File size: 10,051 Bytes
4cef980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""Harmonic calculations for frequency representations"""
import warnings
import numpy as np
import scipy.interpolate
import scipy.signal
from ..util.exceptions import ParameterError
from ..util import is_unique
from ..util.decorators import deprecate_positional_args
__all__ = ["salience", "interp_harmonics"]
@deprecate_positional_args
def salience(
S,
*,
freqs,
harmonics,
weights=None,
aggregate=None,
filter_peaks=True,
fill_value=np.nan,
kind="linear",
axis=-2,
):
"""Harmonic salience function.
Parameters
----------
S : np.ndarray [shape=(..., d, n)]
input time frequency magnitude representation (e.g. STFT or CQT magnitudes).
Must be real-valued and non-negative.
freqs : np.ndarray, shape=(S.shape[axis])
The frequency values corresponding to S's elements along the
chosen axis.
harmonics : list-like, non-negative
Harmonics to include in salience computation. The first harmonic (1)
corresponds to ``S`` itself. Values less than one (e.g., 1/2) correspond
to sub-harmonics.
weights : list-like
The weight to apply to each harmonic in the summation. (default:
uniform weights). Must be the same length as ``harmonics``.
aggregate : function
aggregation function (default: `np.average`)
If ``aggregate=np.average``, then a weighted average is
computed per-harmonic according to the specified weights.
For all other aggregation functions, all harmonics
are treated equally.
filter_peaks : bool
If true, returns harmonic summation only on frequencies of peak
magnitude. Otherwise returns harmonic summation over the full spectrum.
Defaults to True.
fill_value : float
The value to fill non-peaks in the output representation. (default:
`np.nan`) Only used if ``filter_peaks == True``.
kind : str
Interpolation type for harmonic estimation.
See `scipy.interpolate.interp1d`.
axis : int
The axis along which to compute harmonics
Returns
-------
S_sal : np.ndarray
``S_sal`` will have the same shape as ``S``, and measure
the overall harmonic energy at each frequency.
See Also
--------
interp_harmonics
Examples
--------
>>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
>>> S = np.abs(librosa.stft(y))
>>> freqs = librosa.fft_frequencies(sr=sr)
>>> harms = [1, 2, 3, 4]
>>> weights = [1.0, 0.5, 0.33, 0.25]
>>> S_sal = librosa.salience(S, freqs=freqs, harmonics=harms, weights=weights, fill_value=0)
>>> print(S_sal.shape)
(1025, 115)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True)
>>> librosa.display.specshow(librosa.amplitude_to_db(S, ref=np.max),
... sr=sr, y_axis='log', x_axis='time', ax=ax[0])
>>> ax[0].set(title='Magnitude spectrogram')
>>> ax[0].label_outer()
>>> img = librosa.display.specshow(librosa.amplitude_to_db(S_sal,
... ref=np.max),
... sr=sr, y_axis='log', x_axis='time', ax=ax[1])
>>> ax[1].set(title='Salience spectrogram')
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB")
"""
if aggregate is None:
aggregate = np.average
if weights is None:
weights = np.ones((len(harmonics),))
else:
weights = np.array(weights, dtype=float)
S_harm = interp_harmonics(S, freqs=freqs, harmonics=harmonics, kind=kind, axis=axis)
if aggregate is np.average:
S_sal = aggregate(S_harm, axis=axis - 1, weights=weights)
else:
S_sal = aggregate(S_harm, axis=axis - 1)
if filter_peaks:
S_peaks = scipy.signal.argrelmax(S, axis=axis)
S_out = np.empty(S.shape)
S_out.fill(fill_value)
S_out[S_peaks] = S_sal[S_peaks]
S_sal = S_out
return S_sal
@deprecate_positional_args
def interp_harmonics(x, *, freqs, harmonics, kind="linear", fill_value=0, axis=-2):
"""Compute the energy at harmonics of time-frequency representation.
Given a frequency-based energy representation such as a spectrogram
or tempogram, this function computes the energy at the chosen harmonics
of the frequency axis. (See examples below.)
The resulting harmonic array can then be used as input to a salience
computation.
Parameters
----------
x : np.ndarray
The input energy
freqs : np.ndarray, shape=(X.shape[axis])
The frequency values corresponding to X's elements along the
chosen axis.
harmonics : list-like, non-negative
Harmonics to compute as ``harmonics[i] * freqs``.
The first harmonic (1) corresponds to ``freqs``.
Values less than one (e.g., 1/2) correspond to sub-harmonics.
kind : str
Interpolation type. See `scipy.interpolate.interp1d`.
fill_value : float
The value to fill when extrapolating beyond the observed
frequency range.
axis : int
The axis along which to compute harmonics
Returns
-------
x_harm : np.ndarray
``x_harm[i]`` will have the same shape as ``x``, and measure
the energy at the ``harmonics[i]`` harmonic of each frequency.
A new dimension indexing harmonics will be inserted immediately
before ``axis``.
See Also
--------
scipy.interpolate.interp1d
Examples
--------
Estimate the harmonics of a time-averaged tempogram
>>> y, sr = librosa.load(librosa.ex('sweetwaltz'))
>>> # Compute the time-varying tempogram and average over time
>>> tempi = np.mean(librosa.feature.tempogram(y=y, sr=sr), axis=1)
>>> # We'll measure the first five harmonics
>>> harmonics = [1, 2, 3, 4, 5]
>>> f_tempo = librosa.tempo_frequencies(len(tempi), sr=sr)
>>> # Build the harmonic tensor; we only have one axis here (tempo)
>>> t_harmonics = librosa.interp_harmonics(tempi, freqs=f_tempo, harmonics=harmonics, axis=0)
>>> print(t_harmonics.shape)
(5, 384)
>>> # And plot the results
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> librosa.display.specshow(t_harmonics, x_axis='tempo', sr=sr, ax=ax)
>>> ax.set(yticks=np.arange(len(harmonics)),
... yticklabels=['{:.3g}'.format(_) for _ in harmonics],
... ylabel='Harmonic', xlabel='Tempo (BPM)')
We can also compute frequency harmonics for spectrograms.
To calculate sub-harmonic energy, use values < 1.
>>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3)
>>> harmonics = [1./3, 1./2, 1, 2, 3, 4]
>>> S = np.abs(librosa.stft(y))
>>> fft_freqs = librosa.fft_frequencies(sr=sr)
>>> S_harm = librosa.interp_harmonics(S, freqs=fft_freqs, harmonics=harmonics, axis=0)
>>> print(S_harm.shape)
(6, 1025, 646)
>>> fig, ax = plt.subplots(nrows=3, ncols=2, sharex=True, sharey=True)
>>> for i, _sh in enumerate(S_harm):
... img = librosa.display.specshow(librosa.amplitude_to_db(_sh,
... ref=S.max()),
... sr=sr, y_axis='log', x_axis='time',
... ax=ax.flat[i])
... ax.flat[i].set(title='h={:.3g}'.format(harmonics[i]))
... ax.flat[i].label_outer()
>>> fig.colorbar(img, ax=ax, format="%+2.f dB")
"""
if freqs.ndim == 1 and len(freqs) == x.shape[axis]:
# Build the 1-D interpolator.
# All frames have a common domain, so we only need one interpolator here.
# First, verify that the input frequencies are unique
if not is_unique(freqs, axis=0):
warnings.warn(
"Frequencies are not unique. This may produce incorrect harmonic interpolations.",
stacklevel=2,
)
f_interp = scipy.interpolate.interp1d(
freqs,
x,
axis=axis,
bounds_error=False,
copy=False,
kind=kind,
fill_value=fill_value,
)
# Set the interpolation points
f_out = np.multiply.outer(harmonics, freqs)
# Interpolate
return f_interp(f_out)
elif freqs.shape == x.shape:
if not np.all(is_unique(freqs, axis=axis)):
warnings.warn(
"Frequencies are not unique. This may produce incorrect harmonic interpolations.",
stacklevel=2,
)
# If we have time-varying frequencies, then it must match exactly the shape of the input
# We'll define a frame-wise interpolator helper function that we will vectorize over
# the entire input array
def _f_interp(_a, _b):
interp = scipy.interpolate.interp1d(
_a, _b, bounds_error=False, copy=False, kind=kind, fill_value=fill_value
)
return interp(np.multiply.outer(_a, harmonics))
# Signature is expanding frequency into a new dimension
xfunc = np.vectorize(_f_interp, signature="(f),(f)->(f,h)")
# Rotate the vectorizing axis to the tail so that we get parallelism over frames
# Afterward, we're swapping (-1, axis-1) instead of (-1,axis)
# because a new dimension has been inserted
return (
xfunc(freqs.swapaxes(axis, -1), x.swapaxes(axis, -1))
.swapaxes(
# Return the original target axis to its place
-2,
axis,
)
.swapaxes(
# Put the new harmonic axis directly in front of the target axis
-1,
axis - 1,
)
)
else:
raise ParameterError(
"freqs.shape={} does not match "
"input shape={}".format(freqs.shape, x.shape)
)
|