File size: 38,530 Bytes
4cef980 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Temporal segmentation
=====================
Recurrence and self-similarity
------------------------------
.. autosummary::
:toctree: generated/
cross_similarity
recurrence_matrix
recurrence_to_lag
lag_to_recurrence
timelag_filter
path_enhance
Temporal clustering
-------------------
.. autosummary::
:toctree: generated/
agglomerative
subsegment
"""
from decorator import decorator
import numpy as np
import scipy
import scipy.signal
import scipy.ndimage
import sklearn
import sklearn.cluster
import sklearn.feature_extraction
import sklearn.neighbors
from ._cache import cache
from . import util
from .filters import diagonal_filter
from .util.exceptions import ParameterError
from .util.decorators import deprecate_positional_args
__all__ = [
"cross_similarity",
"recurrence_matrix",
"recurrence_to_lag",
"lag_to_recurrence",
"timelag_filter",
"agglomerative",
"subsegment",
"path_enhance",
]
@deprecate_positional_args
@cache(level=30)
def cross_similarity(
data,
data_ref,
*,
k=None,
metric="euclidean",
sparse=False,
mode="connectivity",
bandwidth=None,
):
"""Compute cross-similarity from one data sequence to a reference sequence.
The output is a matrix ``xsim``, where ``xsim[i, j]`` is non-zero
if ``data_ref[..., i]`` is a k-nearest neighbor of ``data[..., j]``.
Parameters
----------
data : np.ndarray [shape=(..., d, n)]
A feature matrix for the comparison sequence.
If the data has more than two dimensions (e.g., for multi-channel inputs),
the leading dimensions are flattened prior to comparison.
For example, a stereo input with shape `(2, d, n)` is
automatically reshaped to `(2 * d, n)`.
data_ref : np.ndarray [shape=(..., d, n_ref)]
A feature matrix for the reference sequence
If the data has more than two dimensions (e.g., for multi-channel inputs),
the leading dimensions are flattened prior to comparison.
For example, a stereo input with shape `(2, d, n_ref)` is
automatically reshaped to `(2 * d, n_ref)`.
k : int > 0 [scalar] or None
the number of nearest-neighbors for each sample
Default: ``k = 2 * ceil(sqrt(n_ref))``,
or ``k = 2`` if ``n_ref <= 3``
metric : str
Distance metric to use for nearest-neighbor calculation.
See `sklearn.neighbors.NearestNeighbors` for details.
sparse : bool [scalar]
if False, returns a dense type (ndarray)
if True, returns a sparse type (scipy.sparse.csc_matrix)
mode : str, {'connectivity', 'distance', 'affinity'}
If 'connectivity', a binary connectivity matrix is produced.
If 'distance', then a non-zero entry contains the distance between
points.
If 'affinity', then non-zero entries are mapped to
``exp( - distance(i, j) / bandwidth)`` where ``bandwidth`` is
as specified below.
bandwidth : None or float > 0
If using ``mode='affinity'``, this can be used to set the
bandwidth on the affinity kernel.
If no value is provided, it is set automatically to the median
distance to the k'th nearest neighbor of each ``data[:, i]``.
Returns
-------
xsim : np.ndarray or scipy.sparse.csc_matrix, [shape=(n_ref, n)]
Cross-similarity matrix
See Also
--------
recurrence_matrix
recurrence_to_lag
librosa.feature.stack_memory
sklearn.neighbors.NearestNeighbors
scipy.spatial.distance.cdist
Notes
-----
This function caches at level 30.
Examples
--------
Find nearest neighbors in CQT space between two sequences
>>> hop_length = 1024
>>> y_ref, sr = librosa.load(librosa.ex('pistachio'))
>>> y_comp, sr = librosa.load(librosa.ex('pistachio'), offset=10)
>>> chroma_ref = librosa.feature.chroma_cqt(y=y_ref, sr=sr, hop_length=hop_length)
>>> chroma_comp = librosa.feature.chroma_cqt(y=y_comp, sr=sr, hop_length=hop_length)
>>> # Use time-delay embedding to get a cleaner recurrence matrix
>>> x_ref = librosa.feature.stack_memory(chroma_ref, n_steps=10, delay=3)
>>> x_comp = librosa.feature.stack_memory(chroma_comp, n_steps=10, delay=3)
>>> xsim = librosa.segment.cross_similarity(x_comp, x_ref)
Or fix the number of nearest neighbors to 5
>>> xsim = librosa.segment.cross_similarity(x_comp, x_ref, k=5)
Use cosine similarity instead of Euclidean distance
>>> xsim = librosa.segment.cross_similarity(x_comp, x_ref, metric='cosine')
Use an affinity matrix instead of binary connectivity
>>> xsim_aff = librosa.segment.cross_similarity(x_comp, x_ref, metric='cosine', mode='affinity')
Plot the feature and recurrence matrices
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
>>> imgsim = librosa.display.specshow(xsim, x_axis='s', y_axis='s',
... hop_length=hop_length, ax=ax[0])
>>> ax[0].set(title='Binary cross-similarity (symmetric)')
>>> imgaff = librosa.display.specshow(xsim_aff, x_axis='s', y_axis='s',
... cmap='magma_r', hop_length=hop_length, ax=ax[1])
>>> ax[1].set(title='Cross-affinity')
>>> ax[1].label_outer()
>>> fig.colorbar(imgsim, ax=ax[0], orientation='horizontal', ticks=[0, 1])
>>> fig.colorbar(imgaff, ax=ax[1], orientation='horizontal')
"""
data_ref = np.atleast_2d(data_ref)
data = np.atleast_2d(data)
if not np.allclose(data_ref.shape[:-1], data.shape[:-1]):
raise ParameterError(
"data_ref.shape={} and data.shape={} do not match on leading dimension(s)".format(
data_ref.shape, data.shape
)
)
# swap data axes so the feature axis is last
data_ref = np.swapaxes(data_ref, -1, 0)
n_ref = data_ref.shape[0]
# Use F-ordering for reshape to preserve leading axis
data_ref = data_ref.reshape((n_ref, -1), order="F")
data = np.swapaxes(data, -1, 0)
n = data.shape[0]
data = data.reshape((n, -1), order="F")
if mode not in ["connectivity", "distance", "affinity"]:
raise ParameterError(
(
"Invalid mode='{}'. Must be one of "
"['connectivity', 'distance', "
"'affinity']"
).format(mode)
)
if k is None:
k = min(n_ref, 2 * np.ceil(np.sqrt(n_ref)))
k = int(k)
if bandwidth is not None:
if bandwidth <= 0:
raise ParameterError(
"Invalid bandwidth={}. " "Must be strictly positive.".format(bandwidth)
)
# Build the neighbor search object
# `auto` mode does not work with some choices of metric. Rather than special-case
# those here, we instead use a fall-back to brute force if auto fails.
try:
knn = sklearn.neighbors.NearestNeighbors(
n_neighbors=min(n_ref, k), metric=metric, algorithm="auto"
)
except ValueError:
knn = sklearn.neighbors.NearestNeighbors(
n_neighbors=min(n_ref, k), metric=metric, algorithm="brute"
)
knn.fit(data_ref)
# Get the knn graph
if mode == "affinity":
# sklearn's nearest neighbor doesn't support affinity,
# so we use distance here and then do the conversion post-hoc
kng_mode = "distance"
else:
kng_mode = mode
xsim = knn.kneighbors_graph(X=data, mode=kng_mode).tolil()
# Retain only the top-k links per point
for i in range(n):
# Get the links from point i
links = xsim[i].nonzero()[1]
# Order them ascending
idx = links[np.argsort(xsim[i, links].toarray())][0]
# Everything past the kth closest gets squashed
xsim[i, idx[k:]] = 0
# Convert a compressed sparse row (CSR) format
xsim = xsim.tocsr()
xsim.eliminate_zeros()
if mode == "connectivity":
xsim = xsim.astype(np.bool)
elif mode == "affinity":
if bandwidth is None:
bandwidth = np.nanmedian(xsim.max(axis=1).data)
xsim.data[:] = np.exp(xsim.data / (-1 * bandwidth))
# Transpose to n_ref by n
xsim = xsim.T
if not sparse:
xsim = xsim.toarray()
return xsim
@deprecate_positional_args
@cache(level=30)
def recurrence_matrix(
data,
*,
k=None,
width=1,
metric="euclidean",
sym=False,
sparse=False,
mode="connectivity",
bandwidth=None,
self=False,
axis=-1,
):
"""Compute a recurrence matrix from a data matrix.
``rec[i, j]`` is non-zero if ``data[..., i]`` is a k-nearest neighbor
of ``data[..., j]`` and ``|i - j| >= width``
The specific value of ``rec[i, j]`` can have several forms, governed
by the ``mode`` parameter below:
- Connectivity: ``rec[i, j] = 1 or 0`` indicates that frames ``i`` and ``j`` are repetitions
- Affinity: ``rec[i, j] > 0`` measures how similar frames ``i`` and ``j`` are. This is also
known as a (sparse) self-similarity matrix.
- Distance: ``rec[i, j] > 0`` measures how distant frames ``i`` and ``j`` are. This is also
known as a (sparse) self-distance matrix.
The general term *recurrence matrix* can refer to any of the three forms above.
Parameters
----------
data : np.ndarray [shape=(..., d, n)]
A feature matrix.
If the data has more than two dimensions (e.g., for multi-channel inputs),
the leading dimensions are flattened prior to comparison.
For example, a stereo input with shape `(2, d, n)` is
automatically reshaped to `(2 * d, n)`.
k : int > 0 [scalar] or None
the number of nearest-neighbors for each sample
Default: ``k = 2 * ceil(sqrt(t - 2 * width + 1))``,
or ``k = 2`` if ``t <= 2 * width + 1``
width : int >= 1 [scalar]
only link neighbors ``(data[..., i], data[..., j])``
if ``|i - j| >= width``
``width`` cannot exceed the length of the data.
metric : str
Distance metric to use for nearest-neighbor calculation.
See `sklearn.neighbors.NearestNeighbors` for details.
sym : bool [scalar]
set ``sym=True`` to only link mutual nearest-neighbors
sparse : bool [scalar]
if False, returns a dense type (ndarray)
if True, returns a sparse type (scipy.sparse.csc_matrix)
mode : str, {'connectivity', 'distance', 'affinity'}
If 'connectivity', a binary connectivity matrix is produced.
If 'distance', then a non-zero entry contains the distance between
points.
If 'affinity', then non-zero entries are mapped to
``exp( - distance(i, j) / bandwidth)`` where ``bandwidth`` is
as specified below.
bandwidth : None or float > 0
If using ``mode='affinity'``, this can be used to set the
bandwidth on the affinity kernel.
If no value is provided, it is set automatically to the median
distance between furthest nearest neighbors.
self : bool
If ``True``, then the main diagonal is populated with self-links:
0 if ``mode='distance'``, and 1 otherwise.
If ``False``, the main diagonal is left empty.
axis : int
The axis along which to compute recurrence.
By default, the last index (-1) is taken.
Returns
-------
rec : np.ndarray or scipy.sparse.csc_matrix, [shape=(t, t)]
Recurrence matrix
See Also
--------
sklearn.neighbors.NearestNeighbors
scipy.spatial.distance.cdist
librosa.feature.stack_memory
recurrence_to_lag
Notes
-----
This function caches at level 30.
Examples
--------
Find nearest neighbors in CQT space
>>> y, sr = librosa.load(librosa.ex('nutcracker'))
>>> hop_length = 1024
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
>>> # Use time-delay embedding to get a cleaner recurrence matrix
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
>>> R = librosa.segment.recurrence_matrix(chroma_stack)
Or fix the number of nearest neighbors to 5
>>> R = librosa.segment.recurrence_matrix(chroma_stack, k=5)
Suppress neighbors within +- 7 frames
>>> R = librosa.segment.recurrence_matrix(chroma_stack, width=7)
Use cosine similarity instead of Euclidean distance
>>> R = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine')
Require mutual nearest neighbors
>>> R = librosa.segment.recurrence_matrix(chroma_stack, sym=True)
Use an affinity matrix instead of binary connectivity
>>> R_aff = librosa.segment.recurrence_matrix(chroma_stack, metric='cosine',
... mode='affinity')
Plot the feature and recurrence matrices
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
>>> imgsim = librosa.display.specshow(R, x_axis='s', y_axis='s',
... hop_length=hop_length, ax=ax[0])
>>> ax[0].set(title='Binary recurrence (symmetric)')
>>> imgaff = librosa.display.specshow(R_aff, x_axis='s', y_axis='s',
... hop_length=hop_length, cmap='magma_r', ax=ax[1])
>>> ax[1].set(title='Affinity recurrence')
>>> ax[1].label_outer()
>>> fig.colorbar(imgsim, ax=ax[0], orientation='horizontal', ticks=[0, 1])
>>> fig.colorbar(imgaff, ax=ax[1], orientation='horizontal')
"""
data = np.atleast_2d(data)
# Swap observations to the first dimension and flatten the rest
data = np.swapaxes(data, axis, 0)
t = data.shape[0]
# Use F-ordering here to preserve leading axis layout
data = data.reshape((t, -1), order="F")
if width < 1 or width > t:
raise ParameterError(
"width={} must be at least 1 and at most data.shape[{}]={}".format(
width, axis, t
)
)
if mode not in ["connectivity", "distance", "affinity"]:
raise ParameterError(
(
"Invalid mode='{}'. Must be one of "
"['connectivity', 'distance', "
"'affinity']"
).format(mode)
)
if k is None:
if t > 2 * width + 1:
k = 2 * np.ceil(np.sqrt(t - 2 * width + 1))
else:
k = 2
if bandwidth is not None:
if bandwidth <= 0:
raise ParameterError(
"Invalid bandwidth={}. " "Must be strictly positive.".format(bandwidth)
)
k = int(k)
# Build the neighbor search object
try:
knn = sklearn.neighbors.NearestNeighbors(
n_neighbors=min(t - 1, k + 2 * width), metric=metric, algorithm="auto"
)
except ValueError:
knn = sklearn.neighbors.NearestNeighbors(
n_neighbors=min(t - 1, k + 2 * width), metric=metric, algorithm="brute"
)
knn.fit(data)
# Get the knn graph
if mode == "affinity":
kng_mode = "distance"
else:
kng_mode = mode
rec = knn.kneighbors_graph(mode=kng_mode).tolil()
# Remove connections within width
for diag in range(-width + 1, width):
rec.setdiag(0, diag)
# Retain only the top-k links per point
for i in range(t):
# Get the links from point i
links = rec[i].nonzero()[1]
# Order them ascending
idx = links[np.argsort(rec[i, links].toarray())][0]
# Everything past the kth closest gets squashed
rec[i, idx[k:]] = 0
if self:
if mode == "connectivity":
rec.setdiag(1)
elif mode == "affinity":
# we need to keep the self-loop in here, but not mess up the
# bandwidth estimation
#
# using negative distances here preserves the structure without changing
# the statistics of the data
rec.setdiag(-1)
# symmetrize
if sym:
# Note: this operation produces a CSR (compressed sparse row) matrix!
# This is why we have to do it after filling the diagonal in self-mode
rec = rec.minimum(rec.T)
rec = rec.tocsr()
rec.eliminate_zeros()
if mode == "connectivity":
rec = rec.astype(np.bool)
elif mode == "affinity":
if bandwidth is None:
bandwidth = np.nanmedian(rec.max(axis=1).data)
# Set all the negatives back to 0
# Negatives are temporarily inserted above to preserve the sparsity structure
# of the matrix without corrupting the bandwidth calculations
rec.data[rec.data < 0] = 0.0
rec.data[:] = np.exp(rec.data / (-1 * bandwidth))
# Transpose to be column-major
rec = rec.T
if not sparse:
rec = rec.toarray()
return rec
@deprecate_positional_args
def recurrence_to_lag(rec, *, pad=True, axis=-1):
"""Convert a recurrence matrix into a lag matrix.
``lag[i, j] == rec[i+j, j]``
This transformation turns diagonal structures in the recurrence matrix
into horizontal structures in the lag matrix.
These horizontal structures can be used to infer changes in the repetition
structure of a piece, e.g., the beginning of a new section as done in [#]_.
.. [#] Serra, J., Müller, M., Grosche, P., & Arcos, J. L. (2014).
Unsupervised music structure annotation by time series structure
features and segment similarity.
IEEE Transactions on Multimedia, 16(5), 1229-1240.
Parameters
----------
rec : np.ndarray, or scipy.sparse.spmatrix [shape=(n, n)]
A (binary) recurrence matrix, as returned by `recurrence_matrix`
pad : bool
If False, ``lag`` matrix is square, which is equivalent to
assuming that the signal repeats itself indefinitely.
If True, ``lag`` is padded with ``n`` zeros, which eliminates
the assumption of repetition.
axis : int
The axis to keep as the ``time`` axis.
The alternate axis will be converted to lag coordinates.
Returns
-------
lag : np.ndarray
The recurrence matrix in (lag, time) (if ``axis=1``)
or (time, lag) (if ``axis=0``) coordinates
Raises
------
ParameterError : if ``rec`` is non-square
See Also
--------
recurrence_matrix
lag_to_recurrence
util.shear
Examples
--------
>>> y, sr = librosa.load(librosa.ex('nutcracker'))
>>> hop_length = 1024
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
>>> recurrence = librosa.segment.recurrence_matrix(chroma_stack)
>>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True)
>>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, sharex=True)
>>> librosa.display.specshow(lag_pad, x_axis='time', y_axis='lag',
... hop_length=hop_length, ax=ax[0])
>>> ax[0].set(title='Lag (zero-padded)')
>>> ax[0].label_outer()
>>> librosa.display.specshow(lag_nopad, x_axis='time', y_axis='lag',
... hop_length=hop_length, ax=ax[1])
>>> ax[1].set(title='Lag (no padding)')
"""
axis = np.abs(axis)
if rec.ndim != 2 or rec.shape[0] != rec.shape[1]:
raise ParameterError(
"non-square recurrence matrix shape: " "{}".format(rec.shape)
)
sparse = scipy.sparse.issparse(rec)
if sparse:
fmt = rec.format
t = rec.shape[axis]
if pad:
if sparse:
padding = np.asarray([[1, 0]], dtype=rec.dtype).swapaxes(axis, 0)
if axis == 0:
rec_fmt = "csr"
else:
rec_fmt = "csc"
rec = scipy.sparse.kron(padding, rec, format=rec_fmt)
else:
padding = [(0, 0), (0, 0)]
padding[(1 - axis)] = (0, t)
rec = np.pad(rec, padding, mode="constant")
lag = util.shear(rec, factor=-1, axis=axis)
if sparse:
lag = lag.asformat(fmt)
return lag
@deprecate_positional_args
def lag_to_recurrence(lag, *, axis=-1):
"""Convert a lag matrix into a recurrence matrix.
Parameters
----------
lag : np.ndarray or scipy.sparse.spmatrix
A lag matrix, as produced by ``recurrence_to_lag``
axis : int
The axis corresponding to the time dimension.
The alternate axis will be interpreted in lag coordinates.
Returns
-------
rec : np.ndarray or scipy.sparse.spmatrix [shape=(n, n)]
A recurrence matrix in (time, time) coordinates
For sparse matrices, format will match that of ``lag``.
Raises
------
ParameterError : if ``lag`` does not have the correct shape
See Also
--------
recurrence_to_lag
Examples
--------
>>> y, sr = librosa.load(librosa.ex('nutcracker'))
>>> hop_length = 1024
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
>>> recurrence = librosa.segment.recurrence_matrix(chroma_stack)
>>> lag_pad = librosa.segment.recurrence_to_lag(recurrence, pad=True)
>>> lag_nopad = librosa.segment.recurrence_to_lag(recurrence, pad=False)
>>> rec_pad = librosa.segment.lag_to_recurrence(lag_pad)
>>> rec_nopad = librosa.segment.lag_to_recurrence(lag_nopad)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True)
>>> librosa.display.specshow(lag_pad, x_axis='s', y_axis='lag',
... hop_length=hop_length, ax=ax[0, 0])
>>> ax[0, 0].set(title='Lag (zero-padded)')
>>> ax[0, 0].label_outer()
>>> librosa.display.specshow(lag_nopad, x_axis='s', y_axis='time',
... hop_length=hop_length, ax=ax[0, 1])
>>> ax[0, 1].set(title='Lag (no padding)')
>>> ax[0, 1].label_outer()
>>> librosa.display.specshow(rec_pad, x_axis='s', y_axis='time',
... hop_length=hop_length, ax=ax[1, 0])
>>> ax[1, 0].set(title='Recurrence (with padding)')
>>> librosa.display.specshow(rec_nopad, x_axis='s', y_axis='time',
... hop_length=hop_length, ax=ax[1, 1])
>>> ax[1, 1].set(title='Recurrence (without padding)')
>>> ax[1, 1].label_outer()
"""
if axis not in [0, 1, -1]:
raise ParameterError("Invalid target axis: {}".format(axis))
axis = np.abs(axis)
if lag.ndim != 2 or (
lag.shape[0] != lag.shape[1] and lag.shape[1 - axis] != 2 * lag.shape[axis]
):
raise ParameterError("Invalid lag matrix shape: {}".format(lag.shape))
# Since lag must be 2-dimensional, abs(axis) = axis
t = lag.shape[axis]
rec = util.shear(lag, factor=+1, axis=axis)
sub_slice = [slice(None)] * rec.ndim
sub_slice[1 - axis] = slice(t)
return rec[tuple(sub_slice)]
def timelag_filter(function, pad=True, index=0):
"""Filtering in the time-lag domain.
This is primarily useful for adapting image filters to operate on
`recurrence_to_lag` output.
Using `timelag_filter` is equivalent to the following sequence of
operations:
>>> data_tl = librosa.segment.recurrence_to_lag(data)
>>> data_filtered_tl = function(data_tl)
>>> data_filtered = librosa.segment.lag_to_recurrence(data_filtered_tl)
Parameters
----------
function : callable
The filtering function to wrap, e.g., `scipy.ndimage.median_filter`
pad : bool
Whether to zero-pad the structure feature matrix
index : int >= 0
If ``function`` accepts input data as a positional argument, it should be
indexed by ``index``
Returns
-------
wrapped_function : callable
A new filter function which applies in time-lag space rather than
time-time space.
Examples
--------
Apply a 31-bin median filter to the diagonal of a recurrence matrix.
With default, parameters, this corresponds to a time window of about
0.72 seconds.
>>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=30)
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=3, delay=3)
>>> rec = librosa.segment.recurrence_matrix(chroma_stack)
>>> from scipy.ndimage import median_filter
>>> diagonal_median = librosa.segment.timelag_filter(median_filter)
>>> rec_filtered = diagonal_median(rec, size=(1, 31), mode='mirror')
Or with affinity weights
>>> rec_aff = librosa.segment.recurrence_matrix(chroma_stack, mode='affinity')
>>> rec_aff_fil = diagonal_median(rec_aff, size=(1, 31), mode='mirror')
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(nrows=2, ncols=2, sharex=True, sharey=True)
>>> librosa.display.specshow(rec, y_axis='s', x_axis='s', ax=ax[0, 0])
>>> ax[0, 0].set(title='Raw recurrence matrix')
>>> ax[0, 0].label_outer()
>>> librosa.display.specshow(rec_filtered, y_axis='s', x_axis='s', ax=ax[0, 1])
>>> ax[0, 1].set(title='Filtered recurrence matrix')
>>> ax[0, 1].label_outer()
>>> librosa.display.specshow(rec_aff, x_axis='s', y_axis='s',
... cmap='magma_r', ax=ax[1, 0])
>>> ax[1, 0].set(title='Raw affinity matrix')
>>> librosa.display.specshow(rec_aff_fil, x_axis='s', y_axis='s',
... cmap='magma_r', ax=ax[1, 1])
>>> ax[1, 1].set(title='Filtered affinity matrix')
>>> ax[1, 1].label_outer()
"""
def __my_filter(wrapped_f, *args, **kwargs):
"""Decorator to wrap the filter"""
# Map the input data into time-lag space
args = list(args)
args[index] = recurrence_to_lag(args[index], pad=pad)
# Apply the filtering function
result = wrapped_f(*args, **kwargs)
# Map back into time-time and return
return lag_to_recurrence(result)
return decorator(__my_filter, function)
@deprecate_positional_args
@cache(level=30)
def subsegment(data, frames, *, n_segments=4, axis=-1):
"""Sub-divide a segmentation by feature clustering.
Given a set of frame boundaries (``frames``), and a data matrix (``data``),
each successive interval defined by ``frames`` is partitioned into
``n_segments`` by constrained agglomerative clustering.
.. note::
If an interval spans fewer than ``n_segments`` frames, then each
frame becomes a sub-segment.
Parameters
----------
data : np.ndarray
Data matrix to use in clustering
frames : np.ndarray [shape=(n_boundaries,)], dtype=int, non-negative]
Array of beat or segment boundaries, as provided by
`librosa.beat.beat_track`,
`librosa.onset.onset_detect`,
or `agglomerative`.
n_segments : int > 0
Maximum number of frames to sub-divide each interval.
axis : int
Axis along which to apply the segmentation.
By default, the last index (-1) is taken.
Returns
-------
boundaries : np.ndarray [shape=(n_subboundaries,)]
List of sub-divided segment boundaries
See Also
--------
agglomerative : Temporal segmentation
librosa.onset.onset_detect : Onset detection
librosa.beat.beat_track : Beat tracking
Notes
-----
This function caches at level 30.
Examples
--------
Load audio, detect beat frames, and subdivide in twos by CQT
>>> y, sr = librosa.load(librosa.ex('choice'), duration=10)
>>> tempo, beats = librosa.beat.beat_track(y=y, sr=sr, hop_length=512)
>>> beat_times = librosa.frames_to_time(beats, sr=sr, hop_length=512)
>>> cqt = np.abs(librosa.cqt(y, sr=sr, hop_length=512))
>>> subseg = librosa.segment.subsegment(cqt, beats, n_segments=2)
>>> subseg_t = librosa.frames_to_time(subseg, sr=sr, hop_length=512)
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots()
>>> librosa.display.specshow(librosa.amplitude_to_db(cqt,
... ref=np.max),
... y_axis='cqt_hz', x_axis='time', ax=ax)
>>> lims = ax.get_ylim()
>>> ax.vlines(beat_times, lims[0], lims[1], color='lime', alpha=0.9,
... linewidth=2, label='Beats')
>>> ax.vlines(subseg_t, lims[0], lims[1], color='linen', linestyle='--',
... linewidth=1.5, alpha=0.5, label='Sub-beats')
>>> ax.legend()
>>> ax.set(title='CQT + Beat and sub-beat markers')
"""
frames = util.fix_frames(frames, x_min=0, x_max=data.shape[axis], pad=True)
if n_segments < 1:
raise ParameterError("n_segments must be a positive integer")
boundaries = []
idx_slices = [slice(None)] * data.ndim
for seg_start, seg_end in zip(frames[:-1], frames[1:]):
idx_slices[axis] = slice(seg_start, seg_end)
boundaries.extend(
seg_start
+ agglomerative(
data[tuple(idx_slices)], min(seg_end - seg_start, n_segments), axis=axis
)
)
return np.array(boundaries)
@deprecate_positional_args
def agglomerative(data, k, *, clusterer=None, axis=-1):
"""Bottom-up temporal segmentation.
Use a temporally-constrained agglomerative clustering routine to partition
``data`` into ``k`` contiguous segments.
Parameters
----------
data : np.ndarray
data to cluster
k : int > 0 [scalar]
number of segments to produce
clusterer : sklearn.cluster.AgglomerativeClustering, optional
An optional AgglomerativeClustering object.
If `None`, a constrained Ward object is instantiated.
axis : int
axis along which to cluster.
By default, the last axis (-1) is chosen.
Returns
-------
boundaries : np.ndarray [shape=(k,)]
left-boundaries (frame numbers) of detected segments. This
will always include `0` as the first left-boundary.
See Also
--------
sklearn.cluster.AgglomerativeClustering
Examples
--------
Cluster by chroma similarity, break into 20 segments
>>> y, sr = librosa.load(librosa.ex('nutcracker'), duration=15)
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr)
>>> bounds = librosa.segment.agglomerative(chroma, 20)
>>> bound_times = librosa.frames_to_time(bounds, sr=sr)
>>> bound_times
array([ 0. , 0.65 , 1.091, 1.927, 2.438, 2.902, 3.924,
4.783, 5.294, 5.712, 6.13 , 7.314, 8.522, 8.916,
9.66 , 10.844, 11.238, 12.028, 12.492, 14.095])
Plot the segmentation over the chromagram
>>> import matplotlib.pyplot as plt
>>> import matplotlib.transforms as mpt
>>> fig, ax = plt.subplots()
>>> trans = mpt.blended_transform_factory(
... ax.transData, ax.transAxes)
>>> librosa.display.specshow(chroma, y_axis='chroma', x_axis='time', ax=ax)
>>> ax.vlines(bound_times, 0, 1, color='linen', linestyle='--',
... linewidth=2, alpha=0.9, label='Segment boundaries',
... transform=trans)
>>> ax.legend()
>>> ax.set(title='Power spectrogram')
"""
# Make sure we have at least two dimensions
data = np.atleast_2d(data)
# Swap data index to position 0
data = np.swapaxes(data, axis, 0)
# Flatten the features
n = data.shape[0]
data = data.reshape((n, -1), order="F")
if clusterer is None:
# Connect the temporal connectivity graph
grid = sklearn.feature_extraction.image.grid_to_graph(n_x=n, n_y=1, n_z=1)
# Instantiate the clustering object
clusterer = sklearn.cluster.AgglomerativeClustering(
n_clusters=k, connectivity=grid, memory=cache.memory
)
# Fit the model
clusterer.fit(data)
# Find the change points from the labels
boundaries = [0]
boundaries.extend(list(1 + np.nonzero(np.diff(clusterer.labels_))[0].astype(int)))
return np.asarray(boundaries)
@deprecate_positional_args
def path_enhance(
R,
n,
*,
window="hann",
max_ratio=2.0,
min_ratio=None,
n_filters=7,
zero_mean=False,
clip=True,
**kwargs,
):
"""Multi-angle path enhancement for self- and cross-similarity matrices.
This function convolves multiple diagonal smoothing filters with a self-similarity (or
recurrence) matrix R, and aggregates the result by an element-wise maximum.
Technically, the output is a matrix R_smooth such that::
R_smooth[i, j] = max_theta (R * filter_theta)[i, j]
where `*` denotes 2-dimensional convolution, and ``filter_theta`` is a smoothing filter at
orientation theta.
This is intended to provide coherent temporal smoothing of self-similarity matrices
when there are changes in tempo.
Smoothing filters are generated at evenly spaced orientations between min_ratio and
max_ratio.
This function is inspired by the multi-angle path enhancement of [#]_, but differs by
modeling tempo differences in the space of similarity matrices rather than re-sampling
the underlying features prior to generating the self-similarity matrix.
.. [#] Müller, Meinard and Frank Kurth.
"Enhancing similarity matrices for music audio analysis."
2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
Vol. 5. IEEE, 2006.
.. note:: if using recurrence_matrix to construct the input similarity matrix, be sure to include the main
diagonal by setting ``self=True``. Otherwise, the diagonal will be suppressed, and this is likely to
produce discontinuities which will pollute the smoothing filter response.
Parameters
----------
R : np.ndarray
The self- or cross-similarity matrix to be smoothed.
Note: sparse inputs are not supported.
If the recurrence matrix is multi-dimensional, e.g. `shape=(c, n, n)`,
then enhancement is conducted independently for each leading channel.
n : int > 0
The length of the smoothing filter
window : window specification
The type of smoothing filter to use. See `filters.get_window` for more information
on window specification formats.
max_ratio : float > 0
The maximum tempo ratio to support
min_ratio : float > 0
The minimum tempo ratio to support.
If not provided, it will default to ``1/max_ratio``
n_filters : int >= 1
The number of different smoothing filters to use, evenly spaced
between ``min_ratio`` and ``max_ratio``.
If ``min_ratio = 1/max_ratio`` (the default), using an odd number
of filters will ensure that the main diagonal (ratio=1) is included.
zero_mean : bool
By default, the smoothing filters are non-negative and sum to one (i.e. are averaging
filters).
If ``zero_mean=True``, then the smoothing filters are made to sum to zero by subtracting
a constant value from the non-diagonal coordinates of the filter. This is primarily
useful for suppressing blocks while enhancing diagonals.
clip : bool
If True, the smoothed similarity matrix will be thresholded at 0, and will not contain
negative entries.
**kwargs : additional keyword arguments
Additional arguments to pass to `scipy.ndimage.convolve`
Returns
-------
R_smooth : np.ndarray, shape=R.shape
The smoothed self- or cross-similarity matrix
See Also
--------
librosa.filters.diagonal_filter
recurrence_matrix
Examples
--------
Use a 51-frame diagonal smoothing filter to enhance paths in a recurrence matrix
>>> y, sr = librosa.load(librosa.ex('nutcracker'))
>>> hop_length = 2048
>>> chroma = librosa.feature.chroma_cqt(y=y, sr=sr, hop_length=hop_length)
>>> chroma_stack = librosa.feature.stack_memory(chroma, n_steps=10, delay=3)
>>> rec = librosa.segment.recurrence_matrix(chroma_stack, mode='affinity', self=True)
>>> rec_smooth = librosa.segment.path_enhance(rec, 51, window='hann', n_filters=7)
Plot the recurrence matrix before and after smoothing
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(ncols=2, sharex=True, sharey=True)
>>> img = librosa.display.specshow(rec, x_axis='s', y_axis='s',
... hop_length=hop_length, ax=ax[0])
>>> ax[0].set(title='Unfiltered recurrence')
>>> imgpe = librosa.display.specshow(rec_smooth, x_axis='s', y_axis='s',
... hop_length=hop_length, ax=ax[1])
>>> ax[1].set(title='Multi-angle enhanced recurrence')
>>> ax[1].label_outer()
>>> fig.colorbar(img, ax=ax[0], orientation='horizontal')
>>> fig.colorbar(imgpe, ax=ax[1], orientation='horizontal')
"""
if min_ratio is None:
min_ratio = 1.0 / max_ratio
elif min_ratio > max_ratio:
raise ParameterError(
"min_ratio={} cannot exceed max_ratio={}".format(min_ratio, max_ratio)
)
R_smooth = None
for ratio in np.logspace(
np.log2(min_ratio), np.log2(max_ratio), num=n_filters, base=2
):
kernel = diagonal_filter(window, n, slope=ratio, zero_mean=zero_mean)
# Expand leading dimensions to match R
# This way, if R has shape, eg, [2, 3, n, n]
# the expanded kernel will have shape [1, 1, m, m]
# The following is valid for numpy >= 1.18
# kernel = np.expand_dims(kernel, axis=list(np.arange(R.ndim - kernel.ndim)))
# This is functionally equivalent, but works on numpy 1.17
shape = [1] * R.ndim
shape[-2:] = kernel.shape
kernel = np.reshape(kernel, shape)
if R_smooth is None:
R_smooth = scipy.ndimage.convolve(R, kernel, **kwargs)
else:
# Compute the point-wise maximum in-place
np.maximum(
R_smooth, scipy.ndimage.convolve(R, kernel, **kwargs), out=R_smooth
)
if clip:
# Clip the output in-place
np.clip(R_smooth, 0, None, out=R_smooth)
return R_smooth
|