File size: 5,309 Bytes
7155cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |

# [latex2sympy2](https://github.com/OrangeX4/latex2sympy)
## About
`latex2sympy2` parses **LaTeX math expressions** and converts it into the equivalent **SymPy form**. The latex2sympy2 is adapted from [augustt198/latex2sympy](https://github.com/augustt198/latex2sympy) and [purdue-tlt / latex2sympy](https://github.com/purdue-tlt/latex2sympy).
This project is a part of a VS Code extension called [Latex Sympy Calculator](https://marketplace.visualstudio.com/items?itemName=OrangeX4.latex-sympy-calculator). It is designed for providing people writing in latex or markdown a ability to calculate something when writing math expression.
[ANTLR](http://www.antlr.org/) is used to generate the parser.
## Features
* **Arithmetic:** Add (+), Sub (-), Dot Mul (·), Cross Mul (×), Frac (/), Power (^), Abs (|x|), Sqrt (√), etc...
* **Alphabet:** a - z, A - Z, α - ω, Subscript (x_1), Accent Bar(ā), etc...
* **Common Functions:** gcd, lcm, floor, ceil, max, min, log, ln, exp, sin, cos, tan, csc, sec, cot, arcsin, sinh, arsinh, etc...
* **Funcion Symbol:** f(x), f(x-1,), g(x,y), etc...
* **Calculous:** Limit ($lim_{n\to\infty}$), Derivation ($\frac{d}{dx}(x^2+x)$), Integration ($\int xdx$), etc...
* **Linear Algebra:** Matrix, Determinant, Transpose, Inverse, Elementary Transformation, etc...
* **Other:** Binomial...
**NOTICE:** It will do some irreversible calculations when converting determinants, transposed matrixes and elementary transformations...
## Installation
```
pip install latex2sympy2
```
**Requirements:** `sympy` and `antlr4-python3-runtime` packages.
## Usage
### Basic
In Python:
```python
from latex2sympy2 import latex2sympy, latex2latex
tex = r"\frac{d}{dx}(x^{2}+x)"
# Or you can use '\mathrm{d}' to replace 'd'
latex2sympy(tex)
# => "Derivative(x**2 + x, x)"
latex2latex(tex)
# => "2 x + 1"
```
### Examples
|LaTeX|Converted SymPy|Calculated Latex|
|-----|-----|---------------|
|`x^{3}` $x^{3}$| `x**3`|`x^{3}` $x^{3}$|
|`\frac{d}{dx} tx` $\frac{d}{dx}tx$|`Derivative(x*t, x)`|`t` $t$|
|`\sum_{i = 1}^{n} i` $\sum_{i = 1}^{n} i$|`Sum(i, (i, 1, n))`|`\frac{n \left(n + 1\right)}{2}` $\frac{n \left(n + 1\right)}{2}$|
|`\int_{a}^{b} \frac{dt}{t}`|`Integral(1/t, (t, a, b))`|`-\log{(a)} + \log{(b)}` $-\log{(a)} + \log{(b)}$|
|`(2x^3 - x + z)|_{x=3}` $(2x^3 - x + z)\|_{x=3}$|`z + 51`| `z + 51` $z + 51$ |
If you want to read the math formula, you can click [GitNotes](https://notes.orangex4.cool/?git=github&github=OrangeX4/latex2sympy).
### Solve Equation
``` latex
# Before
x + y = 1
# After
[ y = 1 - x, \ x = 1 - y]
```
### Eval At
``` latex
# Before
(x+2)|_{x=y+1}
# After
y + 3
```
### Matrix
#### Identity matrix
```
tex = r"\bm{I}_3"
latex2sympy(tex)
# => "Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])"
```
#### Determinant
``` python
from latex2sympy2 import latex2sympy
tex = r"\begin{vmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{vmatrix}"
latex2sympy(tex)
# => "x^{3}"
```
#### Transpose
``` python
from latex2sympy2 import latex2sympy
tex = r"\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^T"
# Or you can use "\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix}'"
latex2sympy(tex)
# => "Matrix([[1, 4, 7], [2, 5, 8], [3, 6, 9]])"
```
#### Elementary Transformation
``` python
from latex2sympy2 import latex2sympy
matrix = r'''
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{pmatrix}
'''
# Scale the row with grammar "\xrightarrow{kr_n}"
tex = matrix + r'\xrightarrow{3r_1}'
latex2sympy(tex)
# => "Matrix([[3, 6, 9], [4, 5, 6], [7, 8, 9]])"
# Swap the cols with grammar "\xrightarrow{c_1<=>c_2}"
# Of course, you can use "\leftrightarrow" to replace "<=>"
tex = matrix + r'\xrightarrow{c_1<=>c_2}'
latex2sympy(tex)
# => "Matrix([[2, 1, 3], [5, 4, 6], [8, 7, 9]])"
# Scale the second row and add it to the first row
# with grammar "\xrightarrow{r_1+kr_2}"
tex = matrix + r'\xrightarrow{r_1+kr_2}'
latex2sympy(tex)
# => "Matrix([[4*k + 1, 5*k + 2, 6*k + 3], [4, 5, 6], [7, 8, 9]])"
# You can compose the transform with comma ","
# and grammar "\xrightarrow[4r_3]{2r_1, 3r_2}"
# Remember the priority of "{}" is higher than "[]"
tex = matrix + r'\xrightarrow[4r_3]{2r_1, 3r_2}'
latex2sympy(tex)
# => "Matrix([[2, 4, 6], [12, 15, 18], [28, 32, 36]])"
```
### Variances
``` python
from latex2sympy2 import latex2sympy, variances, var, set_variances
# Assign x a value of 1
latex2sympy(r"x = 1")
# Assign x a matrix symbol with dimension of n x m
latex2sympy(r"x \in \mathbb{R}^{n \times m}")
# Calculate x + y
latex2sympy(r"x + y")
# => "y + 1"
# Get all variances
print(variances)
# => "{x: 1}"
# Get variance of "x"
print(var["x"])
# => "1"
# Reset all variances
set_variances({})
latex2sympy(r"x + y")
# => "x + y"
```
### Complex Number Support
``` python
from latex2sympy2 import set_real
set_real(False)
```
## Contributing
If you want to add a new grammar, you can fork the code from [OrangeX4/latex2sympy](https://github.com/OrangeX4/latex2sympy).
* To modify parser grammar, view the existing structure in `PS.g4`.
* To modify the action associated with each grammar, look into `latex2sympy.py`.
Contributors are welcome! Feel free to open a pull request or an issue.
|