File size: 10,629 Bytes
39d1e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
"""Geometry utility helpers for alphageometry modules.



This module provides small, well-tested, dependency-free helpers for

polygons and triangulation used by the demo and visualizer. The code is

kept intentionally simple and documented so it is easy to unit-test.

"""

from __future__ import annotations

import math
from typing import List, Sequence, Tuple

Point = Tuple[float, float]
Triangle = Tuple[int, int, int]


def polygon_area(points: Sequence[Point]) -> float:
    """Return the (unsigned) area of a polygon using the shoelace formula.



    Points may be in any order (clockwise or counter-clockwise).

    """
    pts = list(points)
    if len(pts) < 3:
        return 0.0
    a = 0.0
    for i in range(len(pts)):
        x1, y1 = pts[i]
        x2, y2 = pts[(i + 1) % len(pts)]
        a += x1 * y2 - y1 * x2
    return 0.5 * abs(a)


def polygon_centroid(points: Sequence[Point]) -> Point:
    """Compute centroid (average of vertices) of a polygon.



    This is the simple arithmetic centroid (not the area-weighted polygon

    centroid). It's sufficient for lightweight visual placement.

    """
    pts = list(points)
    if not pts:
        return (0.0, 0.0)
    sx = sum(p[0] for p in pts)
    sy = sum(p[1] for p in pts)
    n = len(pts)
    return (sx / n, sy / n)


def _cross(a: Point, b: Point, c: Point) -> float:
    """Return cross product (b - a) x (c - b).



    Positive for counter-clockwise turn, negative for clockwise.

    """
    return (b[0] - a[0]) * (c[1] - b[1]) - (b[1] - a[1]) * (c[0] - b[0])


def point_in_triangle(pt: Point, a: Point, b: Point, c: Point) -> bool:
    """Return True if pt lies inside triangle abc (including edges).



    Uses barycentric / sign tests which are robust for our demo floats.

    """
    # Compute barycentric coordinates
    v0 = (c[0] - a[0], c[1] - a[1])
    v1 = (b[0] - a[0], b[1] - a[1])
    v2 = (pt[0] - a[0], pt[1] - a[1])
    dot00 = v0[0] * v0[0] + v0[1] * v0[1]
    dot01 = v0[0] * v1[0] + v0[1] * v1[1]
    dot02 = v0[0] * v2[0] + v0[1] * v2[1]
    dot11 = v1[0] * v1[0] + v1[1] * v1[1]
    dot12 = v1[0] * v2[0] + v1[1] * v2[1]
    denom = dot00 * dot11 - dot01 * dot01
    if denom == 0:
        # degenerate triangle
        return False
    u = (dot11 * dot02 - dot01 * dot12) / denom
    v = (dot00 * dot12 - dot01 * dot02) / denom
    return u >= -1e-12 and v >= -1e-12 and (u + v) <= 1 + 1e-12


def earclip_triangulate(poly: Sequence[Point]) -> List[Triangle]:
    """Triangulate a simple polygon (no self-intersections) using ear clipping.



    Returns a list of triangles as tuples of vertex indices into the original

    polygon list. The polygon is not modified.

    """
    pts = list(poly)
    n = len(pts)
    if n < 3:
        return []
    # Work on indices to avoid copying points repeatedly
    idx = list(range(n))

    def is_convex(i_prev: int, i_curr: int, i_next: int) -> bool:
        a, b, c = pts[i_prev], pts[i_curr], pts[i_next]
        return _cross(a, b, c) > 0

    triangles: List[Triangle] = []
    safety = 0
    # Continue until only one triangle remains
    while len(idx) > 3 and safety < 10_000:
        safety += 1
        ear_found = False
        for k in range(len(idx)):
            i_prev = idx[(k - 1) % len(idx)]
            i_curr = idx[k]
            i_next = idx[(k + 1) % len(idx)]
            if not is_convex(i_prev, i_curr, i_next):
                continue
            a, b, c = pts[i_prev], pts[i_curr], pts[i_next]
            # ensure no other point is inside triangle abc
            any_inside = False
            for j in idx:
                if j in (i_prev, i_curr, i_next):
                    continue
                if point_in_triangle(pts[j], a, b, c):
                    any_inside = True
                    break
            if any_inside:
                continue
            # ear found
            triangles.append((i_prev, i_curr, i_next))
            idx.pop(k)
            ear_found = True
            break
        if not ear_found:
            # polygon might be degenerate; abort to avoid infinite loop
            break
    if len(idx) == 3:
        triangles.append((idx[0], idx[1], idx[2]))
    return triangles


def rdp_simplify(points: Sequence[Point], epsilon: float) -> List[Point]:
    """Ramer-Douglas-Peucker line simplification for polyline/polygon vertices.



    If the input is a closed polygon (first==last), the output will also be

    closed when epsilon is < small value. The algorithm works on open lists; for

    closed polygons callers can treat the ring appropriately.

    """
    pts = list(points)
    n = len(pts)
    if n < 3:
        return pts

    def _perp_dist(pt: Point, a: Point, b: Point) -> float:
        # distance from pt to line ab
        dx = b[0] - a[0]
        dy = b[1] - a[1]
        if dx == 0 and dy == 0:
            return math.hypot(pt[0] - a[0], pt[1] - a[1])
        t = ((pt[0] - a[0]) * dx + (pt[1] - a[1]) * dy) / (dx * dx + dy * dy)
        projx = a[0] + t * dx
        projy = a[1] + t * dy
        return math.hypot(pt[0] - projx, pt[1] - projy)

    def _rdp(seq: List[Point]) -> List[Point]:
        if len(seq) < 3:
            return seq[:]
        a = seq[0]
        b = seq[-1]
        maxd = 0.0
        idx = 0
        for i in range(1, len(seq) - 1):
            d = _perp_dist(seq[i], a, b)
            if d > maxd:
                maxd = d
                idx = i
        if maxd > epsilon:
            left = _rdp(seq[: idx + 1])
            right = _rdp(seq[idx:])
            return left[:-1] + right
        else:
            return [a, b]

    return _rdp(pts)


def bounding_box(points: Sequence[Point]) -> Tuple[Point, Point]:
    pts = list(points)
    if not pts:
        return (0.0, 0.0), (0.0, 0.0)
    minx = min(p[0] for p in pts)
    maxx = max(p[0] for p in pts)
    miny = min(p[1] for p in pts)
    maxy = max(p[1] for p in pts)
    return (minx, miny), (maxx, maxy)


def polygon_is_ccw(points: Sequence[Point]) -> bool:
    """Return True if polygon vertices are ordered counter-clockwise.



    Uses the signed shoelace area: positive means counter-clockwise.

    """
    pts = list(points)
    if len(pts) < 3:
        return True
    a = 0.0
    for i in range(len(pts)):
        x1, y1 = pts[i]
        x2, y2 = pts[(i + 1) % len(pts)]
        a += x1 * y2 - y1 * x2
    return a > 0


def point_on_segment(p: Point, a: Point, b: Point, eps: float = 1e-12) -> bool:
    """Return True if point p lies on the segment ab (including endpoints)."""
    (px, py), (ax, ay), (bx, by) = p, a, b
    # collinear check via cross and bounding box check
    cross = (py - ay) * (bx - ax) - (px - ax) * (by - ay)
    if abs(cross) > eps:
        return False
    # between check
    dot = (px - ax) * (px - bx) + (py - ay) * (py - by)
    return dot <= eps


def point_in_polygon(pt: Point, poly: Sequence[Point]) -> bool:
    """Winding-number style point-in-polygon test (True if inside or on edge).



    Robust for simple polygons and includes points on the boundary.

    """
    x, y = pt
    wn = 0
    n = len(poly)
    for i in range(n):
        x0, y0 = poly[i]
        x1, y1 = poly[(i + 1) % n]
        # check if point on edge
        if point_on_segment(pt, (x0, y0), (x1, y1)):
            return True
        if y0 <= y:
            if y1 > y and _cross((x0, y0), (x1, y1), (x, y)) > 0:
                wn += 1
        else:
            if y1 <= y and _cross((x0, y0), (x1, y1), (x, y)) < 0:
                wn -= 1
    return wn != 0


def convex_hull(points: Sequence[Point]) -> List[Point]:
    """Compute convex hull of a set of points using Graham scan.



    Returns the vertices of the convex hull in counter-clockwise order. For

    fewer than 3 unique points the function returns the sorted unique list.

    """
    pts = sorted(set(points))
    if len(pts) <= 1:
        return list(pts)

    def _cross(o: Point, a: Point, b: Point) -> float:
        return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0])

    lower: List[Point] = []
    for p in pts:
        while len(lower) >= 2 and _cross(lower[-2], lower[-1], p) <= 0:
            lower.pop()
        lower.append(p)

    upper: List[Point] = []
    for p in reversed(pts):
        while len(upper) >= 2 and _cross(upper[-2], upper[-1], p) <= 0:
            upper.pop()
        upper.append(p)

    # Concatenate lower and upper, omit last point of each because it repeats
    hull = lower[:-1] + upper[:-1]
    return hull


def rdp_simplify_closed(points: Sequence[Point], epsilon: float) -> List[Point]:
    """Simplify a closed polygon ring using RDP and return a closed ring.



    The returned list will have first point != last point (open ring) but the

    consumer can append the first to close it if desired.

    """
    pts = list(points)
    if not pts:
        return []
    # If ring is closed (first == last), remove last for processing
    closed = pts[0] == pts[-1]
    if closed:
        pts = pts[:-1]
    simplified = rdp_simplify(pts, epsilon)
    # If simplified reduced to 2 points for a polygon, keep at least 3 by
    # returning the original small ring
    if len(simplified) < 3:
        return pts
    return simplified


def safe_earclip_triangulate(poly: Sequence[Point]) -> List[Triangle]:
    """Wrapper around earclip_triangulate that ensures consistent orientation

    and returns triangles as indices into the original polygon list.

    """
    pts = list(poly)
    if not pts:
        return []
    # Ensure polygon is counter-clockwise for our earclip implementation
    if not polygon_is_ccw(pts):
        pts = list(reversed(pts))
        reversed_map = True
    else:
        reversed_map = False
    tris = earclip_triangulate(pts)
    # Map indices back to original order if we reversed
    if reversed_map:
        # when reversed, index i in pts corresponds to original index (n-1-i)
        n = len(pts)
        mapped = [tuple(n - 1 - idx for idx in tri) for tri in tris]
        return mapped
    return tris
__all__ = [
    "Point",
    "Triangle",
    "polygon_area",
    "polygon_centroid",
    "polygon_is_ccw",
    "point_in_triangle",
    "point_in_polygon",
    "earclip_triangulate",
    "safe_earclip_triangulate",
    "rdp_simplify",
    "rdp_simplify_closed",
    "bounding_box",
    "convex_hull",
]