File size: 21,109 Bytes
1e315b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 |
import pycpd
from builtins import super
import numbers
import numpy as np
import cv2
class EMRegistration(object):
"""
Expectation maximization point cloud registration.
Adapted from Pure Numpy Implementation of the Coherent Point Drift Algorithm:
https://github.com/siavashk/pycpd
Attributes
----------
X: numpy array
NxD array of target points.
Y: numpy array
MxD array of source points.
TY: numpy array
MxD array of transformed source points.
sigma2: float (positive)
Initial variance of the Gaussian mixture model.
N: int
Number of target points.
M: int
Number of source points.
D: int
Dimensionality of source and target points
iteration: int
The current iteration throughout registration.
max_iterations: int
Registration will terminate once the algorithm has taken this
many iterations.
tolerance: float (positive)
Registration will terminate once the difference between
consecutive objective function values falls within this tolerance.
w: float (between 0 and 1)
Contribution of the uniform distribution to account for outliers.
Valid values span 0 (inclusive) and 1 (exclusive).
q: float
The objective function value that represents the misalignment between source
and target point clouds.
diff: float (positive)
The absolute difference between the current and previous objective function values.
P: numpy array
MxN array of probabilities.
P[m, n] represents the probability that the m-th source point
corresponds to the n-th target point.
Pt1: numpy array
Nx1 column array.
Multiplication result between the transpose of P and a column vector of all 1s.
P1: numpy array
Mx1 column array.
Multiplication result between P and a column vector of all 1s.
Np: float (positive)
The sum of all elements in P.
"""
def __init__(self, X, Y, sigma2=None, max_iterations=None, tolerance=None, w=None, *args, **kwargs):
if type(X) is not np.ndarray or X.ndim != 2:
raise ValueError(
"The target point cloud (X) must be at a 2D numpy array.")
if type(Y) is not np.ndarray or Y.ndim != 2:
raise ValueError(
"The source point cloud (Y) must be a 2D numpy array.")
if X.shape[1] != Y.shape[1]:
raise ValueError(
"Both point clouds need to have the same number of dimensions.")
if sigma2 is not None and (not isinstance(sigma2, numbers.Number) or sigma2 <= 0):
raise ValueError(
"Expected a positive value for sigma2 instead got: {}".format(sigma2))
if max_iterations is not None and (not isinstance(max_iterations, numbers.Number) or max_iterations < 0):
raise ValueError(
"Expected a positive integer for max_iterations instead got: {}".format(max_iterations))
elif isinstance(max_iterations, numbers.Number) and not isinstance(max_iterations, int):
warn("Received a non-integer value for max_iterations: {}. Casting to integer.".format(max_iterations))
max_iterations = int(max_iterations)
if tolerance is not None and (not isinstance(tolerance, numbers.Number) or tolerance < 0):
raise ValueError(
"Expected a positive float for tolerance instead got: {}".format(tolerance))
if w is not None and (not isinstance(w, numbers.Number) or w < 0 or w >= 1):
raise ValueError(
"Expected a value between 0 (inclusive) and 1 (exclusive) for w instead got: {}".format(w))
self.X = X
self.Y = Y
self.TY = Y
self.sigma2 = initialize_sigma2(X, Y) if sigma2 is None else sigma2
(self.N, self.D) = self.X.shape
(self.M, _) = self.Y.shape
self.tolerance = 0.001 if tolerance is None else tolerance
self.w = 0.0 if w is None else w
self.max_iterations = 100 if max_iterations is None else max_iterations
self.iteration = 0
self.diff = np.inf
self.q = np.inf
self.P = np.zeros((self.M, self.N))
self.Pt1 = np.zeros((self.N, ))
self.P1 = np.zeros((self.M, ))
self.PX = np.zeros((self.M, self.D))
self.Np = 0
def register(self, callback=lambda **kwargs: None):
"""
Perform the EM registration.
Attributes
----------
callback: function
A function that will be called after each iteration.
Can be used to visualize the registration process.
Returns
-------
self.TY: numpy array
MxD array of transformed source points.
registration_parameters:
Returned params dependent on registration method used.
"""
self.transform_point_cloud()
while self.iteration < self.max_iterations and self.diff > self.tolerance:
self.iterate()
if callable(callback):
kwargs = {'iteration': self.iteration,
'error': self.q, 'X': self.X, 'Y': self.TY}
callback(**kwargs)
return self.TY, self.get_registration_parameters()
def get_registration_parameters(self):
"""
Placeholder for child classes.
"""
raise NotImplementedError(
"Registration parameters should be defined in child classes.")
def update_transform(self):
"""
Placeholder for child classes.
"""
raise NotImplementedError(
"Updating transform parameters should be defined in child classes.")
def transform_point_cloud(self):
"""
Placeholder for child classes.
"""
raise NotImplementedError(
"Updating the source point cloud should be defined in child classes.")
def update_variance(self):
"""
Placeholder for child classes.
"""
raise NotImplementedError(
"Updating the Gaussian variance for the mixture model should be defined in child classes.")
def iterate(self):
"""
Perform one iteration of the EM algorithm.
"""
self.expectation()
self.maximization()
self.iteration += 1
def expectation(self):
"""
Compute the expectation step of the EM algorithm.
"""
P = np.sum((self.X[None, :, :] - self.TY[:, None, :])**2, axis=2) # (M, N)
P = np.exp(-P/(2*self.sigma2))
c = (2*np.pi*self.sigma2)**(self.D/2)*self.w/(1. - self.w)*self.M/self.N
den = np.sum(P, axis = 0, keepdims = True) # (1, N)
den = np.clip(den, np.finfo(self.X.dtype).eps, None) + c
self.P = np.divide(P, den)
self.Pt1 = np.sum(self.P, axis=0)
self.P1 = np.sum(self.P, axis=1)
self.Np = np.sum(self.P1)
self.PX = np.matmul(self.P, self.X)
def maximization(self):
"""
Compute the maximization step of the EM algorithm.
"""
self.update_transform()
self.transform_point_cloud()
self.update_variance()
class DeformableRegistration(EMRegistration):
"""
Deformable registration.
Adapted from Pure Numpy Implementation of the Coherent Point Drift Algorithm:
https://github.com/siavashk/pycpd
Attributes
----------
alpha: float (positive)
Represents the trade-off between the goodness of maximum likelihood fit and regularization.
beta: float(positive)
Width of the Gaussian kernel.
low_rank: bool
Whether to use low rank approximation.
num_eig: int
Number of eigenvectors to use in lowrank calculation.
"""
def __init__(self, alpha=None, beta=None, low_rank=False, num_eig=100, *args, **kwargs):
super().__init__(*args, **kwargs)
if alpha is not None and (not isinstance(alpha, numbers.Number) or alpha <= 0):
raise ValueError(
"Expected a positive value for regularization parameter alpha. Instead got: {}".format(alpha))
if beta is not None and (not isinstance(beta, numbers.Number) or beta <= 0):
raise ValueError(
"Expected a positive value for the width of the coherent Gaussian kerenl. Instead got: {}".format(beta))
self.alpha = 2 if alpha is None else alpha
self.beta = 2 if beta is None else beta
self.W = np.zeros((self.M, self.D))
self.G = gaussian_kernel(self.Y, self.beta)
self.low_rank = low_rank
self.num_eig = num_eig
if self.low_rank is True:
self.Q, self.S = low_rank_eigen(self.G, self.num_eig)
self.inv_S = np.diag(1./self.S)
self.S = np.diag(self.S)
self.E = 0.
def update_transform(self):
"""
Calculate a new estimate of the deformable transformation.
See Eq. 22 of https://arxiv.org/pdf/0905.2635.pdf.
"""
if self.low_rank is False:
A = np.dot(np.diag(self.P1), self.G) + \
self.alpha * self.sigma2 * np.eye(self.M)
B = self.PX - np.dot(np.diag(self.P1), self.Y)
self.W = np.linalg.solve(A, B)
elif self.low_rank is True:
# Matlab code equivalent can be found here:
# https://github.com/markeroon/matlab-computer-vision-routines/tree/master/third_party/CoherentPointDrift
dP = np.diag(self.P1)
dPQ = np.matmul(dP, self.Q)
F = self.PX - np.matmul(dP, self.Y)
self.W = 1 / (self.alpha * self.sigma2) * (F - np.matmul(dPQ, (
np.linalg.solve((self.alpha * self.sigma2 * self.inv_S + np.matmul(self.Q.T, dPQ)),
(np.matmul(self.Q.T, F))))))
QtW = np.matmul(self.Q.T, self.W)
self.E = self.E + self.alpha / 2 * np.trace(np.matmul(QtW.T, np.matmul(self.S, QtW)))
def transform_point_cloud(self, Y=None):
"""
Update a point cloud using the new estimate of the deformable transformation.
Attributes
----------
Y: numpy array, optional
Array of points to transform - use to predict on new set of points.
Best for predicting on new points not used to run initial registration.
If None, self.Y used.
Returns
-------
If Y is None, returns None.
Otherwise, returns the transformed Y.
"""
self.W[:,2:]=0
if Y is not None:
G = gaussian_kernel(X=Y, beta=self.beta, Y=self.Y)
return Y + np.dot(G, self.W)
else:
if self.low_rank is False:
self.TY = self.Y + np.dot(self.G, self.W)
elif self.low_rank is True:
self.TY = self.Y + np.matmul(self.Q, np.matmul(self.S, np.matmul(self.Q.T, self.W)))
return
def update_variance(self):
"""
Update the variance of the mixture model using the new estimate of the deformable transformation.
See the update rule for sigma2 in Eq. 23 of of https://arxiv.org/pdf/0905.2635.pdf.
"""
qprev = self.sigma2
# The original CPD paper does not explicitly calculate the objective functional.
# This functional will include terms from both the negative log-likelihood and
# the Gaussian kernel used for regularization.
self.q = np.inf
xPx = np.dot(np.transpose(self.Pt1), np.sum(
np.multiply(self.X, self.X), axis=1))
yPy = np.dot(np.transpose(self.P1), np.sum(
np.multiply(self.TY, self.TY), axis=1))
trPXY = np.sum(np.multiply(self.TY, self.PX))
self.sigma2 = (xPx - 2 * trPXY + yPy) / (self.Np * self.D)
if self.sigma2 <= 0:
self.sigma2 = self.tolerance / 10
# Here we use the difference between the current and previous
# estimate of the variance as a proxy to test for convergence.
self.diff = np.abs(self.sigma2 - qprev)
def get_registration_parameters(self):
"""
Return the current estimate of the deformable transformation parameters.
Returns
-------
self.G: numpy array
Gaussian kernel matrix.
self.W: numpy array
Deformable transformation matrix.
"""
return self.G, self.W
def initialize_sigma2(X, Y):
"""
Initialize the variance (sigma2).
param
----------
X: numpy array
NxD array of points for target.
Y: numpy array
MxD array of points for source.
Returns
-------
sigma2: float
Initial variance.
"""
(N, D) = X.shape
(M, _) = Y.shape
diff = X[None, :, :] - Y[:, None, :]
err = diff ** 2
return np.sum(err) / (D * M * N)
def gaussian_kernel(X, beta, Y=None):
"""
Computes a Gaussian (RBF) kernel matrix between two sets of vectors.
:param X: A numpy array of shape (n_samples_X, n_features) representing the first set of vectors.
:param beta: The standard deviation parameter for the Gaussian kernel. It controls the spread of the kernel.
:param Y: An optional numpy array of shape (n_samples_Y, n_features) representing the second set of vectors.
If None, the function computes the kernel between `X` and itself (i.e., the Gram matrix).
:return: A numpy array of shape (n_samples_X, n_samples_Y) representing the Gaussian kernel matrix.
Each element (i, j) in the matrix is computed as:
`exp(-||X[i] - Y[j]||^2 / (2 * beta^2))`
"""
# If Y is not provided, use X for both sets, computing the kernel matrix between X and itself
if Y is None:
Y = X
# Compute the difference tensor between each pair of vectors in X and Y
# The resulting shape is (n_samples_X, n_samples_Y, n_features)
diff = X[:, None, :] - Y[None, :, :]
# Square the differences element-wise
diff = np.square(diff)
# Sum the squared differences across the feature dimension (axis 2) to get squared Euclidean distances
# The resulting shape is (n_samples_X, n_samples_Y)
diff = np.sum(diff, axis=2)
# Apply the Gaussian (RBF) kernel formula: exp(-||X[i] - Y[j]||^2 / (2 * beta^2))
kernel_matrix = np.exp(-diff / (2 * beta**2))
return kernel_matrix
def low_rank_eigen(G, num_eig):
"""
Calculate the top `num_eig` eigenvectors and eigenvalues of a given Gaussian matrix G.
This function is useful for dimensionality reduction or when a low-rank approximation is needed.
:param G: A square matrix (numpy array) for which the eigen decomposition is to be performed.
:param num_eig: The number of top eigenvectors and eigenvalues to return, based on the magnitude of eigenvalues.
:return: A tuple containing:
- Q: A numpy array with shape (n, num_eig) containing the top `num_eig` eigenvectors of the matrix `G`.
Each column in `Q` corresponds to an eigenvector.
- S: A numpy array of shape (num_eig,) containing the top `num_eig` eigenvalues of the matrix `G`.
"""
# Perform eigen decomposition on matrix G
# `S` will contain all the eigenvalues, and `Q` will contain the corresponding eigenvectors
S, Q = np.linalg.eigh(G)
# Sort eigenvalues in descending order based on their absolute values
# Get the indices of the top `num_eig` largest eigenvalues
eig_indices = list(np.argsort(np.abs(S))[::-1][:num_eig])
# Select the corresponding top eigenvectors based on the sorted indices
Q = Q[:, eig_indices] # Q now contains the top `num_eig` eigenvectors
# Select the top `num_eig` eigenvalues based on the sorted indices
S = S[eig_indices] # S now contains the top `num_eig` eigenvalues
return Q, S
def find_homography_translation_rotation(src_points, dst_points):
"""
Find the homography between two sets of coordinates with only translation and rotation.
:param src_points: A numpy array of shape (n, 2) containing source coordinates.
:param dst_points: A numpy array of shape (n, 2) containing destination coordinates.
:return: A 3x3 homography matrix.
"""
# Ensure the points are in the correct shape
assert src_points.shape == dst_points.shape
assert src_points.shape[1] == 2
# Calculate the centroids of the point sets
src_centroid = np.mean(src_points, axis=0)
dst_centroid = np.mean(dst_points, axis=0)
# Center the points around the centroids
centered_src_points = src_points - src_centroid
centered_dst_points = dst_points - dst_centroid
# Calculate the covariance matrix
H = np.dot(centered_src_points.T, centered_dst_points)
# Singular Value Decomposition (SVD)
U, S, Vt = np.linalg.svd(H)
# Calculate the rotation matrix
R = np.dot(Vt.T, U.T)
# Ensure a proper rotation matrix (det(R) = 1)
if np.linalg.det(R) < 0:
Vt[-1, :] *= -1
R = np.dot(Vt.T, U.T)
# Calculate the translation vector
t = dst_centroid - np.dot(R, src_centroid)
# Construct the homography matrix
homography_matrix = np.eye(3)
homography_matrix[0:2, 0:2] = R
homography_matrix[0:2, 2] = t
return homography_matrix
def apply_homography(coordinates, H):
"""
Apply a 3x3 homography matrix to 2D coordinates.
:param coordinates: A numpy array of shape (n, 2) containing 2D coordinates.
:param H: A numpy array of shape (3, 3) representing the homography matrix.
:return: A numpy array of shape (n, 2) with transformed coordinates.
"""
# Convert (x, y) to homogeneous coordinates (x, y, 1)
n = coordinates.shape[0]
homogeneous_coords = np.hstack((coordinates, np.ones((n, 1))))
# Apply the homography matrix
transformed_homogeneous = np.dot(homogeneous_coords, H.T)
# Convert back from homogeneous coordinates (x', y', w') to (x'/w', y'/w')
transformed_coords = transformed_homogeneous[:, :2] / transformed_homogeneous[:, [2]]
return transformed_coords
def align_tissue(ad_tar_coor, ad_src_coor, pca_comb_features, src_img, alpha=0.5):
"""
Aligns the source coordinates to the target coordinates using Coherent Point Drift (CPD)
registration, and applies a homography transformation to warp the source coordinates accordingly.
:param ad_tar_coor: Numpy array of target coordinates to which the source will be aligned.
:param ad_src_coor: Numpy array of source coordinates that will be aligned to the target.
:param pca_comb_features: PCA-combined feature matrix used as additional features for the alignment process.
:param src_img: Source image to be warped based on the alignment.
:param alpha: Regularization parameter for CPD registration, default is 0.5.
:return:
- cpd_coor: The new source coordinates after CPD alignment.
- homo_coor: The source coordinates after applying the homography transformation.
- aligned_image: The source image warped based on the homography transformation.
"""
# Normalize target and source coordinates to the range [0, 1]
ad_tar_coor_z = (ad_tar_coor - ad_tar_coor.min()) / (ad_tar_coor.max() - ad_tar_coor.min())
ad_src_coor_z = (ad_src_coor - ad_src_coor.min()) / (ad_src_coor.max() - ad_src_coor.min())
# Normalize PCA-combined features to the range [0, 1]
pca_comb_features_z = (pca_comb_features - pca_comb_features.min()) / (pca_comb_features.max() - pca_comb_features.min())
# Concatenate spatial and PCA-combined features for target and source
target = np.concatenate((ad_tar_coor_z, pca_comb_features_z[:ad_tar_coor.shape[0], :2]), axis=1)
source = np.concatenate((ad_src_coor_z, pca_comb_features_z[ad_tar_coor.shape[0]:, :2]), axis=1)
# Initialize and run the CPD registration (deformable with regularization)
reg = DeformableRegistration(X=target, Y=source, low_rank=True,
alpha=alpha,
max_iterations=int(1e9), tolerance=1e-9)
TY = reg.register()[0] # TY contains the transformed source points
# Rescale the CPD-aligned coordinates back to the original range of target coordinates
cpd_coor = TY[:, :2] * (ad_tar_coor.max() - ad_tar_coor.min()) + ad_tar_coor.min()
# Find homography transformation based on CPD-aligned coordinates and apply it
h = find_homography_translation_rotation(ad_src_coor, cpd_coor)
homo_coor = apply_homography(ad_src_coor, h)
# Warp the source image using the computed homography
aligned_image = cv2.warpPerspective(src_img, h, (src_img.shape[1], src_img.shape[0]))
# Return the CPD-aligned coordinates, the homography-transformed coordinates, and the warped image
return cpd_coor, homo_coor, aligned_image
|