File size: 21,109 Bytes
1e315b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
import pycpd
from builtins import super
import numbers
import numpy as np
import cv2

class EMRegistration(object):
    """
    Expectation maximization point cloud registration.
    Adapted from Pure Numpy Implementation of the Coherent Point Drift Algorithm: 
    https://github.com/siavashk/pycpd


    Attributes
    ----------
    X: numpy array
        NxD array of target points.

    Y: numpy array
        MxD array of source points.

    TY: numpy array
        MxD array of transformed source points.

    sigma2: float (positive)
        Initial variance of the Gaussian mixture model.

    N: int
        Number of target points.

    M: int
        Number of source points.

    D: int
        Dimensionality of source and target points

    iteration: int
        The current iteration throughout registration.

    max_iterations: int
        Registration will terminate once the algorithm has taken this
        many iterations.

    tolerance: float (positive)
        Registration will terminate once the difference between
        consecutive objective function values falls within this tolerance.

    w: float (between 0 and 1)
        Contribution of the uniform distribution to account for outliers.
        Valid values span 0 (inclusive) and 1 (exclusive).

    q: float
        The objective function value that represents the misalignment between source
        and target point clouds.

    diff: float (positive)
        The absolute difference between the current and previous objective function values.

    P: numpy array
        MxN array of probabilities.
        P[m, n] represents the probability that the m-th source point
        corresponds to the n-th target point.

    Pt1: numpy array
        Nx1 column array.
        Multiplication result between the transpose of P and a column vector of all 1s.

    P1: numpy array
        Mx1 column array.
        Multiplication result between P and a column vector of all 1s.

    Np: float (positive)
        The sum of all elements in P.

    """

    def __init__(self, X, Y, sigma2=None, max_iterations=None, tolerance=None, w=None, *args, **kwargs):
        if type(X) is not np.ndarray or X.ndim != 2:
            raise ValueError(
                "The target point cloud (X) must be at a 2D numpy array.")

        if type(Y) is not np.ndarray or Y.ndim != 2:
            raise ValueError(
                "The source point cloud (Y) must be a 2D numpy array.")

        if X.shape[1] != Y.shape[1]:
            raise ValueError(
                "Both point clouds need to have the same number of dimensions.")

        if sigma2 is not None and (not isinstance(sigma2, numbers.Number) or sigma2 <= 0):
            raise ValueError(
                "Expected a positive value for sigma2 instead got: {}".format(sigma2))

        if max_iterations is not None and (not isinstance(max_iterations, numbers.Number) or max_iterations < 0):
            raise ValueError(
                "Expected a positive integer for max_iterations instead got: {}".format(max_iterations))
        elif isinstance(max_iterations, numbers.Number) and not isinstance(max_iterations, int):
            warn("Received a non-integer value for max_iterations: {}. Casting to integer.".format(max_iterations))
            max_iterations = int(max_iterations)

        if tolerance is not None and (not isinstance(tolerance, numbers.Number) or tolerance < 0):
            raise ValueError(
                "Expected a positive float for tolerance instead got: {}".format(tolerance))

        if w is not None and (not isinstance(w, numbers.Number) or w < 0 or w >= 1):
            raise ValueError(
                "Expected a value between 0 (inclusive) and 1 (exclusive) for w instead got: {}".format(w))

        self.X = X
        self.Y = Y
        self.TY = Y
        self.sigma2 = initialize_sigma2(X, Y) if sigma2 is None else sigma2
        (self.N, self.D) = self.X.shape
        (self.M, _) = self.Y.shape
        self.tolerance = 0.001 if tolerance is None else tolerance
        self.w = 0.0 if w is None else w
        self.max_iterations = 100 if max_iterations is None else max_iterations
        self.iteration = 0
        self.diff = np.inf
        self.q = np.inf
        self.P = np.zeros((self.M, self.N))
        self.Pt1 = np.zeros((self.N, ))
        self.P1 = np.zeros((self.M, ))
        self.PX = np.zeros((self.M, self.D))
        self.Np = 0

    def register(self, callback=lambda **kwargs: None):
        """
        Perform the EM registration.

        Attributes
        ----------
        callback: function
            A function that will be called after each iteration.
            Can be used to visualize the registration process.
        
        Returns
        -------
        self.TY: numpy array
            MxD array of transformed source points.
        
        registration_parameters:
            Returned params dependent on registration method used. 
        """
        self.transform_point_cloud()
        while self.iteration < self.max_iterations and self.diff > self.tolerance:
            self.iterate()
            if callable(callback):
                kwargs = {'iteration': self.iteration,
                          'error': self.q, 'X': self.X, 'Y': self.TY}
                callback(**kwargs)

        return self.TY, self.get_registration_parameters()

    def get_registration_parameters(self):
        """
        Placeholder for child classes.
        """
        raise NotImplementedError(
            "Registration parameters should be defined in child classes.")

    def update_transform(self):
        """
        Placeholder for child classes.
        """
        raise NotImplementedError(
            "Updating transform parameters should be defined in child classes.")

    def transform_point_cloud(self):
        """
        Placeholder for child classes.
        """
        raise NotImplementedError(
            "Updating the source point cloud should be defined in child classes.")

    def update_variance(self):
        """
        Placeholder for child classes.
        """
        raise NotImplementedError(
            "Updating the Gaussian variance for the mixture model should be defined in child classes.")

    def iterate(self):
        """
        Perform one iteration of the EM algorithm.
        """
        self.expectation()
        self.maximization()
        self.iteration += 1

    def expectation(self):
        """
        Compute the expectation step of the EM algorithm.
        """
        P = np.sum((self.X[None, :, :] - self.TY[:, None, :])**2, axis=2) # (M, N)
        P = np.exp(-P/(2*self.sigma2))
        c = (2*np.pi*self.sigma2)**(self.D/2)*self.w/(1. - self.w)*self.M/self.N

        den = np.sum(P, axis = 0, keepdims = True) # (1, N)
        den = np.clip(den, np.finfo(self.X.dtype).eps, None) + c

        self.P = np.divide(P, den)
        self.Pt1 = np.sum(self.P, axis=0)
        self.P1 = np.sum(self.P, axis=1)
        self.Np = np.sum(self.P1)
        self.PX = np.matmul(self.P, self.X)

    def maximization(self):
        """
        Compute the maximization step of the EM algorithm.
        """
        self.update_transform()
        self.transform_point_cloud()
        self.update_variance()


class DeformableRegistration(EMRegistration):
    """
    Deformable registration.
    Adapted from Pure Numpy Implementation of the Coherent Point Drift Algorithm: 
    https://github.com/siavashk/pycpd

    Attributes
    ----------
    alpha: float (positive)
        Represents the trade-off between the goodness of maximum likelihood fit and regularization.

    beta: float(positive)
        Width of the Gaussian kernel.
    
    low_rank: bool
        Whether to use low rank approximation.
    
    num_eig: int
        Number of eigenvectors to use in lowrank calculation.
    """

    def __init__(self, alpha=None, beta=None, low_rank=False, num_eig=100, *args, **kwargs):
        super().__init__(*args, **kwargs)
        if alpha is not None and (not isinstance(alpha, numbers.Number) or alpha <= 0):
            raise ValueError(
                "Expected a positive value for regularization parameter alpha. Instead got: {}".format(alpha))

        if beta is not None and (not isinstance(beta, numbers.Number) or beta <= 0):
            raise ValueError(
                "Expected a positive value for the width of the coherent Gaussian kerenl. Instead got: {}".format(beta))

        self.alpha = 2 if alpha is None else alpha
        self.beta = 2 if beta is None else beta
        self.W = np.zeros((self.M, self.D))
        self.G = gaussian_kernel(self.Y, self.beta)
        self.low_rank = low_rank
        self.num_eig = num_eig
        if self.low_rank is True:
            self.Q, self.S = low_rank_eigen(self.G, self.num_eig)
            self.inv_S = np.diag(1./self.S)
            self.S = np.diag(self.S)
            self.E = 0.

    def update_transform(self):
        """
        Calculate a new estimate of the deformable transformation.
        See Eq. 22 of https://arxiv.org/pdf/0905.2635.pdf.

        """
        if self.low_rank is False:
            A = np.dot(np.diag(self.P1), self.G) + \
                self.alpha * self.sigma2 * np.eye(self.M)
            B = self.PX - np.dot(np.diag(self.P1), self.Y)
            self.W = np.linalg.solve(A, B)

        elif self.low_rank is True:
            # Matlab code equivalent can be found here:
            # https://github.com/markeroon/matlab-computer-vision-routines/tree/master/third_party/CoherentPointDrift
            dP = np.diag(self.P1)
            dPQ = np.matmul(dP, self.Q)
            F = self.PX - np.matmul(dP, self.Y)

            self.W = 1 / (self.alpha * self.sigma2) * (F - np.matmul(dPQ, (
                np.linalg.solve((self.alpha * self.sigma2 * self.inv_S + np.matmul(self.Q.T, dPQ)),
                                (np.matmul(self.Q.T, F))))))
            QtW = np.matmul(self.Q.T, self.W)
            self.E = self.E + self.alpha / 2 * np.trace(np.matmul(QtW.T, np.matmul(self.S, QtW)))

    def transform_point_cloud(self, Y=None):
        """
        Update a point cloud using the new estimate of the deformable transformation.

        Attributes
        ----------
        Y: numpy array, optional
            Array of points to transform - use to predict on new set of points.
            Best for predicting on new points not used to run initial registration.
                If None, self.Y used.
        
        Returns
        -------
        If Y is None, returns None.
        Otherwise, returns the transformed Y.
                

        """
        self.W[:,2:]=0
        if Y is not None:
            G = gaussian_kernel(X=Y, beta=self.beta, Y=self.Y)
            return Y + np.dot(G, self.W)
        else:
            if self.low_rank is False:
                self.TY = self.Y + np.dot(self.G, self.W)

            elif self.low_rank is True:
                self.TY = self.Y + np.matmul(self.Q, np.matmul(self.S, np.matmul(self.Q.T, self.W)))
                return


    def update_variance(self):
        """
        Update the variance of the mixture model using the new estimate of the deformable transformation.
        See the update rule for sigma2 in Eq. 23 of of https://arxiv.org/pdf/0905.2635.pdf.

        """
        qprev = self.sigma2

        # The original CPD paper does not explicitly calculate the objective functional.
        # This functional will include terms from both the negative log-likelihood and
        # the Gaussian kernel used for regularization.
        self.q = np.inf

        xPx = np.dot(np.transpose(self.Pt1), np.sum(
            np.multiply(self.X, self.X), axis=1))
        yPy = np.dot(np.transpose(self.P1),  np.sum(
            np.multiply(self.TY, self.TY), axis=1))
        trPXY = np.sum(np.multiply(self.TY, self.PX))

        self.sigma2 = (xPx - 2 * trPXY + yPy) / (self.Np * self.D)

        if self.sigma2 <= 0:
            self.sigma2 = self.tolerance / 10

        # Here we use the difference between the current and previous
        # estimate of the variance as a proxy to test for convergence.
        self.diff = np.abs(self.sigma2 - qprev)

    def get_registration_parameters(self):
        """
        Return the current estimate of the deformable transformation parameters.


        Returns
        -------
        self.G: numpy array
            Gaussian kernel matrix.

        self.W: numpy array
            Deformable transformation matrix.
        """
        return self.G, self.W



def initialize_sigma2(X, Y):
    """
    Initialize the variance (sigma2).

    param
    ----------
    X: numpy array
        NxD array of points for target.
    
    Y: numpy array
        MxD array of points for source.
    
    Returns
    -------
    sigma2: float
        Initial variance.
    """
    (N, D) = X.shape
    (M, _) = Y.shape
    diff = X[None, :, :] - Y[:, None, :]
    err = diff ** 2
    return np.sum(err) / (D * M * N)
    


def gaussian_kernel(X, beta, Y=None):
    """
    Computes a Gaussian (RBF) kernel matrix between two sets of vectors.

    :param X: A numpy array of shape (n_samples_X, n_features) representing the first set of vectors.
    :param beta: The standard deviation parameter for the Gaussian kernel. It controls the spread of the kernel.
    :param Y: An optional numpy array of shape (n_samples_Y, n_features) representing the second set of vectors.
              If None, the function computes the kernel between `X` and itself (i.e., the Gram matrix).
    :return: A numpy array of shape (n_samples_X, n_samples_Y) representing the Gaussian kernel matrix.
             Each element (i, j) in the matrix is computed as:
             `exp(-||X[i] - Y[j]||^2 / (2 * beta^2))`
    """
    
    # If Y is not provided, use X for both sets, computing the kernel matrix between X and itself
    if Y is None:
        Y = X
    
    # Compute the difference tensor between each pair of vectors in X and Y
    # The resulting shape is (n_samples_X, n_samples_Y, n_features)
    diff = X[:, None, :] - Y[None, :, :]
    
    # Square the differences element-wise
    diff = np.square(diff)
    
    # Sum the squared differences across the feature dimension (axis 2) to get squared Euclidean distances
    # The resulting shape is (n_samples_X, n_samples_Y)
    diff = np.sum(diff, axis=2)
    
    # Apply the Gaussian (RBF) kernel formula: exp(-||X[i] - Y[j]||^2 / (2 * beta^2))
    kernel_matrix = np.exp(-diff / (2 * beta**2))
    
    return kernel_matrix



def low_rank_eigen(G, num_eig):
    """
    Calculate the top `num_eig` eigenvectors and eigenvalues of a given Gaussian matrix G.
    This function is useful for dimensionality reduction or when a low-rank approximation is needed.

    :param G: A square matrix (numpy array) for which the eigen decomposition is to be performed.
    :param num_eig: The number of top eigenvectors and eigenvalues to return, based on the magnitude of eigenvalues.
    :return: A tuple containing:
             - Q: A numpy array with shape (n, num_eig) containing the top `num_eig` eigenvectors of the matrix `G`. 
               Each column in `Q` corresponds to an eigenvector.
             - S: A numpy array of shape (num_eig,) containing the top `num_eig` eigenvalues of the matrix `G`.

    """
    
    # Perform eigen decomposition on matrix G
    # `S` will contain all the eigenvalues, and `Q` will contain the corresponding eigenvectors
    S, Q = np.linalg.eigh(G)
    
    # Sort eigenvalues in descending order based on their absolute values
    # Get the indices of the top `num_eig` largest eigenvalues
    eig_indices = list(np.argsort(np.abs(S))[::-1][:num_eig])
    
    # Select the corresponding top eigenvectors based on the sorted indices
    Q = Q[:, eig_indices]  # Q now contains the top `num_eig` eigenvectors
    
    # Select the top `num_eig` eigenvalues based on the sorted indices
    S = S[eig_indices]  # S now contains the top `num_eig` eigenvalues
    
    return Q, S
    


def find_homography_translation_rotation(src_points, dst_points):
    """
    Find the homography between two sets of coordinates with only translation and rotation.

    :param src_points: A numpy array of shape (n, 2) containing source coordinates.
    :param dst_points: A numpy array of shape (n, 2) containing destination coordinates.
    :return: A 3x3 homography matrix.
    """
    # Ensure the points are in the correct shape
    assert src_points.shape == dst_points.shape
    assert src_points.shape[1] == 2

    # Calculate the centroids of the point sets
    src_centroid = np.mean(src_points, axis=0)
    dst_centroid = np.mean(dst_points, axis=0)

    # Center the points around the centroids
    centered_src_points = src_points - src_centroid
    centered_dst_points = dst_points - dst_centroid

    # Calculate the covariance matrix
    H = np.dot(centered_src_points.T, centered_dst_points)

    # Singular Value Decomposition (SVD)
    U, S, Vt = np.linalg.svd(H)

    # Calculate the rotation matrix
    R = np.dot(Vt.T, U.T)

    # Ensure a proper rotation matrix (det(R) = 1)
    if np.linalg.det(R) < 0:
        Vt[-1, :] *= -1
        R = np.dot(Vt.T, U.T)

    # Calculate the translation vector
    t = dst_centroid - np.dot(R, src_centroid)

    # Construct the homography matrix
    homography_matrix = np.eye(3)
    homography_matrix[0:2, 0:2] = R
    homography_matrix[0:2, 2] = t

    return homography_matrix



def apply_homography(coordinates, H):
    """
    Apply a 3x3 homography matrix to 2D coordinates.

    :param coordinates: A numpy array of shape (n, 2) containing 2D coordinates.
    :param H: A numpy array of shape (3, 3) representing the homography matrix.
    :return: A numpy array of shape (n, 2) with transformed coordinates.
    """
    # Convert (x, y) to homogeneous coordinates (x, y, 1)
    n = coordinates.shape[0]
    homogeneous_coords = np.hstack((coordinates, np.ones((n, 1))))

    # Apply the homography matrix
    transformed_homogeneous = np.dot(homogeneous_coords, H.T)

    # Convert back from homogeneous coordinates (x', y', w') to (x'/w', y'/w')
    transformed_coords = transformed_homogeneous[:, :2] / transformed_homogeneous[:, [2]]

    return transformed_coords



def align_tissue(ad_tar_coor, ad_src_coor, pca_comb_features, src_img, alpha=0.5):
    """
    Aligns the source coordinates to the target coordinates using Coherent Point Drift (CPD)
    registration, and applies a homography transformation to warp the source coordinates accordingly.

    :param ad_tar_coor: Numpy array of target coordinates to which the source will be aligned.
    :param ad_src_coor: Numpy array of source coordinates that will be aligned to the target.
    :param pca_comb_features: PCA-combined feature matrix used as additional features for the alignment process.
    :param src_img: Source image to be warped based on the alignment.
    :param alpha: Regularization parameter for CPD registration, default is 0.5.
    :return: 
        - cpd_coor: The new source coordinates after CPD alignment.
        - homo_coor: The source coordinates after applying the homography transformation.
        - aligned_image: The source image warped based on the homography transformation.
    """

    # Normalize target and source coordinates to the range [0, 1]
    ad_tar_coor_z = (ad_tar_coor - ad_tar_coor.min()) / (ad_tar_coor.max() - ad_tar_coor.min())
    ad_src_coor_z = (ad_src_coor - ad_src_coor.min()) / (ad_src_coor.max() - ad_src_coor.min())
    
    # Normalize PCA-combined features to the range [0, 1]
    pca_comb_features_z = (pca_comb_features - pca_comb_features.min()) / (pca_comb_features.max() - pca_comb_features.min())
    
    # Concatenate spatial and PCA-combined features for target and source
    target = np.concatenate((ad_tar_coor_z, pca_comb_features_z[:ad_tar_coor.shape[0], :2]), axis=1)
    source = np.concatenate((ad_src_coor_z, pca_comb_features_z[ad_tar_coor.shape[0]:, :2]), axis=1)
    
    # Initialize and run the CPD registration (deformable with regularization)
    reg = DeformableRegistration(X=target, Y=source, low_rank=True,
                                 alpha=alpha, 
                                 max_iterations=int(1e9), tolerance=1e-9)
    
    TY = reg.register()[0]  # TY contains the transformed source points

    # Rescale the CPD-aligned coordinates back to the original range of target coordinates
    cpd_coor = TY[:, :2] * (ad_tar_coor.max() - ad_tar_coor.min()) + ad_tar_coor.min()

    # Find homography transformation based on CPD-aligned coordinates and apply it
    h = find_homography_translation_rotation(ad_src_coor, cpd_coor)
    homo_coor = apply_homography(ad_src_coor, h)
    
    # Warp the source image using the computed homography
    aligned_image = cv2.warpPerspective(src_img, h, (src_img.shape[1], src_img.shape[0]))

    # Return the CPD-aligned coordinates, the homography-transformed coordinates, and the warped image
    return cpd_coor, homo_coor, aligned_image