] coordinates
epsilon: (float) Small value to prevent division by zero
Returns:
(numpy array) The Intersect of Union scores for each pair of bounding
boxes.
"""
# COORDINATES OF THE INTERSECTION BOXES
x1 = np.array([a[:, 0], b[:, 0]]).max(axis=0)
y1 = np.array([a[:, 1], b[:, 1]]).max(axis=0)
x2 = np.array([a[:, 2], b[:, 2]]).min(axis=0)
y2 = np.array([a[:, 3], b[:, 3]]).min(axis=0)
# AREAS OF OVERLAP - Area where the boxes intersect
width = (x2 - x1)
height = (y2 - y1)
# handle case where there is NO overlap
width[width < 0] = 0
height[height < 0] = 0
area_overlap = width * height
# COMBINED AREAS
area_a = (a[:, 2] - a[:, 0]) * (a[:, 3] - a[:, 1])
area_b = (b[:, 2] - b[:, 0]) * (b[:, 3] - b[:, 1])
area_combined = area_a + area_b - area_overlap
# RATIO OF AREA OF OVERLAP OVER COMBINED AREA
iou = area_overlap / (area_combined + epsilon)
return iou
def clip_iou(boxes1,boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, :2], boxes2[:, :2])
rb = torch.min(boxes1[:, 2:], boxes2[:, 2:])
wh = (rb-lt).clamp(min=0)
inter = wh[:,0]*wh[:,1]
union = area1 + area2 - inter
iou = (inter+1e-6) / (union+1e-6)
# generalized version
# iou=iou-(inter-union)/inter
return iou
def multi_iou(boxes1, boxes2):
lt = torch.max(boxes1[...,:2], boxes2[...,:2])
rb = torch.min(boxes1[...,2:], boxes2[...,2:])
wh = (rb-lt).clamp(min=0)
wh_1 = boxes1[...,2:] - boxes1[...,:2]
wh_2 = boxes2[...,2:] - boxes2[...,:2]
inter = wh[...,0] * wh[...,1]
union = wh_1[...,0] * wh_1[...,1] + wh_2[...,0] * wh_2[...,1] - inter
iou = (inter+1e-6) / (union+1e-6)
return iou
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def box_xyxy_to_cxcywh(x):
x0, y0, x1, y1 = x.unbind(-1)
b = [(x0 + x1) / 2, (y0 + y1) / 2,
(x1 - x0), (y1 - y0)]
return torch.stack(b, dim=-1)
# modified from torchvision to also return the union
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = (inter+1e-6) / (union+1e-6)
return iou, union
def generalized_box_iou(boxes1, boxes2):
"""
Generalized IoU from https://giou.stanford.edu/
The boxes should be in [x0, y0, x1, y1] format
Returns a [N, M] pairwise matrix, where N = len(boxes1)
and M = len(boxes2)
"""
# degenerate boxes gives inf / nan results
# so do an early check
assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
iou, union = box_iou(boxes1, boxes2)
lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
wh = (rb - lt).clamp(min=0) # [N,M,2]
area = wh[:, :, 0] * wh[:, :, 1]
return iou - ((area - union)+1e-6) / (area+1e-6)
def masks_to_boxes(masks):
"""Compute the bounding boxes around the provided masks
The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
Returns a [N, 4] tensors, with the boxes in xyxy format
"""
if masks.numel() == 0:
return torch.zeros((0, 4), device=masks.device)
h, w = masks.shape[-2:]
y = torch.arange(0, h, dtype=torch.float)
x = torch.arange(0, w, dtype=torch.float)
y, x = torch.meshgrid(y, x)
x_mask = (masks * x.unsqueeze(0))
x_max = x_mask.flatten(1).max(-1)[0]
x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
y_mask = (masks * y.unsqueeze(0))
y_max = y_mask.flatten(1).max(-1)[0]
y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
return torch.stack([x_min, y_min, x_max, y_max], 1)