File size: 38,530 Bytes
4cef980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Temporal segmentation
=====================

Recurrence and self-similarity
------------------------------
.. autosummary::
    :toctree: generated/

    cross_similarity
    recurrence_matrix
    recurrence_to_lag
    lag_to_recurrence
    timelag_filter
    path_enhance

Temporal clustering
-------------------
.. autosummary::
    :toctree: generated/

    agglomerative
    subsegment
"""

from decorator import decorator

import numpy as np
import scipy
import scipy.signal
import scipy.ndimage

import sklearn
import sklearn.cluster
import sklearn.feature_extraction
import sklearn.neighbors

from ._cache import cache
from . import util
from .filters import diagonal_filter
from .util.exceptions import ParameterError
from .util.decorators import deprecate_positional_args

__all__ = [
    "cross_similarity",
    "recurrence_matrix",
    "recurrence_to_lag",
    "lag_to_recurrence",
    "timelag_filter",
    "agglomerative",
    "subsegment",
    "path_enhance",
]


@deprecate_positional_args
@cache(level=30)
def cross_similarity(
    data,
    data_ref,
    *,
    k=None,
    metric="euclidean",
    sparse=False,
    mode="connectivity",
    bandwidth=None,
):
    """Compute cross-similarity from one data sequence to a reference sequence.

    The output is a matrix ``xsim``, where ``xsim[i, j]`` is non-zero
    if ``data_ref[..., i]`` is a k-nearest neighbor of ``data[..., j]``.

    Parameters
    ----------
    data : np.ndarray [shape=(..., d, n)]
        A feature matrix for the comparison sequence.
        If the data has more than two dimensions (e.g., for multi-channel inputs),
        the leading dimensions are flattened prior to comparison.
        For example, a stereo input with shape `(2, d, n)` is
        automatically reshaped to `(2 * d, n)`.

    data_ref : np.ndarray [shape=(..., d, n_ref)]
        A feature matrix for the reference sequence
        If the data has more than two dimensions (e.g., for multi-channel inputs),
        the leading dimensions are flattened prior to comparison.
        For example, a stereo input with shape `(2, d, n_ref)` is
        automatically reshaped to `(2 * d, n_ref)`.

    k : int > 0 [scalar] or None
        the number of nearest-neighbors for each sample

        Default: ``k = 2 * ceil(sqrt(n_ref))``,
        or ``k = 2`` if ``n_ref <= 3``

    metric : str
        Distance metric to use for nearest-neighbor calculation.

        See `sklearn.neighbors.NearestNeighbors` for details.

    sparse : bool [scalar]
        if False, returns a dense type (ndarray)
        if True, returns a sparse type (scipy.sparse.csc_matrix)

    mode : str, {'connectivity', 'distance', 'affinity'}
        If 'connectivity', a binary connectivity matrix is produced.

        If 'distance', then a non-zero entry contains the distance between
        points.

        If 'affinity', then non-zero entries are mapped to
        ``exp( - distance(i, j) / bandwidth)`` where ``bandwidth`` is
        as specified below.

    bandwidth : None or float > 0
        If using ``mode='affinity'``, this can be used to set the
        bandwidth on the affinity kernel.

        If no value is provided, it is set automatically to the median
        distance to the k'th nearest neighbor of each ``data[:, i]``.

    Returns
    -------
    xsim : np.ndarray or scipy.sparse.csc_matrix, [shape=(n_ref, n)]
        Cross-similarity matrix

    See Also
    --------
    recurrence_matrix
    recurrence_to_lag
    librosa.feature.stack_memory
    sklearn.neighbors.NearestNeighbors
    scipy.spatial.distance.cdist

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    Find nearest neighbors in CQT space between two sequences

    >>> hop_length = 1024
    >>> y_ref, sr = librosa.load(librosa.ex('pistachio'))
    >>> y_comp, sr = librosa.load(librosa.ex('pistachio'), offset=10)
    >>> chroma_ref = librosa.feature.chroma_cqt(y=y_ref, sr=sr, hop_length=hop_length)
    >>> chroma_comp = librosa.feature.chroma_cqt(y=y_comp, sr=sr, hop_length=hop_length)
    >>> # Use time-delay embedding to get a cleaner recurrence matrix
    >>> x_ref = librosa.feature.stack_memory(chroma_ref, n_steps=10, delay=3)
    >>> x_comp = librosa.feature.stack_memory(chroma_comp, n_steps=10, delay=3)
    >>> xsim = librosa.segment.cross_similarity(x_comp, x_ref)

    Or fix the number of nearest neighbors to 5

    >>> xsim = librosa.segment.cross_similarity(x_comp, x_ref, k=5)

    Use cosine similarity instead of Euclidean distance

    >>> xsim = librosa.segment.cross_similarity(x_comp, x_ref, metric='cosine')

    Use an affinity matrix instead of binary connectivity

    >>> xsim_aff = librosa.segment.cross_similarity(x_comp, x_ref, metric='cosine', mode='affinity')

    Plot the feature and recurrence matrices

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
    >>> imgsim = librosa.display.specshow(xsim, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, ax=ax[0])
    >>> ax[0].set(title='Binary cross-similarity (symmetric)')
    >>> imgaff = librosa.display.specshow(xsim_aff, x_axis='s', y_axis='s',
    ...                          cmap='magma_r', hop_length=hop_length, ax=ax[1])
    >>> ax[1].set(title='Cross-affinity')
    >>> ax[1].label_outer()
    >>> fig.colorbar(imgsim, ax=ax[0], orientation='horizontal', ticks=[0, 1])
    >>> fig.colorbar(imgaff, ax=ax[1], orientation='horizontal')
    """
    data_ref = np.atleast_2d(data_ref)
    data = np.atleast_2d(data)

    if not np.allclose(data_ref.shape[:-1], data.shape[:-1]):
        raise ParameterError(
            "data_ref.shape={} and data.shape={} do not match on leading dimension(s)".format(
                data_ref.shape, data.shape
            )
        )

    # swap data axes so the feature axis is last
    data_ref = np.swapaxes(data_ref, -1, 0)
    n_ref = data_ref.shape[0]
    # Use F-ordering for reshape to preserve leading axis
    data_ref = data_ref.reshape((n_ref, -1), order="F")

    data = np.swapaxes(data, -1, 0)
    n = data.shape[0]
    data = data.reshape((n, -1), order="F")

    if mode not in ["connectivity", "distance", "affinity"]:
        raise ParameterError(
            (
                "Invalid mode='{}'. Must be one of "
                "['connectivity', 'distance', "
                "'affinity']"
            ).format(mode)
        )
    if k is None:
        k = min(n_ref, 2 * np.ceil(np.sqrt(n_ref)))

    k = int(k)

    if bandwidth is not None:
        if bandwidth <= 0:
            raise ParameterError(
                "Invalid bandwidth={}. " "Must be strictly positive.".format(bandwidth)
            )

    # Build the neighbor search object
    # `auto` mode does not work with some choices of metric.  Rather than special-case
    # those here, we instead use a fall-back to brute force if auto fails.
    try:
        knn = sklearn.neighbors.NearestNeighbors(
            n_neighbors=min(n_ref, k), metric=metric, algorithm="auto"
        )
    except ValueError:
        knn = sklearn.neighbors.NearestNeighbors(
            n_neighbors=min(n_ref, k), metric=metric, algorithm="brute"
        )

    knn.fit(data_ref)

    # Get the knn graph
    if mode == "affinity":
        # sklearn's nearest neighbor doesn't support affinity,
        # so we use distance here and then do the conversion post-hoc
        kng_mode = "distance"
    else:
        kng_mode = mode

    xsim = knn.kneighbors_graph(X=data, mode=kng_mode).tolil()

    # Retain only the top-k links per point
    for i in range(n):
        # Get the links from point i
        links = xsim[i].nonzero()[1]

        # Order them ascending
        idx = links[np.argsort(xsim[i, links].toarray())][0]

        # Everything past the kth closest gets squashed
        xsim[i, idx[k:]] = 0

    # Convert a compressed sparse row (CSR) format
    xsim = xsim.tocsr()
    xsim.eliminate_zeros()

    if mode == "connectivity":
        xsim = xsim.astype(np.bool)
    elif mode == "affinity":
        if bandwidth is None:
            bandwidth = np.nanmedian(xsim.max(axis=1).data)
        xsim.data[:] = np.exp(xsim.data / (-1 * bandwidth))

    # Transpose to n_ref by n
    xsim = xsim.T

    if not sparse:
        xsim = xsim.toarray()

    return xsim


@deprecate_positional_args
@cache(level=30)
def recurrence_matrix(
    data,
    *,
    k=None,
    width=1,
    metric="euclidean",
    sym=False,
    sparse=False,
    mode="connectivity",
    bandwidth=None,
    self=False,
    axis=-1,
):
    """Compute a recurrence matrix from a data matrix.

    ``rec[i, j]`` is non-zero if ``data[..., i]`` is a k-nearest neighbor
    of ``data[..., j]`` and ``|i - j| >= width``

    The specific value of ``rec[i, j]`` can have several forms, governed
    by the ``mode`` parameter below:

        - Connectivity: ``rec[i, j] = 1 or 0`` indicates that frames ``i`` and ``j`` are repetitions

        - Affinity: ``rec[i, j] > 0`` measures how similar frames ``i`` and ``j`` are.  This is also
          known as a (sparse) self-similarity matrix.

        - Distance: ``rec[i, j] > 0`` measures how distant frames ``i`` and ``j`` are.  This is also
          known as a (sparse) self-distance matrix.

    The general term *recurrence matrix* can refer to any of the three forms above.

    Parameters
    ----------
    data : np.ndarray [shape=(..., d, n)]
        A feature matrix.
        If the data has more than two dimensions (e.g., for multi-channel inputs),
        the leading dimensions are flattened prior to comparison.
        For example, a stereo input with shape `(2, d, n)` is
        automatically reshaped to `(2 * d, n)`.

    k : int > 0 [scalar] or None
        the number of nearest-neighbors for each sample

        Default: ``k = 2 * ceil(sqrt(t - 2 * width + 1))``,
        or ``k = 2`` if ``t <= 2 * width + 1``

    width : int >= 1 [scalar]
        only link neighbors ``(data[..., i], data[..., j])``
        if ``|i - j| >= width``

        ``width`` cannot exceed the length of the data.

    metric : str
        Distance metric to use for nearest-neighbor calculation.

        See `sklearn.neighbors.NearestNeighbors` for details.

    sym : bool [scalar]
        set ``sym=True`` to only link mutual nearest-neighbors

    sparse : bool [scalar]
        if False, returns a dense type (ndarray)
        if True, returns a sparse type (scipy.sparse.csc_matrix)

    mode : str, {'connectivity', 'distance', 'affinity'}
        If 'connectivity', a binary connectivity matrix is produced.

        If 'distance', then a non-zero entry contains the distance between
        points.

        If 'affinity', then non-zero entries are mapped to
        ``exp( - distance(i, j) / bandwidth)`` where ``bandwidth`` is
        as specified below.

    bandwidth : None or float > 0
        If using ``mode='affinity'``, this can be used to set the
        bandwidth on the affinity kernel.

        If no value is provided, it is set automatically to the median
        distance between furthest nearest neighbors.

    self : bool
        If ``True``, then the main diagonal is populated with self-links:
        0 if ``mode='distance'``, and 1 otherwise.

        If ``False``, the main diagonal is left empty.

    axis : int
        The axis along which to compute recurrence.
        By default, the last index (-1) is taken.

    Returns
    -------
    rec : np.ndarray or scipy.sparse.csc_matrix, [shape=(t, t)]
        Recurrence matrix

    See Also
    --------
    sklearn.neighbors.NearestNeighbors
    scipy.spatial.distance.cdist
    librosa.feature.stack_memory
    recurrence_to_lag

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    Find nearest neighbors in CQT space

    >>> y, sr = librosa.load(librosa.ex('nutcracker'))
    >>> hop_length = 1024
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    >>> # Use time-delay embedding to get a cleaner recurrence matrix
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> R = librosa.segment.recurrence_matrix(chroma_stack)

    Or fix the number of nearest neighbors to 5

    >>> R = librosa.segment.recurrence_matrix(chroma_stack, k=5)

    Suppress neighbors within +- 7 frames

    >>> R = librosa.segment.recurrence_matrix(chroma_stack, width=7)

    Use cosine similarity instead of Euclidean distance

    >>> R = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine')

    Require mutual nearest neighbors

    >>> R = librosa.segment.recurrence_matrix(chroma_stack, sym=True)

    Use an affinity matrix instead of binary connectivity

    >>> R_aff = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine',
    ...                                           mode='affinity')

    Plot the feature and recurrence matrices

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
    >>> imgsim = librosa.display.specshow(R, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, ax=ax[0])
    >>> ax[0].set(title='Binary recurrence (symmetric)')
    >>> imgaff = librosa.display.specshow(R_aff, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, cmap='magma_r', ax=ax[1])
    >>> ax[1].set(title='Affinity recurrence')
    >>> ax[1].label_outer()
    >>> fig.colorbar(imgsim, ax=ax[0], orientation='horizontal', ticks=[0, 1])
    >>> fig.colorbar(imgaff, ax=ax[1], orientation='horizontal')
    """

    data = np.atleast_2d(data)

    # Swap observations to the first dimension and flatten the rest
    data = np.swapaxes(data, axis, 0)
    t = data.shape[0]
    # Use F-ordering here to preserve leading axis layout
    data = data.reshape((t, -1), order="F")

    if width < 1 or width > t:
        raise ParameterError(
            "width={} must be at least 1 and at most data.shape[{}]={}".format(
                width, axis, t
            )
        )

    if mode not in ["connectivity", "distance", "affinity"]:
        raise ParameterError(
            (
                "Invalid mode='{}'. Must be one of "
                "['connectivity', 'distance', "
                "'affinity']"
            ).format(mode)
        )
    if k is None:
        if t > 2 * width + 1:
            k = 2 * np.ceil(np.sqrt(t - 2 * width + 1))
        else:
            k = 2

    if bandwidth is not None:
        if bandwidth <= 0:
            raise ParameterError(
                "Invalid bandwidth={}. " "Must be strictly positive.".format(bandwidth)
            )

    k = int(k)

    # Build the neighbor search object
    try:
        knn = sklearn.neighbors.NearestNeighbors(
            n_neighbors=min(t - 1, k + 2 * width), metric=metric, algorithm="auto"
        )
    except ValueError:
        knn = sklearn.neighbors.NearestNeighbors(
            n_neighbors=min(t - 1, k + 2 * width), metric=metric, algorithm="brute"
        )

    knn.fit(data)

    # Get the knn graph
    if mode == "affinity":
        kng_mode = "distance"
    else:
        kng_mode = mode

    rec = knn.kneighbors_graph(mode=kng_mode).tolil()

    # Remove connections within width
    for diag in range(-width + 1, width):
        rec.setdiag(0, diag)

    # Retain only the top-k links per point
    for i in range(t):
        # Get the links from point i
        links = rec[i].nonzero()[1]

        # Order them ascending
        idx = links[np.argsort(rec[i, links].toarray())][0]

        # Everything past the kth closest gets squashed
        rec[i, idx[k:]] = 0

    if self:
        if mode == "connectivity":
            rec.setdiag(1)
        elif mode == "affinity":
            # we need to keep the self-loop in here, but not mess up the
            # bandwidth estimation
            #
            # using negative distances here preserves the structure without changing
            # the statistics of the data
            rec.setdiag(-1)

    # symmetrize
    if sym:
        # Note: this operation produces a CSR (compressed sparse row) matrix!
        # This is why we have to do it after filling the diagonal in self-mode
        rec = rec.minimum(rec.T)

    rec = rec.tocsr()
    rec.eliminate_zeros()

    if mode == "connectivity":
        rec = rec.astype(np.bool)
    elif mode == "affinity":
        if bandwidth is None:
            bandwidth = np.nanmedian(rec.max(axis=1).data)
        # Set all the negatives back to 0
        # Negatives are temporarily inserted above to preserve the sparsity structure
        # of the matrix without corrupting the bandwidth calculations
        rec.data[rec.data < 0] = 0.0
        rec.data[:] = np.exp(rec.data / (-1 * bandwidth))

    # Transpose to be column-major
    rec = rec.T

    if not sparse:
        rec = rec.toarray()

    return rec


@deprecate_positional_args
def recurrence_to_lag(rec, *, pad=True, axis=-1):
    """Convert a recurrence matrix into a lag matrix.

        ``lag[i, j] == rec[i+j, j]``

    This transformation turns diagonal structures in the recurrence matrix
    into horizontal structures in the lag matrix.
    These horizontal structures can be used to infer changes in the repetition
    structure of a piece, e.g., the beginning of a new section as done in [#]_.

    .. [#] Serra, J., Müller, M., Grosche, P., & Arcos, J. L. (2014).
           Unsupervised music structure annotation by time series structure
           features and segment similarity.
           IEEE Transactions on Multimedia, 16(5), 1229-1240.

    Parameters
    ----------
    rec : np.ndarray, or scipy.sparse.spmatrix [shape=(n, n)]
        A (binary) recurrence matrix, as returned by `recurrence_matrix`

    pad : bool
        If False, ``lag`` matrix is square, which is equivalent to
        assuming that the signal repeats itself indefinitely.

        If True, ``lag`` is padded with ``n`` zeros, which eliminates
        the assumption of repetition.

    axis : int
        The axis to keep as the ``time`` axis.
        The alternate axis will be converted to lag coordinates.

    Returns
    -------
    lag : np.ndarray
        The recurrence matrix in (lag, time) (if ``axis=1``)
        or (time, lag) (if ``axis=0``) coordinates

    Raises
    ------
    ParameterError : if ``rec`` is non-square

    See Also
    --------
    recurrence_matrix
    lag_to_recurrence
    util.shear

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('nutcracker'))
    >>> hop_length = 1024
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> recurrence = librosa.segment.recurrence_matrix(chroma_stack)
    >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True)
    >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, sharex=True)
    >>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag',
    ...                          hop_length=hop_length, ax=ax[0])
    >>> ax[0].set(title='Lag (zero-padded)')
    >>> ax[0].label_outer()
    >>> librosa.display.specshow(lag_nopad, x_axis='time', y_axis='lag',
    ...                          hop_length=hop_length, ax=ax[1])
    >>> ax[1].set(title='Lag (no padding)')
    """

    axis = np.abs(axis)

    if rec.ndim != 2 or rec.shape[0] != rec.shape[1]:
        raise ParameterError(
            "non-square recurrence matrix shape: " "{}".format(rec.shape)
        )

    sparse = scipy.sparse.issparse(rec)

    if sparse:
        fmt = rec.format

    t = rec.shape[axis]

    if pad:
        if sparse:
            padding = np.asarray([[1, 0]], dtype=rec.dtype).swapaxes(axis, 0)
            if axis == 0:
                rec_fmt = "csr"
            else:
                rec_fmt = "csc"
            rec = scipy.sparse.kron(padding, rec, format=rec_fmt)
        else:
            padding = [(0, 0), (0, 0)]
            padding[(1 - axis)] = (0, t)
            rec = np.pad(rec, padding, mode="constant")

    lag = util.shear(rec, factor=-1, axis=axis)

    if sparse:
        lag = lag.asformat(fmt)

    return lag


@deprecate_positional_args
def lag_to_recurrence(lag, *, axis=-1):
    """Convert a lag matrix into a recurrence matrix.

    Parameters
    ----------
    lag : np.ndarray or scipy.sparse.spmatrix
        A lag matrix, as produced by ``recurrence_to_lag``
    axis : int
        The axis corresponding to the time dimension.
        The alternate axis will be interpreted in lag coordinates.

    Returns
    -------
    rec : np.ndarray or scipy.sparse.spmatrix [shape=(n, n)]
        A recurrence matrix in (time, time) coordinates
        For sparse matrices, format will match that of ``lag``.

    Raises
    ------
    ParameterError : if ``lag`` does not have the correct shape

    See Also
    --------
    recurrence_to_lag

    Examples
    --------
    >>> y, sr = librosa.load(librosa.ex('nutcracker'))
    >>> hop_length = 1024
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> recurrence = librosa.segment.recurrence_matrix(chroma_stack)
    >>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True)
    >>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False)
    >>> rec_pad = librosa.segment.lag_to_recurrence(lag_pad)
    >>> rec_nopad = librosa.segment.lag_to_recurrence(lag_nopad)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True)
    >>> librosa.display.specshow(lag_pad, x_axis='s', y_axis='lag',
    ...                          hop_length=hop_length, ax=ax[0, 0])
    >>> ax[0, 0].set(title='Lag (zero-padded)')
    >>> ax[0, 0].label_outer()
    >>> librosa.display.specshow(lag_nopad, x_axis='s', y_axis='time',
    ...                          hop_length=hop_length, ax=ax[0, 1])
    >>> ax[0, 1].set(title='Lag (no padding)')
    >>> ax[0, 1].label_outer()
    >>> librosa.display.specshow(rec_pad, x_axis='s', y_axis='time',
    ...                          hop_length=hop_length, ax=ax[1, 0])
    >>> ax[1, 0].set(title='Recurrence (with padding)')
    >>> librosa.display.specshow(rec_nopad, x_axis='s', y_axis='time',
    ...                          hop_length=hop_length, ax=ax[1, 1])
    >>> ax[1, 1].set(title='Recurrence (without padding)')
    >>> ax[1, 1].label_outer()
    """

    if axis not in [0, 1, -1]:
        raise ParameterError("Invalid target axis: {}".format(axis))

    axis = np.abs(axis)

    if lag.ndim != 2 or (
        lag.shape[0] != lag.shape[1] and lag.shape[1 - axis] != 2 * lag.shape[axis]
    ):
        raise ParameterError("Invalid lag matrix shape: {}".format(lag.shape))

    # Since lag must be 2-dimensional, abs(axis) = axis
    t = lag.shape[axis]

    rec = util.shear(lag, factor=+1, axis=axis)

    sub_slice = [slice(None)] * rec.ndim
    sub_slice[1 - axis] = slice(t)
    return rec[tuple(sub_slice)]


def timelag_filter(function, pad=True, index=0):
    """Filtering in the time-lag domain.

    This is primarily useful for adapting image filters to operate on
    `recurrence_to_lag` output.

    Using `timelag_filter` is equivalent to the following sequence of
    operations:

    >>> data_tl = librosa.segment.recurrence_to_lag(data)
    >>> data_filtered_tl = function(data_tl)
    >>> data_filtered = librosa.segment.lag_to_recurrence(data_filtered_tl)

    Parameters
    ----------
    function : callable
        The filtering function to wrap, e.g., `scipy.ndimage.median_filter`
    pad : bool
        Whether to zero-pad the structure feature matrix
    index : int >= 0
        If ``function`` accepts input data as a positional argument, it should be
        indexed by ``index``

    Returns
    -------
    wrapped_function : callable
        A new filter function which applies in time-lag space rather than
        time-time space.

    Examples
    --------
    Apply a 31-bin median filter to the diagonal of a recurrence matrix.
    With default, parameters, this corresponds to a time window of about
    0.72 seconds.

    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=30)
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=3, delay=3)
    >>> rec = librosa.segment.recurrence_matrix(chroma_stack)
    >>> from scipy.ndimage import median_filter
    >>> diagonal_median = librosa.segment.timelag_filter(median_filter)
    >>> rec_filtered = diagonal_median(rec, size=(1, 31), mode='mirror')

    Or with affinity weights

    >>> rec_aff = librosa.segment.recurrence_matrix(chroma_stack, mode='affinity')
    >>> rec_aff_fil = diagonal_median(rec_aff, size=(1, 31), mode='mirror')

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
    >>> librosa.display.specshow(rec, y_axis='s', x_axis='s', ax=ax[0, 0])
    >>> ax[0, 0].set(title='Raw recurrence matrix')
    >>> ax[0, 0].label_outer()
    >>> librosa.display.specshow(rec_filtered, y_axis='s', x_axis='s', ax=ax[0, 1])
    >>> ax[0, 1].set(title='Filtered recurrence matrix')
    >>> ax[0, 1].label_outer()
    >>> librosa.display.specshow(rec_aff, x_axis='s', y_axis='s',
    ...                          cmap='magma_r', ax=ax[1, 0])
    >>> ax[1, 0].set(title='Raw affinity matrix')
    >>> librosa.display.specshow(rec_aff_fil, x_axis='s', y_axis='s',
    ...                          cmap='magma_r', ax=ax[1, 1])
    >>> ax[1, 1].set(title='Filtered affinity matrix')
    >>> ax[1, 1].label_outer()
    """

    def __my_filter(wrapped_f, *args, **kwargs):
        """Decorator to wrap the filter"""
        # Map the input data into time-lag space
        args = list(args)

        args[index] = recurrence_to_lag(args[index], pad=pad)

        # Apply the filtering function
        result = wrapped_f(*args, **kwargs)

        # Map back into time-time and return
        return lag_to_recurrence(result)

    return decorator(__my_filter, function)


@deprecate_positional_args
@cache(level=30)
def subsegment(data, frames, *, n_segments=4, axis=-1):
    """Sub-divide a segmentation by feature clustering.

    Given a set of frame boundaries (``frames``), and a data matrix (``data``),
    each successive interval defined by ``frames`` is partitioned into
    ``n_segments`` by constrained agglomerative clustering.

    .. note::
        If an interval spans fewer than ``n_segments`` frames, then each
        frame becomes a sub-segment.

    Parameters
    ----------
    data : np.ndarray
        Data matrix to use in clustering
    frames : np.ndarray [shape=(n_boundaries,)], dtype=int, non-negative]
        Array of beat or segment boundaries, as provided by
        `librosa.beat.beat_track`,
        `librosa.onset.onset_detect`,
        or `agglomerative`.
    n_segments : int > 0
        Maximum number of frames to sub-divide each interval.
    axis : int
        Axis along which to apply the segmentation.
        By default, the last index (-1) is taken.

    Returns
    -------
    boundaries : np.ndarray [shape=(n_subboundaries,)]
        List of sub-divided segment boundaries

    See Also
    --------
    agglomerative : Temporal segmentation
    librosa.onset.onset_detect : Onset detection
    librosa.beat.beat_track : Beat tracking

    Notes
    -----
    This function caches at level 30.

    Examples
    --------
    Load audio, detect beat frames, and subdivide in twos by CQT

    >>> y, sr = librosa.load(librosa.ex('choice'), duration=10)
    >>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512)
    >>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512)
    >>> cqt = np.abs(librosa.cqt(y, sr=sr, hop_length=512))
    >>> subseg = librosa.segment.subsegment(cqt, beats, n_segments=2)
    >>> subseg_t = librosa.frames_to_time(subseg, sr=sr, hop_length=512)

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots()
    >>> librosa.display.specshow(librosa.amplitude_to_db(cqt,
    ...                                                  ref=np.max),
    ...                          y_axis='cqt_hz', x_axis='time', ax=ax)
    >>> lims = ax.get_ylim()
    >>> ax.vlines(beat_times, lims[0], lims[1], color='lime', alpha=0.9,
    ...            linewidth=2, label='Beats')
    >>> ax.vlines(subseg_t, lims[0], lims[1], color='linen', linestyle='--',
    ...            linewidth=1.5, alpha=0.5, label='Sub-beats')
    >>> ax.legend()
    >>> ax.set(title='CQT + Beat and sub-beat markers')
    """

    frames = util.fix_frames(frames, x_min=0, x_max=data.shape[axis], pad=True)

    if n_segments < 1:
        raise ParameterError("n_segments must be a positive integer")

    boundaries = []
    idx_slices = [slice(None)] * data.ndim

    for seg_start, seg_end in zip(frames[:-1], frames[1:]):
        idx_slices[axis] = slice(seg_start, seg_end)
        boundaries.extend(
            seg_start
            + agglomerative(
                data[tuple(idx_slices)], min(seg_end - seg_start, n_segments), axis=axis
            )
        )

    return np.array(boundaries)


@deprecate_positional_args
def agglomerative(data, k, *, clusterer=None, axis=-1):
    """Bottom-up temporal segmentation.

    Use a temporally-constrained agglomerative clustering routine to partition
    ``data`` into ``k`` contiguous segments.

    Parameters
    ----------
    data : np.ndarray
        data to cluster
    k : int > 0 [scalar]
        number of segments to produce
    clusterer : sklearn.cluster.AgglomerativeClustering, optional
        An optional AgglomerativeClustering object.
        If `None`, a constrained Ward object is instantiated.
    axis : int
        axis along which to cluster.
        By default, the last axis (-1) is chosen.

    Returns
    -------
    boundaries : np.ndarray [shape=(k,)]
        left-boundaries (frame numbers) of detected segments. This
        will always include `0` as the first left-boundary.

    See Also
    --------
    sklearn.cluster.AgglomerativeClustering

    Examples
    --------
    Cluster by chroma similarity, break into 20 segments

    >>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
    >>> bounds = librosa.segment.agglomerative(chroma, 20)
    >>> bound_times = librosa.frames_to_time(bounds, sr=sr)
    >>> bound_times
    array([ 0.   ,  0.65 ,  1.091,  1.927,  2.438,  2.902,  3.924,
            4.783,  5.294,  5.712,  6.13 ,  7.314,  8.522,  8.916,
            9.66 , 10.844, 11.238, 12.028, 12.492, 14.095])

    Plot the segmentation over the chromagram

    >>> import matplotlib.pyplot as plt
    >>> import matplotlib.transforms as mpt
    >>> fig, ax = plt.subplots()
    >>> trans = mpt.blended_transform_factory(
    ...             ax.transData, ax.transAxes)
    >>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax)
    >>> ax.vlines(bound_times, 0, 1, color='linen', linestyle='--',
    ...           linewidth=2, alpha=0.9, label='Segment boundaries',
    ...           transform=trans)
    >>> ax.legend()
    >>> ax.set(title='Power spectrogram')
    """

    # Make sure we have at least two dimensions
    data = np.atleast_2d(data)

    # Swap data index to position 0
    data = np.swapaxes(data, axis, 0)

    # Flatten the features
    n = data.shape[0]
    data = data.reshape((n, -1), order="F")

    if clusterer is None:
        # Connect the temporal connectivity graph
        grid = sklearn.feature_extraction.image.grid_to_graph(n_x=n, n_y=1, n_z=1)

        # Instantiate the clustering object
        clusterer = sklearn.cluster.AgglomerativeClustering(
            n_clusters=k, connectivity=grid, memory=cache.memory
        )

    # Fit the model
    clusterer.fit(data)

    # Find the change points from the labels
    boundaries = [0]
    boundaries.extend(list(1 + np.nonzero(np.diff(clusterer.labels_))[0].astype(int)))
    return np.asarray(boundaries)


@deprecate_positional_args
def path_enhance(
    R,
    n,
    *,
    window="hann",
    max_ratio=2.0,
    min_ratio=None,
    n_filters=7,
    zero_mean=False,
    clip=True,
    **kwargs,
):
    """Multi-angle path enhancement for self- and cross-similarity matrices.

    This function convolves multiple diagonal smoothing filters with a self-similarity (or
    recurrence) matrix R, and aggregates the result by an element-wise maximum.

    Technically, the output is a matrix R_smooth such that::

        R_smooth[i, j] = max_theta (R * filter_theta)[i, j]

    where `*` denotes 2-dimensional convolution, and ``filter_theta`` is a smoothing filter at
    orientation theta.

    This is intended to provide coherent temporal smoothing of self-similarity matrices
    when there are changes in tempo.

    Smoothing filters are generated at evenly spaced orientations between min_ratio and
    max_ratio.

    This function is inspired by the multi-angle path enhancement of [#]_, but differs by
    modeling tempo differences in the space of similarity matrices rather than re-sampling
    the underlying features prior to generating the self-similarity matrix.

    .. [#] Müller, Meinard and Frank Kurth.
            "Enhancing similarity matrices for music audio analysis."
            2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
            Vol. 5. IEEE, 2006.

    .. note:: if using recurrence_matrix to construct the input similarity matrix, be sure to include the main
              diagonal by setting ``self=True``.  Otherwise, the diagonal will be suppressed, and this is likely to
              produce discontinuities which will pollute the smoothing filter response.

    Parameters
    ----------
    R : np.ndarray
        The self- or cross-similarity matrix to be smoothed.
        Note: sparse inputs are not supported.

        If the recurrence matrix is multi-dimensional, e.g. `shape=(c, n, n)`,
        then enhancement is conducted independently for each leading channel.

    n : int > 0
        The length of the smoothing filter

    window : window specification
        The type of smoothing filter to use.  See `filters.get_window` for more information
        on window specification formats.

    max_ratio : float > 0
        The maximum tempo ratio to support

    min_ratio : float > 0
        The minimum tempo ratio to support.
        If not provided, it will default to ``1/max_ratio``

    n_filters : int >= 1
        The number of different smoothing filters to use, evenly spaced
        between ``min_ratio`` and ``max_ratio``.

        If ``min_ratio = 1/max_ratio`` (the default), using an odd number
        of filters will ensure that the main diagonal (ratio=1) is included.

    zero_mean : bool
        By default, the smoothing filters are non-negative and sum to one (i.e. are averaging
        filters).

        If ``zero_mean=True``, then the smoothing filters are made to sum to zero by subtracting
        a constant value from the non-diagonal coordinates of the filter.  This is primarily
        useful for suppressing blocks while enhancing diagonals.

    clip : bool
        If True, the smoothed similarity matrix will be thresholded at 0, and will not contain
        negative entries.

    **kwargs : additional keyword arguments
        Additional arguments to pass to `scipy.ndimage.convolve`

    Returns
    -------
    R_smooth : np.ndarray, shape=R.shape
        The smoothed self- or cross-similarity matrix

    See Also
    --------
    librosa.filters.diagonal_filter
    recurrence_matrix

    Examples
    --------
    Use a 51-frame diagonal smoothing filter to enhance paths in a recurrence matrix

    >>> y, sr = librosa.load(librosa.ex('nutcracker'))
    >>> hop_length = 2048
    >>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
    >>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
    >>> rec = librosa.segment.recurrence_matrix(chroma_stack, mode='affinity', self=True)
    >>> rec_smooth = librosa.segment.path_enhance(rec, 51, window='hann', n_filters=7)

    Plot the recurrence matrix before and after smoothing

    >>> import matplotlib.pyplot as plt
    >>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
    >>> img = librosa.display.specshow(rec, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, ax=ax[0])
    >>> ax[0].set(title='Unfiltered recurrence')
    >>> imgpe = librosa.display.specshow(rec_smooth, x_axis='s', y_axis='s',
    ...                          hop_length=hop_length, ax=ax[1])
    >>> ax[1].set(title='Multi-angle enhanced recurrence')
    >>> ax[1].label_outer()
    >>> fig.colorbar(img, ax=ax[0], orientation='horizontal')
    >>> fig.colorbar(imgpe, ax=ax[1], orientation='horizontal')
    """

    if min_ratio is None:
        min_ratio = 1.0 / max_ratio
    elif min_ratio > max_ratio:
        raise ParameterError(
            "min_ratio={} cannot exceed max_ratio={}".format(min_ratio, max_ratio)
        )

    R_smooth = None
    for ratio in np.logspace(
        np.log2(min_ratio), np.log2(max_ratio), num=n_filters, base=2
    ):
        kernel = diagonal_filter(window, n, slope=ratio, zero_mean=zero_mean)

        # Expand leading dimensions to match R
        # This way, if R has shape, eg, [2, 3, n, n]
        # the expanded kernel will have shape [1, 1, m, m]

        # The following is valid for numpy >= 1.18
        # kernel = np.expand_dims(kernel, axis=list(np.arange(R.ndim - kernel.ndim)))

        # This is functionally equivalent, but works on numpy 1.17
        shape = [1] * R.ndim
        shape[-2:] = kernel.shape
        kernel = np.reshape(kernel, shape)

        if R_smooth is None:
            R_smooth = scipy.ndimage.convolve(R, kernel, **kwargs)
        else:
            # Compute the point-wise maximum in-place
            np.maximum(
                R_smooth, scipy.ndimage.convolve(R, kernel, **kwargs), out=R_smooth
            )

    if clip:
        # Clip the output in-place
        np.clip(R_smooth, 0, None, out=R_smooth)

    return R_smooth