File size: 10,051 Bytes
4cef980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Harmonic calculations for frequency representations"""

import warnings

import numpy as np
import scipy.interpolate
import scipy.signal
from ..util.exceptions import ParameterError
from ..util import is_unique
from ..util.decorators import deprecate_positional_args

__all__ = ["salience", "interp_harmonics"]


@deprecate_positional_args
def salience(
    S,
    *,
    freqs,
    harmonics,
    weights=None,
    aggregate=None,
    filter_peaks=True,
    fill_value=np.nan,
    kind="linear",
    axis=-2,
):
    """Harmonic salience function.

    Parameters
    ----------
    S : np.ndarray [shape=(..., d, n)]
        input time frequency magnitude representation (e.g. STFT or CQT magnitudes).
        Must be real-valued and non-negative.

    freqs : np.ndarray, shape=(S.shape[axis])
        The frequency values corresponding to S's elements along the
        chosen axis.

    harmonics : list-like, non-negative
        Harmonics to include in salience computation.  The first harmonic (1)
        corresponds to ``S`` itself. Values less than one (e.g., 1/2) correspond
        to sub-harmonics.

    weights : list-like
        The weight to apply to each harmonic in the summation. (default:
        uniform weights). Must be the same length as ``harmonics``.

    aggregate : function
        aggregation function (default: `np.average`)

        If ``aggregate=np.average``, then a weighted average is
        computed per-harmonic according to the specified weights.
        For all other aggregation functions, all harmonics
        are treated equally.

    filter_peaks : bool
        If true, returns harmonic summation only on frequencies of peak
        magnitude. Otherwise returns harmonic summation over the full spectrum.
        Defaults to True.

    fill_value : float
        The value to fill non-peaks in the output representation. (default:
        `np.nan`) Only used if ``filter_peaks == True``.

    kind : str
        Interpolation type for harmonic estimation.
        See `scipy.interpolate.interp1d`.

    axis : int
        The axis along which to compute harmonics

    Returns
    -------
    S_sal : np.ndarray
        ``S_sal`` will have the same shape as ``S``, and measure
        the overall harmonic energy at each frequency.

    See Also
    --------
    interp_harmonics

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
    >>> S = np.abs(librosa.stft(y))
    >>> freqs = librosa.fft_frequencies(sr=sr)
    >>> harms = [1, 2, 3, 4]
    >>> weights = [1.0, 0.5, 0.33, 0.25]
    >>> S_sal = librosa.salience(S, freqs=freqs, harmonics=harms, weights=weights, fill_value=0)
    >>> print(S_sal.shape)
    (1025, 115)
    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
    >>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
    ...                          sr=sr, y_axis='log', x_axis='time', ax=ax[0])
    >>> ax[0].set(title='Magnitude spectrogram')
    >>> ax[0].label_outer()
    >>> img = librosa.display.specshow(librosa.amplitude_to_db(S_sal,
    ...                                                        ref=np.max),
    ...                                sr=sr, y_axis='log', x_axis='time', ax=ax[1])
    >>> ax[1].set(title='Salience spectrogram')
    >>> fig.colorbar(img, ax=ax, format="%+2.0f dB")
    """
    if aggregate is None:
        aggregate = np.average

    if weights is None:
        weights = np.ones((len(harmonics),))
    else:
        weights = np.array(weights, dtype=float)

    S_harm = interp_harmonics(S, freqs=freqs, harmonics=harmonics, kind=kind, axis=axis)

    if aggregate is np.average:
        S_sal = aggregate(S_harm, axis=axis - 1, weights=weights)
    else:
        S_sal = aggregate(S_harm, axis=axis - 1)

    if filter_peaks:
        S_peaks = scipy.signal.argrelmax(S, axis=axis)
        S_out = np.empty(S.shape)
        S_out.fill(fill_value)
        S_out[S_peaks] = S_sal[S_peaks]

        S_sal = S_out

    return S_sal


@deprecate_positional_args
def interp_harmonics(x, *, freqs, harmonics, kind="linear", fill_value=0, axis=-2):
    """Compute the energy at harmonics of time-frequency representation.

    Given a frequency-based energy representation such as a spectrogram
    or tempogram, this function computes the energy at the chosen harmonics
    of the frequency axis.  (See examples below.)
    The resulting harmonic array can then be used as input to a salience
    computation.

    Parameters
    ----------
    x : np.ndarray
        The input energy
    freqs : np.ndarray, shape=(X.shape[axis])
        The frequency values corresponding to X's elements along the
        chosen axis.
    harmonics : list-like, non-negative
        Harmonics to compute as ``harmonics[i] * freqs``.
        The first harmonic (1) corresponds to ``freqs``.
        Values less than one (e.g., 1/2) correspond to sub-harmonics.
    kind : str
        Interpolation type.  See `scipy.interpolate.interp1d`.
    fill_value : float
        The value to fill when extrapolating beyond the observed
        frequency range.
    axis : int
        The axis along which to compute harmonics

    Returns
    -------
    x_harm : np.ndarray
        ``x_harm[i]`` will have the same shape as ``x``, and measure
        the energy at the ``harmonics[i]`` harmonic of each frequency.
        A new dimension indexing harmonics will be inserted immediately
        before ``axis``.

    See Also
    --------
    scipy.interpolate.interp1d

    Examples
    --------
    Estimate the harmonics of a time-averaged tempogram

    >>> y, sr = librosa.load(librosa.ex('sweetwaltz'))
    >>> # Compute the time-varying tempogram and average over time
    >>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1)
    >>> # We'll measure the first five harmonics
    >>> harmonics = [1, 2, 3, 4, 5]
    >>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr)
    >>> # Build the harmonic tensor; we only have one axis here (tempo)
    >>> t_harmonics = librosa.interp_harmonics(tempi, freqs=f_tempo, harmonics=harmonics, axis=0)
    >>> print(t_harmonics.shape)
    (5, 384)

    >>> # And plot the results
    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr, ax=ax)
    >>> ax.set(yticks=np.arange(len(harmonics)),
    ...        yticklabels=['{:.3g}'.format(_) for _ in harmonics],
    ...        ylabel='Harmonic', xlabel='Tempo (BPM)')

    We can also compute frequency harmonics for spectrograms.
    To calculate sub-harmonic energy, use values < 1.

    >>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
    >>> harmonics = [1./3, 1./2, 1, 2, 3, 4]
    >>> S = np.abs(librosa.stft(y))
    >>> fft_freqs = librosa.fft_frequencies(sr=sr)
    >>> S_harm = librosa.interp_harmonics(S, freqs=fft_freqs, harmonics=harmonics, axis=0)
    >>> print(S_harm.shape)
    (6, 1025, 646)

    >>> fig, ax = plt.subplots(nrows=3, ncols=2, sharex=True, sharey=True)
    >>> for i, _sh in enumerate(S_harm):
    ...     img = librosa.display.specshow(librosa.amplitude_to_db(_sh,
    ...                                                      ref=S.max()),
    ...                              sr=sr, y_axis='log', x_axis='time',
    ...                              ax=ax.flat[i])
    ...     ax.flat[i].set(title='h={:.3g}'.format(harmonics[i]))
    ...     ax.flat[i].label_outer()
    >>> fig.colorbar(img, ax=ax, format="%+2.f dB")
    """

    if freqs.ndim == 1 and len(freqs) == x.shape[axis]:
        # Build the 1-D interpolator.
        # All frames have a common domain, so we only need one interpolator here.

        # First, verify that the input frequencies are unique
        if not is_unique(freqs, axis=0):
            warnings.warn(
                "Frequencies are not unique. This may produce incorrect harmonic interpolations.",
                stacklevel=2,
            )

        f_interp = scipy.interpolate.interp1d(
            freqs,
            x,
            axis=axis,
            bounds_error=False,
            copy=False,
            kind=kind,
            fill_value=fill_value,
        )

        # Set the interpolation points
        f_out = np.multiply.outer(harmonics, freqs)

        # Interpolate
        return f_interp(f_out)

    elif freqs.shape == x.shape:
        if not np.all(is_unique(freqs, axis=axis)):
            warnings.warn(
                "Frequencies are not unique. This may produce incorrect harmonic interpolations.",
                stacklevel=2,
            )

        # If we have time-varying frequencies, then it must match exactly the shape of the input

        # We'll define a frame-wise interpolator helper function that we will vectorize over
        # the entire input array
        def _f_interp(_a, _b):
            interp = scipy.interpolate.interp1d(
                _a, _b, bounds_error=False, copy=False, kind=kind, fill_value=fill_value
            )

            return interp(np.multiply.outer(_a, harmonics))

        # Signature is expanding frequency into a new dimension
        xfunc = np.vectorize(_f_interp, signature="(f),(f)->(f,h)")

        # Rotate the vectorizing axis to the tail so that we get parallelism over frames
        # Afterward, we're swapping (-1, axis-1) instead of (-1,axis)
        # because a new dimension has been inserted
        return (
            xfunc(freqs.swapaxes(axis, -1), x.swapaxes(axis, -1))
            .swapaxes(
                # Return the original target axis to its place
                -2,
                axis,
            )
            .swapaxes(
                # Put the new harmonic axis directly in front of the target axis
                -1,
                axis - 1,
            )
        )
    else:
        raise ParameterError(
            "freqs.shape={} does not match "
            "input shape={}".format(freqs.shape, x.shape)
        )