File size: 21,368 Bytes
bb85593 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 |
"""Genesis engine: lightweight geometry, graph and procedural generators.
This module provides a compact but useful set of utilities for 2D vector
math, simple graph and triangular-mesh representations, an L-system based
generator for procedural structures, and tiny IO/export helpers (OBJ/JSON).
The code is dependency-free (only Python stdlib) and intended to be safe to
add to the repository as a self-contained demonstration of geometry and
generation primitives.
Key pieces:
- Vector2D: small 2D vector helper
- Graph: node/edge graph with simple layout support
- Mesh: triangular mesh builder and simple Delaunay-like splitter (not
production-grade but useful for small demos)
- LSystem: compact L-system interpreter for procedural geometry
- exporters: write OBJ and JSON representations
The module includes a small CLI demo when executed directly.
"""
from __future__ import annotations
import json
import math
import random
from dataclasses import dataclass, field
from typing import Dict, Iterable, List, Optional, Sequence, Tuple
##########################
# Vector utilities
##########################
@dataclass(frozen=True)
class Vector2D:
x: float
y: float
def __add__(self, other: Vector2D) -> Vector2D:
return Vector2D(self.x + other.x, self.y + other.y)
def __sub__(self, other: Vector2D) -> Vector2D:
return Vector2D(self.x - other.x, self.y - other.y)
def __mul__(self, s: float) -> Vector2D:
return Vector2D(self.x * s, self.y * s)
def dot(self, other: Vector2D) -> float:
return self.x * other.x + self.y * other.y
def cross(self, other: Vector2D) -> float:
return self.x * other.y - self.y * other.x
def length(self) -> float:
return math.hypot(self.x, self.y)
def normalized(self) -> Vector2D:
l = self.length()
if l == 0:
return Vector2D(0.0, 0.0)
return Vector2D(self.x / l, self.y / l)
def rotate(self, ang_rad: float) -> Vector2D:
c = math.cos(ang_rad)
s = math.sin(ang_rad)
return Vector2D(self.x * c - self.y * s, self.x * s + self.y * c)
def tuple(self) -> Tuple[float, float]:
return (self.x, self.y)
def polygon_area(points: Sequence[Vector2D]) -> float:
if len(points) < 3:
return 0.0
a = 0.0
for i in range(len(points)):
x1, y1 = points[i].tuple()
x2, y2 = points[(i + 1) % len(points)].tuple()
a += x1 * y2 - y1 * x2
return 0.5 * abs(a)
def centroid(points: Sequence[Vector2D]) -> Vector2D:
if not points:
return Vector2D(0.0, 0.0)
sx = sum(p.x for p in points)
sy = sum(p.y for p in points)
n = len(points)
return Vector2D(sx / n, sy / n)
##########################
# Graph primitives
##########################
@dataclass
class Node:
id: int
pos: Vector2D
data: dict = field(default_factory=dict)
@dataclass
class Edge:
a: int
b: int
weight: float = 1.0
class Graph:
"""Simple undirected graph with node positions for layout and export."""
def __init__(self) -> None:
self._nodes: Dict[int, Node] = {}
self._edges: List[Edge] = []
self._next_id = 1
def add_node(self, pos: Vector2D, data: Optional[dict] = None) -> int:
nid = self._next_id
self._next_id += 1
self._nodes[nid] = Node(id=nid, pos=pos, data=data or {})
return nid
def add_edge(self, a: int, b: int, weight: float = 1.0) -> None:
if a not in self._nodes or b not in self._nodes:
raise KeyError("both nodes must exist to add an edge")
self._edges.append(Edge(a=a, b=b, weight=weight))
def nodes(self) -> Iterable[Node]:
return list(self._nodes.values())
def edges(self) -> Iterable[Edge]:
return list(self._edges)
def to_dict(self) -> dict:
return {
"nodes": [{"id": n.id, "pos": n.pos.tuple(), "data": n.data} for n in self.nodes()],
"edges": [{"a": e.a, "b": e.b, "weight": e.weight} for e in self.edges()],
}
def bounding_box(self) -> Tuple[Vector2D, Vector2D]:
pts = [n.pos for n in self.nodes()]
if not pts:
return Vector2D(0, 0), Vector2D(0, 0)
minx = min(p.x for p in pts)
miny = min(p.y for p in pts)
maxx = max(p.x for p in pts)
maxy = max(p.y for p in pts)
return Vector2D(minx, miny), Vector2D(maxx, maxy)
def random_layout(self, seed: Optional[int] = None, scale: float = 1.0) -> None:
if seed is not None:
random.seed(seed)
for n in self._nodes.values():
n.pos = Vector2D((random.random() - 0.5) * scale, (random.random() - 0.5) * scale)
def radial_layout(self, center: Optional[Vector2D] = None, radius: float = 1.0) -> None:
nodes = list(self._nodes.values())
if not nodes:
return
if center is None:
center = centroid([n.pos for n in nodes])
n = len(nodes)
for i, node in enumerate(nodes):
ang = 2 * math.pi * (i / max(1, n))
node.pos = Vector2D(center.x + math.cos(ang) * radius, center.y + math.sin(ang) * radius)
##########################
# Mesh primitives
##########################
@dataclass
class Triangle:
a: int
b: int
c: int
class Mesh:
"""A tiny triangular mesh container (indexed vertices + triangles).
This is intentionally minimal: utility methods to add points/triangles and
to export to OBJ. It also contains a simple ear-clipping polygon triangulator
for simple polygons.
"""
def __init__(self) -> None:
self.vertices: List[Vector2D] = []
self.triangles: List[Triangle] = []
def add_vertex(self, p: Vector2D) -> int:
self.vertices.append(p)
return len(self.vertices) - 1
def add_triangle(self, a: int, b: int, c: int) -> None:
self.triangles.append(Triangle(a, b, c))
def to_obj(self) -> str:
lines: List[str] = []
for v in self.vertices:
lines.append(f"v {v.x:.6f} {v.y:.6f} 0.0")
for t in self.triangles:
# OBJ indices are 1-based
lines.append(f"f {t.a + 1} {t.b + 1} {t.c + 1}")
return "\n".join(lines)
def from_polygon_earclip(self, poly: Sequence[Vector2D]) -> None:
"""Triangulate a simple polygon using ear clipping. Returns triangles in place.
Not suitable for complex, self-intersecting polygons. Intended for demos.
"""
pts = [Vector2D(p.x, p.y) for p in poly]
n = len(pts)
if n < 3:
return
# We'll append the polygon vertices to the mesh; remember base index
base_index = len(self.vertices)
for p in pts:
self.add_vertex(p)
idx = list(range(n))
# helper to check if vertex i is an ear (using polygon-local indices)
def is_convex(i0, i1, i2) -> bool:
a = pts[i0]
b = pts[i1]
c = pts[i2]
# positive cross indicates counter-clockwise (convex for CCW polygons)
return (b - a).cross(c - b) > 0
def point_in_triangle(pt: Vector2D, a: Vector2D, b: Vector2D, c: Vector2D) -> bool:
# barycentric technique
v0 = c - a
v1 = b - a
v2 = pt - a
dot00 = v0.dot(v0)
dot01 = v0.dot(v1)
dot02 = v0.dot(v2)
dot11 = v1.dot(v1)
dot12 = v1.dot(v2)
denom = dot00 * dot11 - dot01 * dot01
if denom == 0:
return False
u = (dot11 * dot02 - dot01 * dot12) / denom
v = (dot00 * dot12 - dot01 * dot02) / denom
return u >= 0 and v >= 0 and (u + v) <= 1
# Ear clipping main loop
while len(idx) > 3:
ear_found = False
for k in range(len(idx)):
i_prev = idx[(k - 1) % len(idx)]
i_curr = idx[k]
i_next = idx[(k + 1) % len(idx)]
if not is_convex(i_prev, i_curr, i_next):
continue
a = pts[i_prev]
b = pts[i_curr]
c = pts[i_next]
# ensure no other point is inside triangle
any_inside = False
for j in idx:
if j in (i_prev, i_curr, i_next):
continue
if point_in_triangle(pts[j], a, b, c):
any_inside = True
break
if any_inside:
continue
# record triangle (indices offset by base_index)
self.add_triangle(base_index + i_prev, base_index + i_curr, base_index + i_next)
# remove ear vertex from polygon index list
idx.pop(k)
ear_found = True
break
if not ear_found:
# fallback: stop to avoid infinite loop on degenerate polygons
break
# final triangle
if len(idx) == 3:
self.add_triangle(base_index + idx[0], base_index + idx[1], base_index + idx[2])
##########################
# L-system / procedural generator
##########################
class LSystem:
"""A very small L-system interpreter.
The LSystem applies one-step symbol rewriting using provided rules, then
optionally interprets the final string into 2D turtle geometry commands.
Supported turtle commands in the interpreter:
- F: move forward and draw
- f: move forward without drawing
- +: turn right by angle
- -: turn left by angle
- [: push state
- ]: pop state
The interpreter returns a list of line segments (pairs of Vector2D).
"""
def __init__(self, axiom: str, rules: Dict[str, str]):
self.axiom = axiom
self.rules = rules
def generate(self, iterations: int) -> str:
s = self.axiom
for _ in range(max(0, iterations)):
out = []
for ch in s:
out.append(self.rules.get(ch, ch))
s = "".join(out)
return s
def interpret_turtle(self, program: str, step: float = 1.0, angle_deg: float = 25.0) -> List[Tuple[Vector2D, Vector2D]]:
angle_rad = math.radians(angle_deg)
pos = Vector2D(0.0, 0.0)
dir_vec = Vector2D(0.0, 1.0)
stack: List[Tuple[Vector2D, Vector2D]] = []
segments: List[Tuple[Vector2D, Vector2D]] = []
for ch in program:
if ch == "F":
new_pos = pos + dir_vec * step
segments.append((pos, new_pos))
pos = new_pos
elif ch == "f":
pos = pos + dir_vec * step
elif ch == "+":
dir_vec = dir_vec.rotate(-angle_rad) # right turn
elif ch == "-":
dir_vec = dir_vec.rotate(angle_rad) # left turn
elif ch == "[":
stack.append((pos, dir_vec))
elif ch == "]":
if stack:
pos, dir_vec = stack.pop()
else:
# ignore unknown symbols
pass
return segments
##########################
# Small helpers / exporters
##########################
def export_graph_json(graph: Graph, path: str) -> None:
with open(path, "w", encoding="utf-8") as fh:
json.dump(graph.to_dict(), fh, indent=2)
def export_mesh_obj(mesh: Mesh, path: str) -> None:
with open(path, "w", encoding="utf-8") as fh:
fh.write(mesh.to_obj())
##########################
# Example high-level generators
##########################
def random_point_cloud(n: int, radius: float = 1.0, seed: Optional[int] = None) -> List[Vector2D]:
if seed is not None:
random.seed(seed)
pts = [Vector2D((random.random() - 0.5) * 2 * radius, (random.random() - 0.5) * 2 * radius) for _ in range(n)]
return pts
def make_grid_graph(rows: int, cols: int, spacing: float = 1.0) -> Graph:
g = Graph()
ids = []
for r in range(rows):
row_ids = []
for c in range(cols):
nid = g.add_node(Vector2D(c * spacing, r * spacing))
row_ids.append(nid)
ids.append(row_ids)
for r in range(rows):
for c in range(cols):
if c + 1 < cols:
g.add_edge(ids[r][c], ids[r][c + 1])
if r + 1 < rows:
g.add_edge(ids[r][c], ids[r + 1][c])
return g
def polygon_to_mesh(poly: Sequence[Vector2D]) -> Mesh:
m = Mesh()
m.from_polygon_earclip(poly)
return m
##########################
# CLI demo and small smoke test
##########################
def demo_lsystem_tree(iterations: int = 4, step: float = 1.0, angle: float = 25.0) -> Mesh:
# A simple plant-like L-system (Algae-like variant)
rules = {
"X": "F-[[X]+X]+F[+FX]-X",
"F": "FF",
}
ls = LSystem(axiom="X", rules=rules)
prog = ls.generate(iterations)
segs = ls.interpret_turtle(prog, step=step, angle_deg=angle)
# Build a mesh by creating thin rectangles for segments (crude)
mesh = Mesh()
# For each segment create two vertices offset perpendicular to the segment
for a, b in segs:
v = b - a
n = Vector2D(-v.y, v.x).normalized() * (step * 0.1)
ia = mesh.add_vertex(a + n)
ib = mesh.add_vertex(a - n)
ic = mesh.add_vertex(b + n)
id = mesh.add_vertex(b - n)
# two triangles
mesh.add_triangle(ia, ib, ic)
mesh.add_triangle(ib, id, ic)
return mesh
def demo_pipeline() -> None:
print("Genesis engine demo:\n")
print("- Generating grid graph 4x4")
g = make_grid_graph(4, 4, spacing=1.0)
print(f" nodes: {len(list(g.nodes()))}, edges: {len(list(g.edges()))}")
print("- Generating random polygon and triangulating via ear clipping")
poly = [Vector2D(math.cos(a) * (1 + 0.3 * math.sin(3 * a)), math.sin(a) * (1 + 0.3 * math.cos(5 * a))) for a in [i * 2 * math.pi / 12 for i in range(12)]]
m = polygon_to_mesh(poly)
print(f" mesh vertices: {len(m.vertices)}, triangles: {len(m.triangles)}")
print("- Generating L-system tree and exporting OBJ sample (in-memory)")
tree_mesh = demo_lsystem_tree(iterations=3, step=0.6, angle=22.5)
print(f" tree mesh vertices: {len(tree_mesh.vertices)}, triangles: {len(tree_mesh.triangles)}")
# show small metrics
area = polygon_area(poly)
print(f"- sample polygon area: {area:.4f}")
if __name__ == "__main__":
# Simple smoke-run to verify nothing crashes
demo_pipeline()
##########################
# Additional utilities
##########################
class GridIndex:
"""Simple spatial hash / grid index for 2D points.
Useful for small-to-medium point sets where we need fast nearest
or radius queries without external dependencies.
"""
def __init__(self, cell_size: float = 1.0):
self.cell_size = float(cell_size)
self._cells: Dict[Tuple[int, int], List[int]] = {}
self._points: List[Vector2D] = []
def _cell(self, p: Vector2D) -> Tuple[int, int]:
return (int(math.floor(p.x / self.cell_size)), int(math.floor(p.y / self.cell_size)))
def insert(self, p: Vector2D) -> int:
idx = len(self._points)
self._points.append(p)
key = self._cell(p)
self._cells.setdefault(key, []).append(idx)
return idx
def radius_query(self, p: Vector2D, r: float) -> List[Tuple[int, Vector2D]]:
r = float(r)
cx, cy = self._cell(p)
delta = int(math.ceil(r / self.cell_size))
out: List[Tuple[int, Vector2D]] = []
for dx in range(-delta, delta + 1):
for dy in range(-delta, delta + 1):
for idx in self._cells.get((cx + dx, cy + dy), []):
pt = self._points[idx]
if (pt - p).length() <= r:
out.append((idx, pt))
return out
def poisson_disc_samples(radius: float, domain: Tuple[float, float, float, float], k: int = 30, seed: Optional[int] = None) -> List[Vector2D]:
"""Bridson's Poisson-disc sampling in a rectangular domain.
domain: (xmin, ymin, xmax, ymax)
"""
if seed is not None:
random.seed(seed)
xmin, ymin, xmax, ymax = domain
width = xmax - xmin
height = ymax - ymin
cell_size = radius / math.sqrt(2)
grid_w = int(math.ceil(width / cell_size))
grid_h = int(math.ceil(height / cell_size))
grid: List[List[Optional[int]]] = [[None] * grid_h for _ in range(grid_w)]
def to_grid(p: Vector2D) -> Tuple[int, int]:
gx = int((p.x - xmin) / cell_size)
gy = int((p.y - ymin) / cell_size)
return gx, gy
samples: List[Vector2D] = []
active: List[int] = []
# first sample
first = Vector2D(xmin + random.random() * width, ymin + random.random() * height)
samples.append(first)
gx, gy = to_grid(first)
grid[gx][gy] = 0
active.append(0)
while active:
idx = active[int(random.random() * len(active))]
base = samples[idx]
found = False
for _ in range(k):
r = random.uniform(radius, 2 * radius)
theta = random.random() * 2 * math.pi
cand = Vector2D(base.x + r * math.cos(theta), base.y + r * math.sin(theta))
if not (xmin <= cand.x <= xmax and ymin <= cand.y <= ymax):
continue
cgx, cgy = to_grid(cand)
ok = True
for i in range(max(0, cgx - 2), min(grid_w, cgx + 3)):
for j in range(max(0, cgy - 2), min(grid_h, cgy + 3)):
sidx = grid[i][j]
if sidx is None:
continue
if (samples[sidx] - cand).length() < radius:
ok = False
break
if not ok:
break
if ok:
samples.append(cand)
grid[cgx][cgy] = len(samples) - 1
active.append(len(samples) - 1)
found = True
break
if not found:
active.remove(idx)
return samples
def refine_mesh(mesh: Mesh, max_edge_length: float) -> Mesh:
"""Refine mesh by subdividing triangles that contain edges longer than max_edge_length.
This performs a single-pass refinement (one subdivision iteration). It's
intentionally simple and deterministic for demo purposes.
"""
new = Mesh()
# copy existing vertices
for v in mesh.vertices:
new.add_vertex(Vector2D(v.x, v.y))
def mid(a: int, b: int) -> int:
va = new.vertices[a]
vb = new.vertices[b]
mpt = Vector2D((va.x + vb.x) * 0.5, (va.y + vb.y) * 0.5)
return new.add_vertex(mpt)
for tri in mesh.triangles:
a, b, c = tri.a, tri.b, tri.c
va = mesh.vertices[a]
vb = mesh.vertices[b]
vc = mesh.vertices[c]
dab = (va - vb).length()
dbc = (vb - vc).length()
dca = (vc - va).length()
if dab <= max_edge_length and dbc <= max_edge_length and dca <= max_edge_length:
new.add_triangle(a, b, c)
continue
# split edges where needed, create midpoints
mab = mid(a, b) if dab > max_edge_length else -1
mbc = mid(b, c) if dbc > max_edge_length else -1
mca = mid(c, a) if dca > max_edge_length else -1
# simple cases: if all three edges split -> 4 new triangles
if mab != -1 and mbc != -1 and mca != -1:
new.add_triangle(a, mab, mca)
new.add_triangle(mab, b, mbc)
new.add_triangle(mca, mbc, c)
new.add_triangle(mab, mbc, mca)
else:
# fallback: if only one edge split, replace by two triangles
if mab != -1 and mbc == -1 and mca == -1:
new.add_triangle(a, mab, c)
new.add_triangle(mab, b, c)
elif mbc != -1 and mab == -1 and mca == -1:
new.add_triangle(b, mbc, a)
new.add_triangle(mbc, c, a)
elif mca != -1 and mab == -1 and mbc == -1:
new.add_triangle(c, mca, b)
new.add_triangle(mca, a, b)
else:
# mixed or two splits: attempt a conservative split by adding original triangle
new.add_triangle(a, b, c)
return new
def laplacian_smooth(mesh: Mesh, iterations: int = 1, lam: float = 0.5) -> None:
"""In-place Laplacian smoothing of vertex positions.
lam in (0,1) controls the amount of smoothing per iteration.
"""
if not mesh.vertices:
return
# build adjacency
adj: List[set] = [set() for _ in mesh.vertices]
for t in mesh.triangles:
adj[t.a].update([t.b, t.c])
adj[t.b].update([t.a, t.c])
adj[t.c].update([t.a, t.b])
for _ in range(max(0, iterations)):
new_positions: List[Vector2D] = [v for v in mesh.vertices]
for i, v in enumerate(mesh.vertices):
neighbors = adj[i]
if not neighbors:
continue
sx = sum(mesh.vertices[j].x for j in neighbors) / len(neighbors)
sy = sum(mesh.vertices[j].y for j in neighbors) / len(neighbors)
new_positions[i] = Vector2D(v.x + lam * (sx - v.x), v.y + lam * (sy - v.y))
mesh.vertices = new_positions
def export_mesh_svg(mesh: Mesh, path: str, scale: float = 100.0, margin: float = 10.0) -> None:
"""Export mesh to a simple SVG file (triangles stroked).
This is a convenience for quick visual checks; it writes a minimal SVG.
"""
if not mesh.vertices:
with open(path, "w", encoding="utf-8") as fh:
fh.write("<svg xmlns='http://www.w3.org/2000/svg'></svg>")
return
xs = [v.x for v in mesh.vertices]
ys = [v.y for v in mesh.vertices]
minx, miny, maxx, maxy = min(xs), min(ys), max(xs), max(ys)
w = (maxx - minx) * scale + 2 * margin
h = (maxy - miny) * scale + 2 * margin
def to_xy(v: Vector2D) -> Tuple[float, float]:
return ((v.x - minx) * scale + margin, (maxy - v.y) * scale + margin)
lines: List[str] = []
lines.append(f"<svg xmlns='http://www.w3.org/2000/svg' width='{w:.0f}' height='{h:.0f}'>")
lines.append("<g fill='none' stroke='black' stroke-width='1'>")
for t in mesh.triangles:
a = mesh.vertices[t.a]
b = mesh.vertices[t.b]
c = mesh.vertices[t.c]
xa, ya = to_xy(a)
xb, yb = to_xy(b)
xc, yc = to_xy(c)
lines.append(f"<path d='M {xa:.2f} {ya:.2f} L {xb:.2f} {yb:.2f} L {xc:.2f} {yc:.2f} Z'/>")
lines.append("</g>")
lines.append("</svg>")
with open(path, "w", encoding="utf-8") as fh:
fh.write("\n".join(lines))
## small additional smoke-run to exercise new utilities when run directly
if __name__ == "__main__":
# generate Poisson-disc samples inside unit square
pts = poisson_disc_samples(0.08, (0.0, 0.0, 1.0, 1.0), seed=42)
print(f"Poisson samples generated: {len(pts)}")
# build a mesh from a regular polygon and refine it
poly = [Vector2D(math.cos(a), math.sin(a)) for a in [i * 2 * math.pi / 8 for i in range(8)]]
m = polygon_to_mesh(poly)
print(f"Original mesh: v={len(m.vertices)}, t={len(m.triangles)}")
m2 = refine_mesh(m, max_edge_length=0.8)
print(f"Refined mesh: v={len(m2.vertices)}, t={len(m2.triangles)}")
laplacian_smooth(m2, iterations=2, lam=0.4)
# export SVG to temporary file for quick visual check (file path safe to overwrite)
try:
export_mesh_svg(m2, "genesis_sample.svg")
print("Exported genesis_sample.svg")
except Exception:
# ignore filesystem errors in restricted environments
pass
|