|
|
|
|
|
|
|
|
"""Utilities for spectral processing""" |
|
|
import warnings |
|
|
|
|
|
import numpy as np |
|
|
import scipy |
|
|
import scipy.ndimage |
|
|
import scipy.signal |
|
|
import scipy.interpolate |
|
|
|
|
|
from numba import jit |
|
|
|
|
|
from . import convert |
|
|
from .fft import get_fftlib |
|
|
from .audio import resample |
|
|
from .._cache import cache |
|
|
from .. import util |
|
|
from ..util.exceptions import ParameterError |
|
|
from ..filters import get_window, semitone_filterbank |
|
|
from ..filters import window_sumsquare |
|
|
from ..util.decorators import deprecate_positional_args |
|
|
|
|
|
__all__ = [ |
|
|
"stft", |
|
|
"istft", |
|
|
"magphase", |
|
|
"iirt", |
|
|
"reassigned_spectrogram", |
|
|
"phase_vocoder", |
|
|
"perceptual_weighting", |
|
|
"power_to_db", |
|
|
"db_to_power", |
|
|
"amplitude_to_db", |
|
|
"db_to_amplitude", |
|
|
"fmt", |
|
|
"pcen", |
|
|
"griffinlim", |
|
|
] |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=20) |
|
|
def stft( |
|
|
y, |
|
|
*, |
|
|
n_fft=2048, |
|
|
hop_length=None, |
|
|
win_length=None, |
|
|
window="hann", |
|
|
center=True, |
|
|
dtype=None, |
|
|
pad_mode="constant", |
|
|
): |
|
|
"""Short-time Fourier transform (STFT). |
|
|
|
|
|
The STFT represents a signal in the time-frequency domain by |
|
|
computing discrete Fourier transforms (DFT) over short overlapping |
|
|
windows. |
|
|
|
|
|
This function returns a complex-valued matrix D such that |
|
|
|
|
|
- ``np.abs(D[..., f, t])`` is the magnitude of frequency bin ``f`` |
|
|
at frame ``t``, and |
|
|
|
|
|
- ``np.angle(D[..., f, t])`` is the phase of frequency bin ``f`` |
|
|
at frame ``t``. |
|
|
|
|
|
The integers ``t`` and ``f`` can be converted to physical units by means |
|
|
of the utility functions `frames_to_samples` and `fft_frequencies`. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
y : np.ndarray [shape=(..., n)], real-valued |
|
|
input signal. Multi-channel is supported. |
|
|
|
|
|
n_fft : int > 0 [scalar] |
|
|
length of the windowed signal after padding with zeros. |
|
|
The number of rows in the STFT matrix ``D`` is ``(1 + n_fft/2)``. |
|
|
The default value, ``n_fft=2048`` samples, corresponds to a physical |
|
|
duration of 93 milliseconds at a sample rate of 22050 Hz, i.e. the |
|
|
default sample rate in librosa. This value is well adapted for music |
|
|
signals. However, in speech processing, the recommended value is 512, |
|
|
corresponding to 23 milliseconds at a sample rate of 22050 Hz. |
|
|
In any case, we recommend setting ``n_fft`` to a power of two for |
|
|
optimizing the speed of the fast Fourier transform (FFT) algorithm. |
|
|
|
|
|
hop_length : int > 0 [scalar] |
|
|
number of audio samples between adjacent STFT columns. |
|
|
|
|
|
Smaller values increase the number of columns in ``D`` without |
|
|
affecting the frequency resolution of the STFT. |
|
|
|
|
|
If unspecified, defaults to ``win_length // 4`` (see below). |
|
|
|
|
|
win_length : int <= n_fft [scalar] |
|
|
Each frame of audio is windowed by ``window`` of length ``win_length`` |
|
|
and then padded with zeros to match ``n_fft``. |
|
|
|
|
|
Smaller values improve the temporal resolution of the STFT (i.e. the |
|
|
ability to discriminate impulses that are closely spaced in time) |
|
|
at the expense of frequency resolution (i.e. the ability to discriminate |
|
|
pure tones that are closely spaced in frequency). This effect is known |
|
|
as the time-frequency localization trade-off and needs to be adjusted |
|
|
according to the properties of the input signal ``y``. |
|
|
|
|
|
If unspecified, defaults to ``win_length = n_fft``. |
|
|
|
|
|
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] |
|
|
Either: |
|
|
|
|
|
- a window specification (string, tuple, or number); |
|
|
see `scipy.signal.get_window` |
|
|
- a window function, such as `scipy.signal.windows.hann` |
|
|
- a vector or array of length ``n_fft`` |
|
|
|
|
|
Defaults to a raised cosine window (`'hann'`), which is adequate for |
|
|
most applications in audio signal processing. |
|
|
|
|
|
.. see also:: `filters.get_window` |
|
|
|
|
|
center : boolean |
|
|
If ``True``, the signal ``y`` is padded so that frame |
|
|
``D[:, t]`` is centered at ``y[t * hop_length]``. |
|
|
|
|
|
If ``False``, then ``D[:, t]`` begins at ``y[t * hop_length]``. |
|
|
|
|
|
Defaults to ``True``, which simplifies the alignment of ``D`` onto a |
|
|
time grid by means of `librosa.frames_to_samples`. |
|
|
Note, however, that ``center`` must be set to `False` when analyzing |
|
|
signals with `librosa.stream`. |
|
|
|
|
|
.. see also:: `librosa.stream` |
|
|
|
|
|
dtype : np.dtype, optional |
|
|
Complex numeric type for ``D``. Default is inferred to match the |
|
|
precision of the input signal. |
|
|
|
|
|
pad_mode : string or function |
|
|
If ``center=True``, this argument is passed to `np.pad` for padding |
|
|
the edges of the signal ``y``. By default (``pad_mode="constant"``), |
|
|
``y`` is padded on both sides with zeros. |
|
|
If ``center=False``, this argument is ignored. |
|
|
|
|
|
.. see also:: `numpy.pad` |
|
|
|
|
|
Returns |
|
|
------- |
|
|
D : np.ndarray [shape=(..., 1 + n_fft/2, n_frames), dtype=dtype] |
|
|
Complex-valued matrix of short-term Fourier transform |
|
|
coefficients. |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
istft : Inverse STFT |
|
|
reassigned_spectrogram : Time-frequency reassigned spectrogram |
|
|
|
|
|
Notes |
|
|
----- |
|
|
This function caches at level 20. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> S = np.abs(librosa.stft(y)) |
|
|
>>> S |
|
|
array([[5.395e-03, 3.332e-03, ..., 9.862e-07, 1.201e-05], |
|
|
[3.244e-03, 2.690e-03, ..., 9.536e-07, 1.201e-05], |
|
|
..., |
|
|
[7.523e-05, 3.722e-05, ..., 1.188e-04, 1.031e-03], |
|
|
[7.640e-05, 3.944e-05, ..., 5.180e-04, 1.346e-03]], |
|
|
dtype=float32) |
|
|
|
|
|
Use left-aligned frames, instead of centered frames |
|
|
|
|
|
>>> S_left = librosa.stft(y, center=False) |
|
|
|
|
|
Use a shorter hop length |
|
|
|
|
|
>>> D_short = librosa.stft(y, hop_length=64) |
|
|
|
|
|
Display a spectrogram |
|
|
|
|
|
>>> import matplotlib.pyplot as plt |
|
|
>>> fig, ax = plt.subplots() |
|
|
>>> img = librosa.display.specshow(librosa.amplitude_to_db(S, |
|
|
... ref=np.max), |
|
|
... y_axis='log', x_axis='time', ax=ax) |
|
|
>>> ax.set_title('Power spectrogram') |
|
|
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB") |
|
|
""" |
|
|
|
|
|
|
|
|
if win_length is None: |
|
|
win_length = n_fft |
|
|
|
|
|
|
|
|
if hop_length is None: |
|
|
hop_length = int(win_length // 4) |
|
|
|
|
|
|
|
|
util.valid_audio(y, mono=False) |
|
|
|
|
|
fft_window = get_window(window, win_length, fftbins=True) |
|
|
|
|
|
|
|
|
fft_window = util.pad_center(fft_window, size=n_fft) |
|
|
|
|
|
|
|
|
fft_window = util.expand_to(fft_window, ndim=1 + y.ndim, axes=-2) |
|
|
|
|
|
|
|
|
if center: |
|
|
if n_fft > y.shape[-1]: |
|
|
warnings.warn( |
|
|
"n_fft={} is too small for input signal of length={}".format( |
|
|
n_fft, y.shape[-1] |
|
|
), |
|
|
stacklevel=2, |
|
|
) |
|
|
|
|
|
padding = [(0, 0) for _ in range(y.ndim)] |
|
|
padding[-1] = (int(n_fft // 2), int(n_fft // 2)) |
|
|
y = np.pad(y, padding, mode=pad_mode) |
|
|
|
|
|
elif n_fft > y.shape[-1]: |
|
|
raise ParameterError( |
|
|
"n_fft={} is too large for input signal of length={}".format( |
|
|
n_fft, y.shape[-1] |
|
|
) |
|
|
) |
|
|
|
|
|
|
|
|
y_frames = util.frame(y, frame_length=n_fft, hop_length=hop_length) |
|
|
|
|
|
fft = get_fftlib() |
|
|
|
|
|
if dtype is None: |
|
|
dtype = util.dtype_r2c(y.dtype) |
|
|
|
|
|
|
|
|
shape = list(y_frames.shape) |
|
|
shape[-2] = 1 + n_fft // 2 |
|
|
stft_matrix = np.empty(shape, dtype=dtype, order="F") |
|
|
|
|
|
n_columns = util.MAX_MEM_BLOCK // ( |
|
|
np.prod(stft_matrix.shape[:-1]) * stft_matrix.itemsize |
|
|
) |
|
|
n_columns = max(n_columns, 1) |
|
|
|
|
|
for bl_s in range(0, stft_matrix.shape[-1], n_columns): |
|
|
bl_t = min(bl_s + n_columns, stft_matrix.shape[-1]) |
|
|
|
|
|
stft_matrix[..., bl_s:bl_t] = fft.rfft( |
|
|
fft_window * y_frames[..., bl_s:bl_t], axis=-2 |
|
|
) |
|
|
return stft_matrix |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=30) |
|
|
def istft( |
|
|
stft_matrix, |
|
|
*, |
|
|
hop_length=None, |
|
|
win_length=None, |
|
|
n_fft=None, |
|
|
window="hann", |
|
|
center=True, |
|
|
dtype=None, |
|
|
length=None, |
|
|
): |
|
|
""" |
|
|
Inverse short-time Fourier transform (ISTFT). |
|
|
|
|
|
Converts a complex-valued spectrogram ``stft_matrix`` to time-series ``y`` |
|
|
by minimizing the mean squared error between ``stft_matrix`` and STFT of |
|
|
``y`` as described in [#]_ up to Section 2 (reconstruction from MSTFT). |
|
|
|
|
|
In general, window function, hop length and other parameters should be same |
|
|
as in stft, which mostly leads to perfect reconstruction of a signal from |
|
|
unmodified ``stft_matrix``. |
|
|
|
|
|
.. [#] D. W. Griffin and J. S. Lim, |
|
|
"Signal estimation from modified short-time Fourier transform," |
|
|
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
stft_matrix : np.ndarray [shape=(..., 1 + n_fft//2, t)] |
|
|
STFT matrix from ``stft`` |
|
|
|
|
|
hop_length : int > 0 [scalar] |
|
|
Number of frames between STFT columns. |
|
|
If unspecified, defaults to ``win_length // 4``. |
|
|
|
|
|
win_length : int <= n_fft = 2 * (stft_matrix.shape[0] - 1) |
|
|
When reconstructing the time series, each frame is windowed |
|
|
and each sample is normalized by the sum of squared window |
|
|
according to the ``window`` function (see below). |
|
|
|
|
|
If unspecified, defaults to ``n_fft``. |
|
|
|
|
|
n_fft : int > 0 or None |
|
|
The number of samples per frame in the input spectrogram. |
|
|
By default, this will be inferred from the shape of ``stft_matrix``. |
|
|
However, if an odd frame length was used, you can specify the correct |
|
|
length by setting ``n_fft``. |
|
|
|
|
|
window : string, tuple, number, function, np.ndarray [shape=(n_fft,)] |
|
|
- a window specification (string, tuple, or number); |
|
|
see `scipy.signal.get_window` |
|
|
- a window function, such as `scipy.signal.windows.hann` |
|
|
- a user-specified window vector of length ``n_fft`` |
|
|
|
|
|
.. see also:: `filters.get_window` |
|
|
|
|
|
center : boolean |
|
|
- If ``True``, ``D`` is assumed to have centered frames. |
|
|
- If ``False``, ``D`` is assumed to have left-aligned frames. |
|
|
|
|
|
dtype : numeric type |
|
|
Real numeric type for ``y``. Default is to match the numerical |
|
|
precision of the input spectrogram. |
|
|
|
|
|
length : int > 0, optional |
|
|
If provided, the output ``y`` is zero-padded or clipped to exactly |
|
|
``length`` samples. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
y : np.ndarray [shape=(..., n)] |
|
|
time domain signal reconstructed from ``stft_matrix``. |
|
|
If ``stft_matrix`` contains more than two axes |
|
|
(e.g., from a stereo input signal), then ``y`` will match shape on the leading dimensions. |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
stft : Short-time Fourier Transform |
|
|
|
|
|
Notes |
|
|
----- |
|
|
This function caches at level 30. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> D = librosa.stft(y) |
|
|
>>> y_hat = librosa.istft(D) |
|
|
>>> y_hat |
|
|
array([-1.407e-03, -4.461e-04, ..., 5.131e-06, -1.417e-05], |
|
|
dtype=float32) |
|
|
|
|
|
Exactly preserving length of the input signal requires explicit padding. |
|
|
Otherwise, a partial frame at the end of ``y`` will not be represented. |
|
|
|
|
|
>>> n = len(y) |
|
|
>>> n_fft = 2048 |
|
|
>>> y_pad = librosa.util.fix_length(y, size=n + n_fft // 2) |
|
|
>>> D = librosa.stft(y_pad, n_fft=n_fft) |
|
|
>>> y_out = librosa.istft(D, length=n) |
|
|
>>> np.max(np.abs(y - y_out)) |
|
|
8.940697e-08 |
|
|
""" |
|
|
|
|
|
if n_fft is None: |
|
|
n_fft = 2 * (stft_matrix.shape[-2] - 1) |
|
|
|
|
|
|
|
|
if win_length is None: |
|
|
win_length = n_fft |
|
|
|
|
|
|
|
|
if hop_length is None: |
|
|
hop_length = int(win_length // 4) |
|
|
|
|
|
ifft_window = get_window(window, win_length, fftbins=True) |
|
|
|
|
|
|
|
|
ifft_window = util.pad_center(ifft_window, size=n_fft) |
|
|
ifft_window = util.expand_to(ifft_window, ndim=stft_matrix.ndim, axes=-2) |
|
|
|
|
|
|
|
|
if length: |
|
|
if center: |
|
|
padded_length = length + int(n_fft) |
|
|
else: |
|
|
padded_length = length |
|
|
n_frames = min(stft_matrix.shape[-1], int(np.ceil(padded_length / hop_length))) |
|
|
else: |
|
|
n_frames = stft_matrix.shape[-1] |
|
|
|
|
|
if dtype is None: |
|
|
dtype = util.dtype_c2r(stft_matrix.dtype) |
|
|
|
|
|
shape = list(stft_matrix.shape[:-2]) |
|
|
expected_signal_len = n_fft + hop_length * (n_frames - 1) |
|
|
shape.append(expected_signal_len) |
|
|
y = np.zeros(shape, dtype=dtype) |
|
|
|
|
|
n_columns = util.MAX_MEM_BLOCK // ( |
|
|
np.prod(stft_matrix.shape[:-1]) * stft_matrix.itemsize |
|
|
) |
|
|
n_columns = max(n_columns, 1) |
|
|
|
|
|
fft = get_fftlib() |
|
|
|
|
|
frame = 0 |
|
|
for bl_s in range(0, n_frames, n_columns): |
|
|
bl_t = min(bl_s + n_columns, n_frames) |
|
|
|
|
|
|
|
|
ytmp = ifft_window * fft.irfft(stft_matrix[..., bl_s:bl_t], n=n_fft, axis=-2) |
|
|
|
|
|
|
|
|
__overlap_add(y[..., frame * hop_length :], ytmp, hop_length) |
|
|
|
|
|
frame += bl_t - bl_s |
|
|
|
|
|
|
|
|
ifft_window_sum = window_sumsquare( |
|
|
window=window, |
|
|
n_frames=n_frames, |
|
|
win_length=win_length, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
dtype=dtype, |
|
|
) |
|
|
|
|
|
approx_nonzero_indices = ifft_window_sum > util.tiny(ifft_window_sum) |
|
|
y[..., approx_nonzero_indices] /= ifft_window_sum[approx_nonzero_indices] |
|
|
|
|
|
if length is None: |
|
|
|
|
|
|
|
|
if center: |
|
|
y = y[..., int(n_fft // 2) : -int(n_fft // 2)] |
|
|
else: |
|
|
if center: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start = int(n_fft // 2) |
|
|
else: |
|
|
|
|
|
start = 0 |
|
|
|
|
|
y = util.fix_length(y[..., start:], size=length) |
|
|
|
|
|
return y |
|
|
|
|
|
|
|
|
@jit(nopython=True, cache=True) |
|
|
def __overlap_add(y, ytmp, hop_length): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n_fft = ytmp.shape[-2] |
|
|
for frame in range(ytmp.shape[-1]): |
|
|
sample = frame * hop_length |
|
|
y[..., sample : (sample + n_fft)] += ytmp[..., frame] |
|
|
|
|
|
|
|
|
def __reassign_frequencies( |
|
|
y, |
|
|
sr=22050, |
|
|
S=None, |
|
|
n_fft=2048, |
|
|
hop_length=None, |
|
|
win_length=None, |
|
|
window="hann", |
|
|
center=True, |
|
|
dtype=None, |
|
|
pad_mode="constant", |
|
|
): |
|
|
"""Instantaneous frequencies based on a spectrogram representation. |
|
|
|
|
|
The reassignment vector is calculated using equation 5.20 in Flandrin, |
|
|
Auger, & Chassande-Mottin 2002:: |
|
|
|
|
|
omega_reassigned = omega - np.imag(S_dh/S_h) |
|
|
|
|
|
where ``S_h`` is the complex STFT calculated using the original window, and |
|
|
``S_dh`` is the complex STFT calculated using the derivative of the original |
|
|
window. |
|
|
|
|
|
See `reassigned_spectrogram` for references. |
|
|
|
|
|
It is recommended to use ``pad_mode="wrap"`` or else ``center=False``, rather |
|
|
than the defaults. Frequency reassignment assumes that the energy in each |
|
|
FFT bin is associated with exactly one signal component. Reflection padding |
|
|
at the edges of the signal may invalidate the reassigned estimates in the |
|
|
boundary frames. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
y : np.ndarray [shape=(..., n,)], real-valued |
|
|
audio time series. Multi-channel is supported. |
|
|
|
|
|
sr : number > 0 [scalar] |
|
|
sampling rate of ``y`` |
|
|
|
|
|
S : np.ndarray [shape=(..., d, t)] or None |
|
|
(optional) complex STFT calculated using the other arguments provided |
|
|
to `__reassign_frequencies` |
|
|
|
|
|
n_fft : int > 0 [scalar] |
|
|
FFT window size. Defaults to 2048. |
|
|
|
|
|
hop_length : int > 0 [scalar] |
|
|
hop length, number samples between subsequent frames. |
|
|
If not supplied, defaults to ``win_length // 4``. |
|
|
|
|
|
win_length : int > 0, <= n_fft |
|
|
Window length. Defaults to ``n_fft``. |
|
|
See ``stft`` for details. |
|
|
|
|
|
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] |
|
|
- a window specification (string, tuple, number); |
|
|
see `scipy.signal.get_window` |
|
|
- a window function, such as `scipy.signal.windows.hann` |
|
|
- a user-specified window vector of length ``n_fft`` |
|
|
|
|
|
See `stft` for details. |
|
|
|
|
|
.. see also:: `filters.get_window` |
|
|
|
|
|
center : boolean |
|
|
- If ``True``, the signal ``y`` is padded so that frame |
|
|
``S[:, t]`` is centered at ``y[t * hop_length]``. |
|
|
- If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``. |
|
|
|
|
|
dtype : numeric type |
|
|
Complex numeric type for ``S``. Default is inferred to match |
|
|
the numerical precision of the input signal. |
|
|
|
|
|
pad_mode : string |
|
|
If ``center=True``, the padding mode to use at the edges of the signal. |
|
|
By default, STFT uses zero padding. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
freqs : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real] |
|
|
Instantaneous frequencies: |
|
|
``freqs[f, t]`` is the frequency for bin ``f``, frame ``t``. |
|
|
S : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=complex] |
|
|
Short-time Fourier transform |
|
|
|
|
|
Warns |
|
|
----- |
|
|
RuntimeWarning |
|
|
Frequencies with zero support will produce a divide-by-zero warning and |
|
|
will be returned as `np.nan`. |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
stft : Short-time Fourier Transform |
|
|
reassigned_spectrogram : Time-frequency reassigned spectrogram |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> frequencies, S = librosa.core.spectrum.__reassign_frequencies(y, sr=sr) |
|
|
>>> frequencies |
|
|
array([[0.000e+00, 0.000e+00, ..., 0.000e+00, 0.000e+00], |
|
|
[3.628e+00, 4.698e+00, ..., 1.239e+01, 1.072e+01], |
|
|
..., |
|
|
[1.101e+04, 1.102e+04, ..., 1.105e+04, 1.102e+04], |
|
|
[1.102e+04, 1.102e+04, ..., 1.102e+04, 1.102e+04]]) |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
if win_length is None: |
|
|
win_length = n_fft |
|
|
|
|
|
window = get_window(window, win_length, fftbins=True) |
|
|
window = util.pad_center(window, size=n_fft) |
|
|
|
|
|
if S is None: |
|
|
if dtype is None: |
|
|
dtype = util.dtype_r2c(y.dtype) |
|
|
|
|
|
S_h = stft( |
|
|
y=y, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
window=window, |
|
|
center=center, |
|
|
dtype=dtype, |
|
|
pad_mode=pad_mode, |
|
|
) |
|
|
|
|
|
else: |
|
|
if dtype is None: |
|
|
dtype = S.dtype |
|
|
|
|
|
S_h = S |
|
|
|
|
|
|
|
|
window_derivative = util.cyclic_gradient(window) |
|
|
|
|
|
S_dh = stft( |
|
|
y=y, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
window=window_derivative, |
|
|
center=center, |
|
|
dtype=dtype, |
|
|
pad_mode=pad_mode, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
correction = -np.imag(S_dh / S_h) |
|
|
|
|
|
freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft) |
|
|
freqs = util.expand_to(freqs, ndim=correction.ndim, axes=-2) + correction * ( |
|
|
0.5 * sr / np.pi |
|
|
) |
|
|
|
|
|
return freqs, S_h |
|
|
|
|
|
|
|
|
def __reassign_times( |
|
|
y, |
|
|
sr=22050, |
|
|
S=None, |
|
|
n_fft=2048, |
|
|
hop_length=None, |
|
|
win_length=None, |
|
|
window="hann", |
|
|
center=True, |
|
|
dtype=None, |
|
|
pad_mode="constant", |
|
|
): |
|
|
"""Time reassignments based on a spectrogram representation. |
|
|
|
|
|
The reassignment vector is calculated using equation 5.23 in Flandrin, |
|
|
Auger, & Chassande-Mottin 2002:: |
|
|
|
|
|
t_reassigned = t + np.real(S_th/S_h) |
|
|
|
|
|
where ``S_h`` is the complex STFT calculated using the original window, and |
|
|
``S_th`` is the complex STFT calculated using the original window multiplied |
|
|
by the time offset from the window center. |
|
|
|
|
|
See `reassigned_spectrogram` for references. |
|
|
|
|
|
It is recommended to use ``pad_mode="constant"`` (zero padding) or else |
|
|
``center=False``, rather than the defaults. Time reassignment assumes that |
|
|
the energy in each FFT bin is associated with exactly one impulse event. |
|
|
Reflection padding at the edges of the signal may invalidate the reassigned |
|
|
estimates in the boundary frames. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
y : np.ndarray [shape=(..., n,)], real-valued |
|
|
audio time series. Multi-channel is supported. |
|
|
|
|
|
sr : number > 0 [scalar] |
|
|
sampling rate of ``y`` |
|
|
|
|
|
S : np.ndarray [shape=(..., d, t)] or None |
|
|
(optional) complex STFT calculated using the other arguments provided |
|
|
to `__reassign_times` |
|
|
|
|
|
n_fft : int > 0 [scalar] |
|
|
FFT window size. Defaults to 2048. |
|
|
|
|
|
hop_length : int > 0 [scalar] |
|
|
hop length, number samples between subsequent frames. |
|
|
If not supplied, defaults to ``win_length // 4``. |
|
|
|
|
|
win_length : int > 0, <= n_fft |
|
|
Window length. Defaults to ``n_fft``. |
|
|
See `stft` for details. |
|
|
|
|
|
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] |
|
|
- a window specification (string, tuple, number); |
|
|
see `scipy.signal.get_window` |
|
|
- a window function, such as `scipy.signal.windows.hann` |
|
|
- a user-specified window vector of length ``n_fft`` |
|
|
|
|
|
See `stft` for details. |
|
|
|
|
|
.. see also:: `filters.get_window` |
|
|
|
|
|
center : boolean |
|
|
- If ``True``, the signal ``y`` is padded so that frame |
|
|
``S[:, t]`` is centered at ``y[t * hop_length]``. |
|
|
- If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``. |
|
|
|
|
|
dtype : numeric type |
|
|
Complex numeric type for ``S``. Default is inferred to match |
|
|
the precision of the input signal. |
|
|
|
|
|
pad_mode : string |
|
|
If ``center=True``, the padding mode to use at the edges of the signal. |
|
|
By default, STFT uses zero padding. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
times : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real] |
|
|
Reassigned times: |
|
|
``times[f, t]`` is the time for bin ``f``, frame ``t``. |
|
|
S : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=complex] |
|
|
Short-time Fourier transform |
|
|
|
|
|
Warns |
|
|
----- |
|
|
RuntimeWarning |
|
|
Time estimates with zero support will produce a divide-by-zero warning |
|
|
and will be returned as `np.nan`. |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
stft : Short-time Fourier Transform |
|
|
reassigned_spectrogram : Time-frequency reassigned spectrogram |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> times, S = librosa.core.spectrum.__reassign_times(y, sr=sr) |
|
|
>>> times |
|
|
array([[ 2.268e-05, 1.144e-02, ..., 5.332e+00, 5.333e+00], |
|
|
[ 2.268e-05, 1.451e-02, ..., 5.334e+00, 5.333e+00], |
|
|
..., |
|
|
[ 2.268e-05, -6.177e-04, ..., 5.368e+00, 5.327e+00], |
|
|
[ 2.268e-05, 1.420e-03, ..., 5.307e+00, 5.328e+00]]) |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
if win_length is None: |
|
|
win_length = n_fft |
|
|
|
|
|
window = get_window(window, win_length, fftbins=True) |
|
|
window = util.pad_center(window, size=n_fft) |
|
|
|
|
|
|
|
|
if hop_length is None: |
|
|
hop_length = int(win_length // 4) |
|
|
|
|
|
if S is None: |
|
|
if dtype is None: |
|
|
dtype = util.dtype_r2c(y.dtype) |
|
|
S_h = stft( |
|
|
y=y, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
window=window, |
|
|
center=center, |
|
|
dtype=dtype, |
|
|
pad_mode=pad_mode, |
|
|
) |
|
|
|
|
|
else: |
|
|
if dtype is None: |
|
|
dtype = S.dtype |
|
|
S_h = S |
|
|
|
|
|
|
|
|
half_width = n_fft // 2 |
|
|
|
|
|
if n_fft % 2: |
|
|
window_times = np.arange(-half_width, half_width + 1) |
|
|
|
|
|
else: |
|
|
window_times = np.arange(0.5 - half_width, half_width) |
|
|
|
|
|
window_time_weighted = window * window_times |
|
|
|
|
|
S_th = stft( |
|
|
y=y, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
window=window_time_weighted, |
|
|
center=center, |
|
|
dtype=dtype, |
|
|
pad_mode=pad_mode, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
correction = np.real(S_th / S_h) |
|
|
|
|
|
if center: |
|
|
pad_length = None |
|
|
|
|
|
else: |
|
|
pad_length = n_fft |
|
|
|
|
|
times = convert.frames_to_time( |
|
|
np.arange(S_h.shape[-1]), sr=sr, hop_length=hop_length, n_fft=pad_length |
|
|
) |
|
|
|
|
|
times = util.expand_to(times, ndim=correction.ndim, axes=-1) + correction / sr |
|
|
|
|
|
return times, S_h |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
def reassigned_spectrogram( |
|
|
y, |
|
|
*, |
|
|
sr=22050, |
|
|
S=None, |
|
|
n_fft=2048, |
|
|
hop_length=None, |
|
|
win_length=None, |
|
|
window="hann", |
|
|
center=True, |
|
|
reassign_frequencies=True, |
|
|
reassign_times=True, |
|
|
ref_power=1e-6, |
|
|
fill_nan=False, |
|
|
clip=True, |
|
|
dtype=None, |
|
|
pad_mode="constant", |
|
|
): |
|
|
r"""Time-frequency reassigned spectrogram. |
|
|
|
|
|
The reassignment vectors are calculated using equations 5.20 and 5.23 in |
|
|
[#]_:: |
|
|
|
|
|
t_reassigned = t + np.real(S_th/S_h) |
|
|
omega_reassigned = omega - np.imag(S_dh/S_h) |
|
|
|
|
|
where ``S_h`` is the complex STFT calculated using the original window, |
|
|
``S_dh`` is the complex STFT calculated using the derivative of the original |
|
|
window, and ``S_th`` is the complex STFT calculated using the original window |
|
|
multiplied by the time offset from the window center. See [#]_ for |
|
|
additional algorithms, and [#]_ and [#]_ for history and discussion of the |
|
|
method. |
|
|
|
|
|
.. [#] Flandrin, P., Auger, F., & Chassande-Mottin, E. (2002). |
|
|
Time-Frequency reassignment: From principles to algorithms. In |
|
|
Applications in Time-Frequency Signal Processing (Vol. 10, pp. |
|
|
179-204). CRC Press. |
|
|
|
|
|
.. [#] Fulop, S. A., & Fitz, K. (2006). Algorithms for computing the |
|
|
time-corrected instantaneous frequency (reassigned) spectrogram, with |
|
|
applications. The Journal of the Acoustical Society of America, 119(1), |
|
|
360. doi:10.1121/1.2133000 |
|
|
|
|
|
.. [#] Auger, F., Flandrin, P., Lin, Y.-T., McLaughlin, S., Meignen, S., |
|
|
Oberlin, T., & Wu, H.-T. (2013). Time-Frequency Reassignment and |
|
|
Synchrosqueezing: An Overview. IEEE Signal Processing Magazine, 30(6), |
|
|
32-41. doi:10.1109/MSP.2013.2265316 |
|
|
|
|
|
.. [#] Hainsworth, S., Macleod, M. (2003). Time-frequency reassignment: a |
|
|
review and analysis. Tech. Rep. CUED/FINFENG/TR.459, Cambridge |
|
|
University Engineering Department |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
y : np.ndarray [shape=(..., n)], real-valued |
|
|
audio time series. Multi-channel is supported. |
|
|
|
|
|
sr : number > 0 [scalar] |
|
|
sampling rate of ``y`` |
|
|
|
|
|
S : np.ndarray [shape=(..., d, t)] or None |
|
|
(optional) complex STFT calculated using the other arguments provided |
|
|
to ``reassigned_spectrogram`` |
|
|
|
|
|
n_fft : int > 0 [scalar] |
|
|
FFT window size. Defaults to 2048. |
|
|
|
|
|
hop_length : int > 0 [scalar] |
|
|
hop length, number samples between subsequent frames. |
|
|
If not supplied, defaults to ``win_length // 4``. |
|
|
|
|
|
win_length : int > 0, <= n_fft |
|
|
Window length. Defaults to ``n_fft``. |
|
|
See `stft` for details. |
|
|
|
|
|
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] |
|
|
- a window specification (string, tuple, number); |
|
|
see `scipy.signal.get_window` |
|
|
- a window function, such as `scipy.signal.windows.hann` |
|
|
- a user-specified window vector of length ``n_fft`` |
|
|
|
|
|
See `stft` for details. |
|
|
|
|
|
.. see also:: `filters.get_window` |
|
|
|
|
|
center : boolean |
|
|
- If ``True`` (default), the signal ``y`` is padded so that frame |
|
|
``S[:, t]`` is centered at ``y[t * hop_length]``. See `Notes` for |
|
|
recommended usage in this function. |
|
|
- If ``False``, then ``S[:, t]`` begins at ``y[t * hop_length]``. |
|
|
|
|
|
reassign_frequencies : boolean |
|
|
- If ``True`` (default), the returned frequencies will be instantaneous |
|
|
frequency estimates. |
|
|
- If ``False``, the returned frequencies will be a read-only view of the |
|
|
STFT bin frequencies for all frames. |
|
|
|
|
|
reassign_times : boolean |
|
|
- If ``True`` (default), the returned times will be corrected |
|
|
(reassigned) time estimates for each bin. |
|
|
- If ``False``, the returned times will be a read-only view of the STFT |
|
|
frame times for all bins. |
|
|
|
|
|
ref_power : float >= 0 or callable |
|
|
Minimum power threshold for estimating time-frequency reassignments. |
|
|
Any bin with ``np.abs(S[f, t])**2 < ref_power`` will be returned as |
|
|
`np.nan` in both frequency and time, unless ``fill_nan`` is ``True``. If 0 |
|
|
is provided, then only bins with zero power will be returned as |
|
|
`np.nan` (unless ``fill_nan=True``). |
|
|
|
|
|
fill_nan : boolean |
|
|
- If ``False`` (default), the frequency and time reassignments for bins |
|
|
below the power threshold provided in ``ref_power`` will be returned as |
|
|
`np.nan`. |
|
|
- If ``True``, the frequency and time reassignments for these bins will |
|
|
be returned as the bin center frequencies and frame times. |
|
|
|
|
|
clip : boolean |
|
|
- If ``True`` (default), estimated frequencies outside the range |
|
|
`[0, 0.5 * sr]` or times outside the range `[0, len(y) / sr]` will be |
|
|
clipped to those ranges. |
|
|
- If ``False``, estimated frequencies and times beyond the bounds of the |
|
|
spectrogram may be returned. |
|
|
|
|
|
dtype : numeric type |
|
|
Complex numeric type for STFT calculation. Default is inferred to match |
|
|
the precision of the input signal. |
|
|
|
|
|
pad_mode : string |
|
|
If ``center=True``, the padding mode to use at the edges of the signal. |
|
|
By default, STFT uses zero padding. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
freqs, times, mags : np.ndarray [shape=(..., 1 + n_fft/2, t), dtype=real] |
|
|
Instantaneous frequencies: |
|
|
``freqs[..., f, t]`` is the frequency for bin ``f``, frame ``t``. |
|
|
If ``reassign_frequencies=False``, this will instead be a read-only array |
|
|
of the same shape containing the bin center frequencies for all frames. |
|
|
|
|
|
Reassigned times: |
|
|
``times[..., f, t]`` is the time for bin ``f``, frame ``t``. |
|
|
If ``reassign_times=False``, this will instead be a read-only array of |
|
|
the same shape containing the frame times for all bins. |
|
|
|
|
|
Magnitudes from short-time Fourier transform: |
|
|
``mags[..., f, t]`` is the magnitude for bin ``f``, frame ``t``. |
|
|
|
|
|
Warns |
|
|
----- |
|
|
RuntimeWarning |
|
|
Frequency or time estimates with zero support will produce a |
|
|
divide-by-zero warning, and will be returned as `np.nan` unless |
|
|
``fill_nan=True``. |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
stft : Short-time Fourier Transform |
|
|
|
|
|
Notes |
|
|
----- |
|
|
It is recommended to use ``center=False`` with this function rather than the |
|
|
librosa default ``True``. Unlike ``stft``, reassigned times are not aligned to |
|
|
the left or center of each frame, so padding the signal does not affect the |
|
|
meaning of the reassigned times. However, reassignment assumes that the |
|
|
energy in each FFT bin is associated with exactly one signal component and |
|
|
impulse event. |
|
|
|
|
|
If ``reassign_times`` is ``False``, the frame times that are returned will be |
|
|
aligned to the left or center of the frame, depending on the value of |
|
|
``center``. In this case, if ``center`` is ``True``, then ``pad_mode="wrap"`` is |
|
|
recommended for valid estimation of the instantaneous frequencies in the |
|
|
boundary frames. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> import matplotlib.pyplot as plt |
|
|
>>> amin = 1e-10 |
|
|
>>> n_fft = 64 |
|
|
>>> sr = 4000 |
|
|
>>> y = 1e-3 * librosa.clicks(times=[0.3], sr=sr, click_duration=1.0, |
|
|
... click_freq=1200.0, length=8000) +\ |
|
|
... 1e-3 * librosa.clicks(times=[1.5], sr=sr, click_duration=0.5, |
|
|
... click_freq=400.0, length=8000) +\ |
|
|
... 1e-3 * librosa.chirp(fmin=200, fmax=1600, sr=sr, duration=2.0) +\ |
|
|
... 1e-6 * np.random.randn(2*sr) |
|
|
>>> freqs, times, mags = librosa.reassigned_spectrogram(y=y, sr=sr, |
|
|
... n_fft=n_fft) |
|
|
>>> mags_db = librosa.amplitude_to_db(mags, ref=np.max) |
|
|
|
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) |
|
|
>>> img = librosa.display.specshow(mags_db, x_axis="s", y_axis="linear", sr=sr, |
|
|
... hop_length=n_fft//4, ax=ax[0]) |
|
|
>>> ax[0].set(title="Spectrogram", xlabel=None) |
|
|
>>> ax[0].label_outer() |
|
|
>>> ax[1].scatter(times, freqs, c=mags_db, cmap="magma", alpha=0.1, s=5) |
|
|
>>> ax[1].set_title("Reassigned spectrogram") |
|
|
>>> fig.colorbar(img, ax=ax, format="%+2.f dB") |
|
|
""" |
|
|
|
|
|
if not callable(ref_power) and ref_power < 0: |
|
|
raise ParameterError("ref_power must be non-negative or callable.") |
|
|
|
|
|
if not reassign_frequencies and not reassign_times: |
|
|
raise ParameterError("reassign_frequencies or reassign_times must be True.") |
|
|
|
|
|
if win_length is None: |
|
|
win_length = n_fft |
|
|
|
|
|
if hop_length is None: |
|
|
hop_length = int(win_length // 4) |
|
|
|
|
|
|
|
|
if reassign_frequencies: |
|
|
freqs, S = __reassign_frequencies( |
|
|
y=y, |
|
|
sr=sr, |
|
|
S=S, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
win_length=win_length, |
|
|
window=window, |
|
|
center=center, |
|
|
dtype=dtype, |
|
|
pad_mode=pad_mode, |
|
|
) |
|
|
|
|
|
if reassign_times: |
|
|
times, S = __reassign_times( |
|
|
y=y, |
|
|
sr=sr, |
|
|
S=S, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
win_length=win_length, |
|
|
window=window, |
|
|
center=center, |
|
|
dtype=dtype, |
|
|
pad_mode=pad_mode, |
|
|
) |
|
|
|
|
|
mags = np.abs(S) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if fill_nan or not reassign_frequencies or not reassign_times: |
|
|
if center: |
|
|
pad_length = None |
|
|
|
|
|
else: |
|
|
pad_length = n_fft |
|
|
|
|
|
bin_freqs = convert.fft_frequencies(sr=sr, n_fft=n_fft) |
|
|
|
|
|
frame_times = convert.frames_to_time( |
|
|
frames=np.arange(S.shape[-1]), |
|
|
sr=sr, |
|
|
hop_length=hop_length, |
|
|
n_fft=pad_length, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
if callable(ref_power): |
|
|
ref_power = ref_power(mags ** 2) |
|
|
|
|
|
mags_low = np.less(mags, ref_power ** 0.5, where=~np.isnan(mags)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if reassign_frequencies: |
|
|
if ref_power > 0: |
|
|
freqs[mags_low] = np.nan |
|
|
|
|
|
if fill_nan: |
|
|
freqs = np.where(np.isnan(freqs), bin_freqs[:, np.newaxis], freqs) |
|
|
|
|
|
if clip: |
|
|
np.clip(freqs, 0, sr / 2.0, out=freqs) |
|
|
|
|
|
|
|
|
|
|
|
else: |
|
|
freqs = np.broadcast_to(bin_freqs[:, np.newaxis], S.shape) |
|
|
|
|
|
if reassign_times: |
|
|
if ref_power > 0: |
|
|
times[mags_low] = np.nan |
|
|
|
|
|
if fill_nan: |
|
|
times = np.where(np.isnan(times), frame_times[np.newaxis, :], times) |
|
|
|
|
|
if clip: |
|
|
np.clip(times, 0, y.shape[-1] / float(sr), out=times) |
|
|
|
|
|
else: |
|
|
times = np.broadcast_to(frame_times[np.newaxis, :], S.shape) |
|
|
|
|
|
return freqs, times, mags |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
def magphase(D, *, power=1): |
|
|
"""Separate a complex-valued spectrogram D into its magnitude (S) |
|
|
and phase (P) components, so that ``D = S * P``. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
D : np.ndarray [shape=(..., d, t), dtype=complex] |
|
|
complex-valued spectrogram |
|
|
power : float > 0 |
|
|
Exponent for the magnitude spectrogram, |
|
|
e.g., 1 for energy, 2 for power, etc. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
D_mag : np.ndarray [shape=(..., d, t), dtype=real] |
|
|
magnitude of ``D``, raised to ``power`` |
|
|
D_phase : np.ndarray [shape=(..., d, t), dtype=complex] |
|
|
``exp(1.j * phi)`` where ``phi`` is the phase of ``D`` |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> D = librosa.stft(y) |
|
|
>>> magnitude, phase = librosa.magphase(D) |
|
|
>>> magnitude |
|
|
array([[5.395e-03, 3.332e-03, ..., 9.862e-07, 1.201e-05], |
|
|
[3.244e-03, 2.690e-03, ..., 9.536e-07, 1.201e-05], |
|
|
..., |
|
|
[7.523e-05, 3.722e-05, ..., 1.188e-04, 1.031e-03], |
|
|
[7.640e-05, 3.944e-05, ..., 5.180e-04, 1.346e-03]], |
|
|
dtype=float32) |
|
|
>>> phase |
|
|
array([[ 1. +0.000e+00j, 1. +0.000e+00j, ..., |
|
|
-1. -8.742e-08j, -1. -8.742e-08j], |
|
|
[-1. -8.742e-08j, -0.775-6.317e-01j, ..., |
|
|
-0.885-4.648e-01j, 0.472-8.815e-01j], |
|
|
..., |
|
|
[ 1. -4.342e-12j, 0.028-9.996e-01j, ..., |
|
|
-0.222-9.751e-01j, -0.75 -6.610e-01j], |
|
|
[-1. -8.742e-08j, -1. -8.742e-08j, ..., |
|
|
1. +0.000e+00j, 1. +0.000e+00j]], dtype=complex64) |
|
|
|
|
|
Or get the phase angle (in radians) |
|
|
|
|
|
>>> np.angle(phase) |
|
|
array([[ 0.000e+00, 0.000e+00, ..., -3.142e+00, -3.142e+00], |
|
|
[-3.142e+00, -2.458e+00, ..., -2.658e+00, -1.079e+00], |
|
|
..., |
|
|
[-4.342e-12, -1.543e+00, ..., -1.794e+00, -2.419e+00], |
|
|
[-3.142e+00, -3.142e+00, ..., 0.000e+00, 0.000e+00]], |
|
|
dtype=float32) |
|
|
|
|
|
""" |
|
|
|
|
|
mag = np.abs(D) |
|
|
|
|
|
|
|
|
zeros_to_ones = mag == 0 |
|
|
mag_nonzero = mag + zeros_to_ones |
|
|
|
|
|
|
|
|
|
|
|
phase = np.empty_like(D, dtype=util.dtype_r2c(D.dtype)) |
|
|
phase.real = D.real / mag_nonzero + zeros_to_ones |
|
|
phase.imag = D.imag / mag_nonzero |
|
|
|
|
|
mag **= power |
|
|
|
|
|
return mag, phase |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
def phase_vocoder(D, *, rate, hop_length=None, n_fft=None): |
|
|
"""Phase vocoder. Given an STFT matrix D, speed up by a factor of ``rate`` |
|
|
|
|
|
Based on the implementation provided by [#]_. |
|
|
|
|
|
This is a simplified implementation, intended primarily for |
|
|
reference and pedagogical purposes. It makes no attempt to |
|
|
handle transients, and is likely to produce many audible |
|
|
artifacts. For a higher quality implementation, we recommend |
|
|
the RubberBand library [#]_ and its Python wrapper `pyrubberband`. |
|
|
|
|
|
.. [#] Ellis, D. P. W. "A phase vocoder in Matlab." |
|
|
Columbia University, 2002. |
|
|
http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/ |
|
|
|
|
|
.. [#] https://breakfastquay.com/rubberband/ |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> # Play at double speed |
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> D = librosa.stft(y, n_fft=2048, hop_length=512) |
|
|
>>> D_fast = librosa.phase_vocoder(D, rate=2.0, hop_length=512) |
|
|
>>> y_fast = librosa.istft(D_fast, hop_length=512) |
|
|
|
|
|
>>> # Or play at 1/3 speed |
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> D = librosa.stft(y, n_fft=2048, hop_length=512) |
|
|
>>> D_slow = librosa.phase_vocoder(D, rate=1./3, hop_length=512) |
|
|
>>> y_slow = librosa.istft(D_slow, hop_length=512) |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
D : np.ndarray [shape=(..., d, t), dtype=complex] |
|
|
STFT matrix |
|
|
|
|
|
rate : float > 0 [scalar] |
|
|
Speed-up factor: ``rate > 1`` is faster, ``rate < 1`` is slower. |
|
|
|
|
|
hop_length : int > 0 [scalar] or None |
|
|
The number of samples between successive columns of ``D``. |
|
|
|
|
|
If None, defaults to ``n_fft//4 = (D.shape[0]-1)//2`` |
|
|
|
|
|
n_fft : int > 0 or None |
|
|
The number of samples per frame in D. |
|
|
By default (None), this will be inferred from the shape of D. |
|
|
However, if D was constructed using an odd-length window, the correct |
|
|
frame length can be specified here. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
D_stretched : np.ndarray [shape=(..., d, t / rate), dtype=complex] |
|
|
time-stretched STFT |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
pyrubberband |
|
|
""" |
|
|
|
|
|
if n_fft is None: |
|
|
n_fft = 2 * (D.shape[-2] - 1) |
|
|
|
|
|
if hop_length is None: |
|
|
hop_length = int(n_fft // 4) |
|
|
|
|
|
time_steps = np.arange(0, D.shape[-1], rate, dtype=np.float64) |
|
|
|
|
|
|
|
|
shape = list(D.shape) |
|
|
shape[-1] = len(time_steps) |
|
|
d_stretch = np.zeros_like(D, shape=shape) |
|
|
|
|
|
|
|
|
phi_advance = np.linspace(0, np.pi * hop_length, D.shape[-2]) |
|
|
|
|
|
|
|
|
phase_acc = np.angle(D[..., 0]) |
|
|
|
|
|
|
|
|
padding = [(0, 0) for _ in D.shape] |
|
|
padding[-1] = (0, 2) |
|
|
D = np.pad(D, padding, mode="constant") |
|
|
|
|
|
for (t, step) in enumerate(time_steps): |
|
|
|
|
|
columns = D[..., int(step) : int(step + 2)] |
|
|
|
|
|
|
|
|
alpha = np.mod(step, 1.0) |
|
|
mag = (1.0 - alpha) * np.abs(columns[..., 0]) + alpha * np.abs(columns[..., 1]) |
|
|
|
|
|
|
|
|
d_stretch[..., t] = mag * np.exp(1.0j * phase_acc) |
|
|
|
|
|
|
|
|
dphase = np.angle(columns[..., 1]) - np.angle(columns[..., 0]) - phi_advance |
|
|
|
|
|
|
|
|
dphase = dphase - 2.0 * np.pi * np.round(dphase / (2.0 * np.pi)) |
|
|
|
|
|
|
|
|
phase_acc += phi_advance + dphase |
|
|
|
|
|
return d_stretch |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=20) |
|
|
def iirt( |
|
|
y, |
|
|
*, |
|
|
sr=22050, |
|
|
win_length=2048, |
|
|
hop_length=None, |
|
|
center=True, |
|
|
tuning=0.0, |
|
|
pad_mode="constant", |
|
|
flayout="sos", |
|
|
res_type="kaiser_best", |
|
|
**kwargs, |
|
|
): |
|
|
r"""Time-frequency representation using IIR filters |
|
|
|
|
|
This function will return a time-frequency representation |
|
|
using a multirate filter bank consisting of IIR filters. [#]_ |
|
|
|
|
|
First, ``y`` is resampled as needed according to the provided ``sample_rates``. |
|
|
|
|
|
Then, a filterbank with with ``n`` band-pass filters is designed. |
|
|
|
|
|
The resampled input signals are processed by the filterbank as a whole. |
|
|
(`scipy.signal.filtfilt` resp. `sosfiltfilt` is used to make the phase linear.) |
|
|
The output of the filterbank is cut into frames. |
|
|
For each band, the short-time mean-square power (STMSP) is calculated by |
|
|
summing ``win_length`` subsequent filtered time samples. |
|
|
|
|
|
When called with the default set of parameters, it will generate the TF-representation |
|
|
(pitch filterbank): |
|
|
|
|
|
* 85 filters with MIDI pitches [24, 108] as ``center_freqs``. |
|
|
* each filter having a bandwidth of one semitone. |
|
|
|
|
|
.. [#] Müller, Meinard. |
|
|
"Information Retrieval for Music and Motion." |
|
|
Springer Verlag. 2007. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
y : np.ndarray [shape=(..., n)] |
|
|
audio time series. Multi-channel is supported. |
|
|
sr : number > 0 [scalar] |
|
|
sampling rate of ``y`` |
|
|
win_length : int > 0, <= n_fft |
|
|
Window length. |
|
|
hop_length : int > 0 [scalar] |
|
|
Hop length, number samples between subsequent frames. |
|
|
If not supplied, defaults to ``win_length // 4``. |
|
|
center : boolean |
|
|
- If ``True``, the signal ``y`` is padded so that frame |
|
|
``D[..., :, t]`` is centered at ``y[t * hop_length]``. |
|
|
- If ``False``, then `D[..., :, t]`` begins at ``y[t * hop_length]`` |
|
|
tuning : float [scalar] |
|
|
Tuning deviation from A440 in fractions of a bin. |
|
|
pad_mode : string |
|
|
If ``center=True``, the padding mode to use at the edges of the signal. |
|
|
By default, this function uses zero padding. |
|
|
flayout : string |
|
|
- If `sos` (default), a series of second-order filters is used for filtering with `scipy.signal.sosfiltfilt`. |
|
|
Minimizes numerical precision errors for high-order filters, but is slower. |
|
|
- If `ba`, the standard difference equation is used for filtering with `scipy.signal.filtfilt`. |
|
|
Can be unstable for high-order filters. |
|
|
res_type : string |
|
|
The resampling mode. See `librosa.resample` for details. |
|
|
**kwargs : additional keyword arguments |
|
|
Additional arguments for `librosa.filters.semitone_filterbank` |
|
|
(e.g., could be used to provide another set of ``center_freqs`` and ``sample_rates``). |
|
|
|
|
|
Returns |
|
|
------- |
|
|
bands_power : np.ndarray [shape=(..., n, t), dtype=dtype] |
|
|
Short-time mean-square power for the input signal. |
|
|
|
|
|
Raises |
|
|
------ |
|
|
ParameterError |
|
|
If ``flayout`` is not None, `ba`, or `sos`. |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
librosa.filters.semitone_filterbank |
|
|
librosa.filters.mr_frequencies |
|
|
librosa.cqt |
|
|
scipy.signal.filtfilt |
|
|
scipy.signal.sosfiltfilt |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> import matplotlib.pyplot as plt |
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet'), duration=3) |
|
|
>>> D = np.abs(librosa.iirt(y)) |
|
|
>>> C = np.abs(librosa.cqt(y=y, sr=sr)) |
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) |
|
|
>>> img = librosa.display.specshow(librosa.amplitude_to_db(C, ref=np.max), |
|
|
... y_axis='cqt_hz', x_axis='time', ax=ax[0]) |
|
|
>>> ax[0].set(title='Constant-Q transform') |
|
|
>>> ax[0].label_outer() |
|
|
>>> img = librosa.display.specshow(librosa.amplitude_to_db(D, ref=np.max), |
|
|
... y_axis='cqt_hz', x_axis='time', ax=ax[1]) |
|
|
>>> ax[1].set_title('Semitone spectrogram (iirt)') |
|
|
>>> fig.colorbar(img, ax=ax, format="%+2.0f dB") |
|
|
""" |
|
|
|
|
|
if flayout not in ("ba", "sos"): |
|
|
raise ParameterError("Unsupported flayout={}".format(flayout)) |
|
|
|
|
|
|
|
|
util.valid_audio(y, mono=False) |
|
|
|
|
|
|
|
|
if hop_length is None: |
|
|
hop_length = win_length // 4 |
|
|
|
|
|
|
|
|
if center: |
|
|
padding = [(0, 0) for _ in y.shape] |
|
|
padding[-1] = (win_length // 2, win_length // 2) |
|
|
y = np.pad(y, padding, mode=pad_mode) |
|
|
|
|
|
|
|
|
filterbank_ct, sample_rates = semitone_filterbank( |
|
|
tuning=tuning, flayout=flayout, **kwargs |
|
|
) |
|
|
|
|
|
|
|
|
y_resampled = [] |
|
|
|
|
|
y_srs = np.unique(sample_rates) |
|
|
|
|
|
for cur_sr in y_srs: |
|
|
y_resampled.append(resample(y, orig_sr=sr, target_sr=cur_sr, res_type=res_type)) |
|
|
|
|
|
|
|
|
n_frames = int(1 + (y.shape[-1] - win_length) // hop_length) |
|
|
|
|
|
|
|
|
shape = list(y.shape) |
|
|
|
|
|
shape[-1] = n_frames |
|
|
|
|
|
shape.insert(-1, len(filterbank_ct)) |
|
|
|
|
|
bands_power = np.empty_like(y, shape=shape) |
|
|
|
|
|
slices = [slice(None) for _ in bands_power.shape] |
|
|
for i, (cur_sr, cur_filter) in enumerate(zip(sample_rates, filterbank_ct)): |
|
|
|
|
|
slices[-2] = i |
|
|
|
|
|
|
|
|
cur_sr_idx = np.flatnonzero(y_srs == cur_sr)[0] |
|
|
|
|
|
if flayout == "ba": |
|
|
cur_filter_output = scipy.signal.filtfilt( |
|
|
cur_filter[0], cur_filter[1], y_resampled[cur_sr_idx], axis=-1 |
|
|
) |
|
|
elif flayout == "sos": |
|
|
cur_filter_output = scipy.signal.sosfiltfilt( |
|
|
cur_filter, y_resampled[cur_sr_idx], axis=-1 |
|
|
) |
|
|
|
|
|
factor = sr / cur_sr |
|
|
hop_length_STMSP = hop_length / factor |
|
|
win_length_STMSP_round = int(round(win_length / factor)) |
|
|
|
|
|
|
|
|
|
|
|
start_idx = np.arange( |
|
|
0, cur_filter_output.shape[-1] - win_length_STMSP_round, hop_length_STMSP |
|
|
) |
|
|
if len(start_idx) < n_frames: |
|
|
min_length = ( |
|
|
int(np.ceil(n_frames * hop_length_STMSP)) + win_length_STMSP_round |
|
|
) |
|
|
cur_filter_output = util.fix_length(cur_filter_output, size=min_length) |
|
|
start_idx = np.arange( |
|
|
0, |
|
|
cur_filter_output.shape[-1] - win_length_STMSP_round, |
|
|
hop_length_STMSP, |
|
|
) |
|
|
start_idx = np.round(start_idx).astype(int)[:n_frames] |
|
|
|
|
|
idx = np.add.outer(start_idx, np.arange(win_length_STMSP_round)) |
|
|
|
|
|
bands_power[tuple(slices)] = factor * np.sum( |
|
|
cur_filter_output[..., idx] ** 2, axis=-1 |
|
|
) |
|
|
|
|
|
return bands_power |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=30) |
|
|
def power_to_db(S, *, ref=1.0, amin=1e-10, top_db=80.0): |
|
|
"""Convert a power spectrogram (amplitude squared) to decibel (dB) units |
|
|
|
|
|
This computes the scaling ``10 * log10(S / ref)`` in a numerically |
|
|
stable way. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
S : np.ndarray |
|
|
input power |
|
|
|
|
|
ref : scalar or callable |
|
|
If scalar, the amplitude ``abs(S)`` is scaled relative to ``ref``:: |
|
|
|
|
|
10 * log10(S / ref) |
|
|
|
|
|
Zeros in the output correspond to positions where ``S == ref``. |
|
|
|
|
|
If callable, the reference value is computed as ``ref(S)``. |
|
|
|
|
|
amin : float > 0 [scalar] |
|
|
minimum threshold for ``abs(S)`` and ``ref`` |
|
|
|
|
|
top_db : float >= 0 [scalar] |
|
|
threshold the output at ``top_db`` below the peak: |
|
|
``max(10 * log10(S/ref)) - top_db`` |
|
|
|
|
|
Returns |
|
|
------- |
|
|
S_db : np.ndarray |
|
|
``S_db ~= 10 * log10(S) - 10 * log10(ref)`` |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
perceptual_weighting |
|
|
db_to_power |
|
|
amplitude_to_db |
|
|
db_to_amplitude |
|
|
|
|
|
Notes |
|
|
----- |
|
|
This function caches at level 30. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
Get a power spectrogram from a waveform ``y`` |
|
|
|
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> S = np.abs(librosa.stft(y)) |
|
|
>>> librosa.power_to_db(S**2) |
|
|
array([[-41.809, -41.809, ..., -41.809, -41.809], |
|
|
[-41.809, -41.809, ..., -41.809, -41.809], |
|
|
..., |
|
|
[-41.809, -41.809, ..., -41.809, -41.809], |
|
|
[-41.809, -41.809, ..., -41.809, -41.809]], dtype=float32) |
|
|
|
|
|
Compute dB relative to peak power |
|
|
|
|
|
>>> librosa.power_to_db(S**2, ref=np.max) |
|
|
array([[-80., -80., ..., -80., -80.], |
|
|
[-80., -80., ..., -80., -80.], |
|
|
..., |
|
|
[-80., -80., ..., -80., -80.], |
|
|
[-80., -80., ..., -80., -80.]], dtype=float32) |
|
|
|
|
|
Or compare to median power |
|
|
|
|
|
>>> librosa.power_to_db(S**2, ref=np.median) |
|
|
array([[16.578, 16.578, ..., 16.578, 16.578], |
|
|
[16.578, 16.578, ..., 16.578, 16.578], |
|
|
..., |
|
|
[16.578, 16.578, ..., 16.578, 16.578], |
|
|
[16.578, 16.578, ..., 16.578, 16.578]], dtype=float32) |
|
|
|
|
|
And plot the results |
|
|
|
|
|
>>> import matplotlib.pyplot as plt |
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) |
|
|
>>> imgpow = librosa.display.specshow(S**2, sr=sr, y_axis='log', x_axis='time', |
|
|
... ax=ax[0]) |
|
|
>>> ax[0].set(title='Power spectrogram') |
|
|
>>> ax[0].label_outer() |
|
|
>>> imgdb = librosa.display.specshow(librosa.power_to_db(S**2, ref=np.max), |
|
|
... sr=sr, y_axis='log', x_axis='time', ax=ax[1]) |
|
|
>>> ax[1].set(title='Log-Power spectrogram') |
|
|
>>> fig.colorbar(imgpow, ax=ax[0]) |
|
|
>>> fig.colorbar(imgdb, ax=ax[1], format="%+2.0f dB") |
|
|
""" |
|
|
|
|
|
S = np.asarray(S) |
|
|
|
|
|
if amin <= 0: |
|
|
raise ParameterError("amin must be strictly positive") |
|
|
|
|
|
if np.issubdtype(S.dtype, np.complexfloating): |
|
|
warnings.warn( |
|
|
"power_to_db was called on complex input so phase " |
|
|
"information will be discarded. To suppress this warning, " |
|
|
"call power_to_db(np.abs(D)**2) instead.", |
|
|
stacklevel=2, |
|
|
) |
|
|
magnitude = np.abs(S) |
|
|
else: |
|
|
magnitude = S |
|
|
|
|
|
if callable(ref): |
|
|
|
|
|
ref_value = ref(magnitude) |
|
|
else: |
|
|
ref_value = np.abs(ref) |
|
|
|
|
|
log_spec = 10.0 * np.log10(np.maximum(amin, magnitude)) |
|
|
log_spec -= 10.0 * np.log10(np.maximum(amin, ref_value)) |
|
|
|
|
|
if top_db is not None: |
|
|
if top_db < 0: |
|
|
raise ParameterError("top_db must be non-negative") |
|
|
log_spec = np.maximum(log_spec, log_spec.max() - top_db) |
|
|
|
|
|
return log_spec |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=30) |
|
|
def db_to_power(S_db, *, ref=1.0): |
|
|
"""Convert a dB-scale spectrogram to a power spectrogram. |
|
|
|
|
|
This effectively inverts ``power_to_db``:: |
|
|
|
|
|
db_to_power(S_db) ~= ref * 10.0**(S_db / 10) |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
S_db : np.ndarray |
|
|
dB-scaled spectrogram |
|
|
ref : number > 0 |
|
|
Reference power: output will be scaled by this value |
|
|
|
|
|
Returns |
|
|
------- |
|
|
S : np.ndarray |
|
|
Power spectrogram |
|
|
|
|
|
Notes |
|
|
----- |
|
|
This function caches at level 30. |
|
|
""" |
|
|
return ref * np.power(10.0, 0.1 * S_db) |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=30) |
|
|
def amplitude_to_db(S, *, ref=1.0, amin=1e-5, top_db=80.0): |
|
|
"""Convert an amplitude spectrogram to dB-scaled spectrogram. |
|
|
|
|
|
This is equivalent to ``power_to_db(S**2, ref=ref**2, amin=amin**2, top_db=top_db)``, |
|
|
but is provided for convenience. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
S : np.ndarray |
|
|
input amplitude |
|
|
|
|
|
ref : scalar or callable |
|
|
If scalar, the amplitude ``abs(S)`` is scaled relative to ``ref``: |
|
|
``20 * log10(S / ref)``. |
|
|
Zeros in the output correspond to positions where ``S == ref``. |
|
|
|
|
|
If callable, the reference value is computed as ``ref(S)``. |
|
|
|
|
|
amin : float > 0 [scalar] |
|
|
minimum threshold for ``S`` and ``ref`` |
|
|
|
|
|
top_db : float >= 0 [scalar] |
|
|
threshold the output at ``top_db`` below the peak: |
|
|
``max(20 * log10(S/ref)) - top_db`` |
|
|
|
|
|
Returns |
|
|
------- |
|
|
S_db : np.ndarray |
|
|
``S`` measured in dB |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
power_to_db, db_to_amplitude |
|
|
|
|
|
Notes |
|
|
----- |
|
|
This function caches at level 30. |
|
|
""" |
|
|
|
|
|
S = np.asarray(S) |
|
|
|
|
|
if np.issubdtype(S.dtype, np.complexfloating): |
|
|
warnings.warn( |
|
|
"amplitude_to_db was called on complex input so phase " |
|
|
"information will be discarded. To suppress this warning, " |
|
|
"call amplitude_to_db(np.abs(S)) instead.", |
|
|
stacklevel=2, |
|
|
) |
|
|
|
|
|
magnitude = np.abs(S) |
|
|
|
|
|
if callable(ref): |
|
|
|
|
|
ref_value = ref(magnitude) |
|
|
else: |
|
|
ref_value = np.abs(ref) |
|
|
|
|
|
power = np.square(magnitude, out=magnitude) |
|
|
|
|
|
return power_to_db(power, ref=ref_value ** 2, amin=amin ** 2, top_db=top_db) |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=30) |
|
|
def db_to_amplitude(S_db, *, ref=1.0): |
|
|
"""Convert a dB-scaled spectrogram to an amplitude spectrogram. |
|
|
|
|
|
This effectively inverts `amplitude_to_db`:: |
|
|
|
|
|
db_to_amplitude(S_db) ~= 10.0**(0.5 * S_db/10 + log10(ref)) |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
S_db : np.ndarray |
|
|
dB-scaled spectrogram |
|
|
ref : number > 0 |
|
|
Optional reference power. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
S : np.ndarray |
|
|
Linear magnitude spectrogram |
|
|
|
|
|
Notes |
|
|
----- |
|
|
This function caches at level 30. |
|
|
""" |
|
|
return db_to_power(S_db, ref=ref ** 2) ** 0.5 |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=30) |
|
|
def perceptual_weighting(S, frequencies, *, kind="A", **kwargs): |
|
|
"""Perceptual weighting of a power spectrogram:: |
|
|
|
|
|
S_p[..., f, :] = frequency_weighting(f, 'A') + 10*log(S[..., f, :] / ref) |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
S : np.ndarray [shape=(..., d, t)] |
|
|
Power spectrogram |
|
|
frequencies : np.ndarray [shape=(d,)] |
|
|
Center frequency for each row of` `S`` |
|
|
kind : str |
|
|
The frequency weighting curve to use. |
|
|
e.g. `'A'`, `'B'`, `'C'`, `'D'`, `None or 'Z'` |
|
|
**kwargs : additional keyword arguments |
|
|
Additional keyword arguments to `power_to_db`. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
S_p : np.ndarray [shape=(..., d, t)] |
|
|
perceptually weighted version of ``S`` |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
power_to_db |
|
|
|
|
|
Notes |
|
|
----- |
|
|
This function caches at level 30. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
Re-weight a CQT power spectrum, using peak power as reference |
|
|
|
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> C = np.abs(librosa.cqt(y, sr=sr, fmin=librosa.note_to_hz('A1'))) |
|
|
>>> freqs = librosa.cqt_frequencies(C.shape[0], |
|
|
... fmin=librosa.note_to_hz('A1')) |
|
|
>>> perceptual_CQT = librosa.perceptual_weighting(C**2, |
|
|
... freqs, |
|
|
... ref=np.max) |
|
|
>>> perceptual_CQT |
|
|
array([[ -96.528, -97.101, ..., -108.561, -108.561], |
|
|
[ -95.88 , -96.479, ..., -107.551, -107.551], |
|
|
..., |
|
|
[ -65.142, -53.256, ..., -80.098, -80.098], |
|
|
[ -71.542, -53.197, ..., -80.311, -80.311]]) |
|
|
|
|
|
>>> import matplotlib.pyplot as plt |
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) |
|
|
>>> img = librosa.display.specshow(librosa.amplitude_to_db(C, |
|
|
... ref=np.max), |
|
|
... fmin=librosa.note_to_hz('A1'), |
|
|
... y_axis='cqt_hz', x_axis='time', |
|
|
... ax=ax[0]) |
|
|
>>> ax[0].set(title='Log CQT power') |
|
|
>>> ax[0].label_outer() |
|
|
>>> imgp = librosa.display.specshow(perceptual_CQT, y_axis='cqt_hz', |
|
|
... fmin=librosa.note_to_hz('A1'), |
|
|
... x_axis='time', ax=ax[1]) |
|
|
>>> ax[1].set(title='Perceptually weighted log CQT') |
|
|
>>> fig.colorbar(img, ax=ax[0], format="%+2.0f dB") |
|
|
>>> fig.colorbar(imgp, ax=ax[1], format="%+2.0f dB") |
|
|
""" |
|
|
|
|
|
offset = convert.frequency_weighting(frequencies, kind=kind).reshape((-1, 1)) |
|
|
|
|
|
return offset + power_to_db(S, **kwargs) |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=30) |
|
|
def fmt(y, *, t_min=0.5, n_fmt=None, kind="cubic", beta=0.5, over_sample=1, axis=-1): |
|
|
"""The fast Mellin transform (FMT) |
|
|
|
|
|
The Mellin of a signal `y` is performed by interpolating `y` on an exponential time |
|
|
axis, applying a polynomial window, and then taking the discrete Fourier transform. |
|
|
|
|
|
When the Mellin parameter (beta) is 1/2, it is also known as the scale transform. [#]_ |
|
|
The scale transform can be useful for audio analysis because its magnitude is invariant |
|
|
to scaling of the domain (e.g., time stretching or compression). This is analogous |
|
|
to the magnitude of the Fourier transform being invariant to shifts in the input domain. |
|
|
|
|
|
.. [#] De Sena, Antonio, and Davide Rocchesso. |
|
|
"A fast Mellin and scale transform." |
|
|
EURASIP Journal on Applied Signal Processing 2007.1 (2007): 75-75. |
|
|
|
|
|
.. [#] Cohen, L. |
|
|
"The scale representation." |
|
|
IEEE Transactions on Signal Processing 41, no. 12 (1993): 3275-3292. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
y : np.ndarray, real-valued |
|
|
The input signal(s). Can be multidimensional. |
|
|
The target axis must contain at least 3 samples. |
|
|
|
|
|
t_min : float > 0 |
|
|
The minimum time spacing (in samples). |
|
|
This value should generally be less than 1 to preserve as much information as |
|
|
possible. |
|
|
|
|
|
n_fmt : int > 2 or None |
|
|
The number of scale transform bins to use. |
|
|
If None, then ``n_bins = over_sample * ceil(n * log((n-1)/t_min))`` is taken, |
|
|
where ``n = y.shape[axis]`` |
|
|
|
|
|
kind : str |
|
|
The type of interpolation to use when re-sampling the input. |
|
|
See `scipy.interpolate.interp1d` for possible values. |
|
|
|
|
|
Note that the default is to use high-precision (cubic) interpolation. |
|
|
This can be slow in practice; if speed is preferred over accuracy, |
|
|
then consider using ``kind='linear'``. |
|
|
|
|
|
beta : float |
|
|
The Mellin parameter. ``beta=0.5`` provides the scale transform. |
|
|
|
|
|
over_sample : float >= 1 |
|
|
Over-sampling factor for exponential resampling. |
|
|
|
|
|
axis : int |
|
|
The axis along which to transform ``y`` |
|
|
|
|
|
Returns |
|
|
------- |
|
|
x_scale : np.ndarray [dtype=complex] |
|
|
The scale transform of ``y`` along the ``axis`` dimension. |
|
|
|
|
|
Raises |
|
|
------ |
|
|
ParameterError |
|
|
if ``n_fmt < 2`` or ``t_min <= 0`` |
|
|
or if ``y`` is not finite |
|
|
or if ``y.shape[axis] < 3``. |
|
|
|
|
|
Notes |
|
|
----- |
|
|
This function caches at level 30. |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
>>> # Generate a signal and time-stretch it (with energy normalization) |
|
|
>>> scale = 1.25 |
|
|
>>> freq = 3.0 |
|
|
>>> x1 = np.linspace(0, 1, num=1024, endpoint=False) |
|
|
>>> x2 = np.linspace(0, 1, num=int(scale * len(x1)), endpoint=False) |
|
|
>>> y1 = np.sin(2 * np.pi * freq * x1) |
|
|
>>> y2 = np.sin(2 * np.pi * freq * x2) / np.sqrt(scale) |
|
|
>>> # Verify that the two signals have the same energy |
|
|
>>> np.sum(np.abs(y1)**2), np.sum(np.abs(y2)**2) |
|
|
(255.99999999999997, 255.99999999999969) |
|
|
>>> scale1 = librosa.fmt(y1, n_fmt=512) |
|
|
>>> scale2 = librosa.fmt(y2, n_fmt=512) |
|
|
|
|
|
>>> # And plot the results |
|
|
>>> import matplotlib.pyplot as plt |
|
|
>>> fig, ax = plt.subplots(nrows=2) |
|
|
>>> ax[0].plot(y1, label='Original') |
|
|
>>> ax[0].plot(y2, linestyle='--', label='Stretched') |
|
|
>>> ax[0].set(xlabel='time (samples)', title='Input signals') |
|
|
>>> ax[0].legend() |
|
|
>>> ax[1].semilogy(np.abs(scale1), label='Original') |
|
|
>>> ax[1].semilogy(np.abs(scale2), linestyle='--', label='Stretched') |
|
|
>>> ax[1].set(xlabel='scale coefficients', title='Scale transform magnitude') |
|
|
>>> ax[1].legend() |
|
|
|
|
|
>>> # Plot the scale transform of an onset strength autocorrelation |
|
|
>>> y, sr = librosa.load(librosa.ex('choice')) |
|
|
>>> odf = librosa.onset.onset_strength(y=y, sr=sr) |
|
|
>>> # Auto-correlate with up to 10 seconds lag |
|
|
>>> odf_ac = librosa.autocorrelate(odf, max_size=10 * sr // 512) |
|
|
>>> # Normalize |
|
|
>>> odf_ac = librosa.util.normalize(odf_ac, norm=np.inf) |
|
|
>>> # Compute the scale transform |
|
|
>>> odf_ac_scale = librosa.fmt(librosa.util.normalize(odf_ac), n_fmt=512) |
|
|
>>> # Plot the results |
|
|
>>> fig, ax = plt.subplots(nrows=3) |
|
|
>>> ax[0].plot(odf, label='Onset strength') |
|
|
>>> ax[0].set(xlabel='Time (frames)', title='Onset strength') |
|
|
>>> ax[1].plot(odf_ac, label='Onset autocorrelation') |
|
|
>>> ax[1].set(xlabel='Lag (frames)', title='Onset autocorrelation') |
|
|
>>> ax[2].semilogy(np.abs(odf_ac_scale), label='Scale transform magnitude') |
|
|
>>> ax[2].set(xlabel='scale coefficients') |
|
|
""" |
|
|
|
|
|
n = y.shape[axis] |
|
|
|
|
|
if n < 3: |
|
|
raise ParameterError("y.shape[{:}]=={:} < 3".format(axis, n)) |
|
|
|
|
|
if t_min <= 0: |
|
|
raise ParameterError("t_min must be a positive number") |
|
|
|
|
|
if n_fmt is None: |
|
|
if over_sample < 1: |
|
|
raise ParameterError("over_sample must be >= 1") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
log_base = np.log(n - 1) - np.log(n - 2) |
|
|
|
|
|
n_fmt = int(np.ceil(over_sample * (np.log(n - 1) - np.log(t_min)) / log_base)) |
|
|
|
|
|
elif n_fmt < 3: |
|
|
raise ParameterError("n_fmt=={:} < 3".format(n_fmt)) |
|
|
else: |
|
|
log_base = (np.log(n_fmt - 1) - np.log(n_fmt - 2)) / over_sample |
|
|
|
|
|
if not np.all(np.isfinite(y)): |
|
|
raise ParameterError("y must be finite everywhere") |
|
|
|
|
|
base = np.exp(log_base) |
|
|
|
|
|
|
|
|
x = np.linspace(0, 1, num=n, endpoint=False) |
|
|
|
|
|
|
|
|
f_interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=axis) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
n_over = int(np.ceil(over_sample)) |
|
|
x_exp = np.logspace( |
|
|
(np.log(t_min) - np.log(n)) / log_base, |
|
|
0, |
|
|
num=n_fmt + n_over, |
|
|
endpoint=False, |
|
|
base=base, |
|
|
)[:-n_over] |
|
|
|
|
|
|
|
|
|
|
|
if x_exp[0] < t_min or x_exp[-1] > float(n - 1.0) / n: |
|
|
x_exp = np.clip(x_exp, float(t_min) / n, x[-1]) |
|
|
|
|
|
|
|
|
|
|
|
if len(np.unique(x_exp)) != len(x_exp): |
|
|
raise ParameterError("Redundant sample positions in Mellin transform") |
|
|
|
|
|
|
|
|
y_res = f_interp(x_exp) |
|
|
|
|
|
|
|
|
shape = [1] * y_res.ndim |
|
|
shape[axis] = -1 |
|
|
|
|
|
|
|
|
|
|
|
fft = get_fftlib() |
|
|
return fft.rfft( |
|
|
y_res * ((x_exp ** beta).reshape(shape) * np.sqrt(n) / n_fmt), axis=axis |
|
|
) |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
@cache(level=30) |
|
|
def pcen( |
|
|
S, |
|
|
*, |
|
|
sr=22050, |
|
|
hop_length=512, |
|
|
gain=0.98, |
|
|
bias=2, |
|
|
power=0.5, |
|
|
time_constant=0.400, |
|
|
eps=1e-6, |
|
|
b=None, |
|
|
max_size=1, |
|
|
ref=None, |
|
|
axis=-1, |
|
|
max_axis=None, |
|
|
zi=None, |
|
|
return_zf=False, |
|
|
): |
|
|
"""Per-channel energy normalization (PCEN) |
|
|
|
|
|
This function normalizes a time-frequency representation ``S`` by |
|
|
performing automatic gain control, followed by nonlinear compression [#]_ :: |
|
|
|
|
|
P[f, t] = (S / (eps + M[f, t])**gain + bias)**power - bias**power |
|
|
|
|
|
IMPORTANT: the default values of eps, gain, bias, and power match the |
|
|
original publication, in which ``S`` is a 40-band mel-frequency |
|
|
spectrogram with 25 ms windowing, 10 ms frame shift, and raw audio values |
|
|
in the interval [-2**31; 2**31-1[. If you use these default values, we |
|
|
recommend to make sure that the raw audio is properly scaled to this |
|
|
interval, and not to [-1, 1[ as is most often the case. |
|
|
|
|
|
The matrix ``M`` is the result of applying a low-pass, temporal IIR filter |
|
|
to ``S``:: |
|
|
|
|
|
M[f, t] = (1 - b) * M[f, t - 1] + b * S[f, t] |
|
|
|
|
|
If ``b`` is not provided, it is calculated as:: |
|
|
|
|
|
b = (sqrt(1 + 4* T**2) - 1) / (2 * T**2) |
|
|
|
|
|
where ``T = time_constant * sr / hop_length``. [#]_ |
|
|
|
|
|
This normalization is designed to suppress background noise and |
|
|
emphasize foreground signals, and can be used as an alternative to |
|
|
decibel scaling (`amplitude_to_db`). |
|
|
|
|
|
This implementation also supports smoothing across frequency bins |
|
|
by specifying ``max_size > 1``. If this option is used, the filtered |
|
|
spectrogram ``M`` is computed as:: |
|
|
|
|
|
M[f, t] = (1 - b) * M[f, t - 1] + b * R[f, t] |
|
|
|
|
|
where ``R`` has been max-filtered along the frequency axis, similar to |
|
|
the SuperFlux algorithm implemented in `onset.onset_strength`:: |
|
|
|
|
|
R[f, t] = max(S[f - max_size//2: f + max_size//2, t]) |
|
|
|
|
|
This can be used to perform automatic gain control on signals that cross |
|
|
or span multiple frequency bans, which may be desirable for spectrograms |
|
|
with high frequency resolution. |
|
|
|
|
|
.. [#] Wang, Y., Getreuer, P., Hughes, T., Lyon, R. F., & Saurous, R. A. |
|
|
(2017, March). Trainable frontend for robust and far-field keyword spotting. |
|
|
In Acoustics, Speech and Signal Processing (ICASSP), 2017 |
|
|
IEEE International Conference on (pp. 5670-5674). IEEE. |
|
|
|
|
|
.. [#] Lostanlen, V., Salamon, J., McFee, B., Cartwright, M., Farnsworth, A., |
|
|
Kelling, S., and Bello, J. P. Per-Channel Energy Normalization: Why and How. |
|
|
IEEE Signal Processing Letters, 26(1), 39-43. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
S : np.ndarray (non-negative) |
|
|
The input (magnitude) spectrogram |
|
|
|
|
|
sr : number > 0 [scalar] |
|
|
The audio sampling rate |
|
|
|
|
|
hop_length : int > 0 [scalar] |
|
|
The hop length of ``S``, expressed in samples |
|
|
|
|
|
gain : number >= 0 [scalar] |
|
|
The gain factor. Typical values should be slightly less than 1. |
|
|
|
|
|
bias : number >= 0 [scalar] |
|
|
The bias point of the nonlinear compression (default: 2) |
|
|
|
|
|
power : number >= 0 [scalar] |
|
|
The compression exponent. Typical values should be between 0 and 0.5. |
|
|
Smaller values of ``power`` result in stronger compression. |
|
|
At the limit ``power=0``, polynomial compression becomes logarithmic. |
|
|
|
|
|
time_constant : number > 0 [scalar] |
|
|
The time constant for IIR filtering, measured in seconds. |
|
|
|
|
|
eps : number > 0 [scalar] |
|
|
A small constant used to ensure numerical stability of the filter. |
|
|
|
|
|
b : number in [0, 1] [scalar] |
|
|
The filter coefficient for the low-pass filter. |
|
|
If not provided, it will be inferred from ``time_constant``. |
|
|
|
|
|
max_size : int > 0 [scalar] |
|
|
The width of the max filter applied to the frequency axis. |
|
|
If left as `1`, no filtering is performed. |
|
|
|
|
|
ref : None or np.ndarray (shape=S.shape) |
|
|
An optional pre-computed reference spectrum (``R`` in the above). |
|
|
If not provided it will be computed from ``S``. |
|
|
|
|
|
axis : int [scalar] |
|
|
The (time) axis of the input spectrogram. |
|
|
|
|
|
max_axis : None or int [scalar] |
|
|
The frequency axis of the input spectrogram. |
|
|
If `None`, and ``S`` is two-dimensional, it will be inferred |
|
|
as the opposite from ``axis``. |
|
|
If ``S`` is not two-dimensional, and ``max_size > 1``, an error |
|
|
will be raised. |
|
|
|
|
|
zi : np.ndarray |
|
|
The initial filter delay values. |
|
|
|
|
|
This may be the ``zf`` (final delay values) of a previous call to ``pcen``, or |
|
|
computed by `scipy.signal.lfilter_zi`. |
|
|
|
|
|
return_zf : bool |
|
|
If ``True``, return the final filter delay values along with the PCEN output ``P``. |
|
|
This is primarily useful in streaming contexts, where the final state of one |
|
|
block of processing should be used to initialize the next block. |
|
|
|
|
|
If ``False`` (default) only the PCEN values ``P`` are returned. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
P : np.ndarray, non-negative [shape=(n, m)] |
|
|
The per-channel energy normalized version of ``S``. |
|
|
zf : np.ndarray (optional) |
|
|
The final filter delay values. Only returned if ``return_zf=True``. |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
amplitude_to_db |
|
|
librosa.onset.onset_strength |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
Compare PCEN to log amplitude (dB) scaling on Mel spectra |
|
|
|
|
|
>>> import matplotlib.pyplot as plt |
|
|
>>> y, sr = librosa.load(librosa.ex('robin')) |
|
|
|
|
|
>>> # We recommend scaling y to the range [-2**31, 2**31[ before applying |
|
|
>>> # PCEN's default parameters. Furthermore, we use power=1 to get a |
|
|
>>> # magnitude spectrum instead of a power spectrum. |
|
|
>>> S = librosa.feature.melspectrogram(y=y, sr=sr, power=1) |
|
|
>>> log_S = librosa.amplitude_to_db(S, ref=np.max) |
|
|
>>> pcen_S = librosa.pcen(S * (2**31)) |
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) |
|
|
>>> img = librosa.display.specshow(log_S, x_axis='time', y_axis='mel', ax=ax[0]) |
|
|
>>> ax[0].set(title='log amplitude (dB)', xlabel=None) |
|
|
>>> ax[0].label_outer() |
|
|
>>> imgpcen = librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel', ax=ax[1]) |
|
|
>>> ax[1].set(title='Per-channel energy normalization') |
|
|
>>> fig.colorbar(img, ax=ax[0], format="%+2.0f dB") |
|
|
>>> fig.colorbar(imgpcen, ax=ax[1]) |
|
|
|
|
|
Compare PCEN with and without max-filtering |
|
|
|
|
|
>>> pcen_max = librosa.pcen(S * (2**31), max_size=3) |
|
|
>>> fig, ax = plt.subplots(nrows=2, sharex=True, sharey=True) |
|
|
>>> librosa.display.specshow(pcen_S, x_axis='time', y_axis='mel', ax=ax[0]) |
|
|
>>> ax[0].set(title='Per-channel energy normalization (no max-filter)') |
|
|
>>> ax[0].label_outer() |
|
|
>>> img = librosa.display.specshow(pcen_max, x_axis='time', y_axis='mel', ax=ax[1]) |
|
|
>>> ax[1].set(title='Per-channel energy normalization (max_size=3)') |
|
|
>>> fig.colorbar(img, ax=ax) |
|
|
""" |
|
|
|
|
|
if power < 0: |
|
|
raise ParameterError("power={} must be nonnegative".format(power)) |
|
|
|
|
|
if gain < 0: |
|
|
raise ParameterError("gain={} must be non-negative".format(gain)) |
|
|
|
|
|
if bias < 0: |
|
|
raise ParameterError("bias={} must be non-negative".format(bias)) |
|
|
|
|
|
if eps <= 0: |
|
|
raise ParameterError("eps={} must be strictly positive".format(eps)) |
|
|
|
|
|
if time_constant <= 0: |
|
|
raise ParameterError( |
|
|
"time_constant={} must be strictly positive".format(time_constant) |
|
|
) |
|
|
|
|
|
if max_size < 1 or not isinstance(max_size, (int, np.integer)): |
|
|
raise ParameterError("max_size={} must be a positive integer".format(max_size)) |
|
|
|
|
|
if b is None: |
|
|
t_frames = time_constant * sr / float(hop_length) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b = (np.sqrt(1 + 4 * t_frames ** 2) - 1) / (2 * t_frames ** 2) |
|
|
|
|
|
if not 0 <= b <= 1: |
|
|
raise ParameterError("b={} must be between 0 and 1".format(b)) |
|
|
|
|
|
if np.issubdtype(S.dtype, np.complexfloating): |
|
|
warnings.warn( |
|
|
"pcen was called on complex input so phase " |
|
|
"information will be discarded. To suppress this warning, " |
|
|
"call pcen(np.abs(D)) instead.", |
|
|
stacklevel=2, |
|
|
) |
|
|
S = np.abs(S) |
|
|
|
|
|
if ref is None: |
|
|
if max_size == 1: |
|
|
ref = S |
|
|
elif S.ndim == 1: |
|
|
raise ParameterError( |
|
|
"Max-filtering cannot be applied to 1-dimensional input" |
|
|
) |
|
|
else: |
|
|
if max_axis is None: |
|
|
if S.ndim != 2: |
|
|
raise ParameterError( |
|
|
"Max-filtering a {:d}-dimensional spectrogram " |
|
|
"requires you to specify max_axis".format(S.ndim) |
|
|
) |
|
|
|
|
|
|
|
|
max_axis = np.mod(1 - axis, 2) |
|
|
|
|
|
ref = scipy.ndimage.maximum_filter1d(S, max_size, axis=max_axis) |
|
|
|
|
|
if zi is None: |
|
|
|
|
|
shape = tuple([1] * ref.ndim) |
|
|
zi = np.empty(shape) |
|
|
zi[:] = scipy.signal.lfilter_zi([b], [1, b - 1])[:] |
|
|
|
|
|
|
|
|
S_smooth, zf = scipy.signal.lfilter([b], [1, b - 1], ref, zi=zi, axis=axis) |
|
|
|
|
|
|
|
|
|
|
|
smooth = np.exp(-gain * (np.log(eps) + np.log1p(S_smooth / eps))) |
|
|
|
|
|
|
|
|
if power == 0: |
|
|
S_out = np.log1p(S * smooth) |
|
|
elif bias == 0: |
|
|
S_out = np.exp(power * (np.log(S) + np.log(smooth))) |
|
|
else: |
|
|
S_out = (bias ** power) * np.expm1(power * np.log1p(S * smooth / bias)) |
|
|
|
|
|
if return_zf: |
|
|
return S_out, zf |
|
|
else: |
|
|
return S_out |
|
|
|
|
|
|
|
|
@deprecate_positional_args |
|
|
def griffinlim( |
|
|
S, |
|
|
*, |
|
|
n_iter=32, |
|
|
hop_length=None, |
|
|
win_length=None, |
|
|
n_fft=None, |
|
|
window="hann", |
|
|
center=True, |
|
|
dtype=None, |
|
|
length=None, |
|
|
pad_mode="constant", |
|
|
momentum=0.99, |
|
|
init="random", |
|
|
random_state=None, |
|
|
): |
|
|
|
|
|
"""Approximate magnitude spectrogram inversion using the "fast" Griffin-Lim algorithm. |
|
|
|
|
|
Given a short-time Fourier transform magnitude matrix (``S``), the algorithm randomly |
|
|
initializes phase estimates, and then alternates forward- and inverse-STFT |
|
|
operations. [#]_ |
|
|
|
|
|
Note that this assumes reconstruction of a real-valued time-domain signal, and |
|
|
that ``S`` contains only the non-negative frequencies (as computed by |
|
|
`stft`). |
|
|
|
|
|
The "fast" GL method [#]_ uses a momentum parameter to accelerate convergence. |
|
|
|
|
|
.. [#] D. W. Griffin and J. S. Lim, |
|
|
"Signal estimation from modified short-time Fourier transform," |
|
|
IEEE Trans. ASSP, vol.32, no.2, pp.236–243, Apr. 1984. |
|
|
|
|
|
.. [#] Perraudin, N., Balazs, P., & Søndergaard, P. L. |
|
|
"A fast Griffin-Lim algorithm," |
|
|
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (pp. 1-4), |
|
|
Oct. 2013. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
S : np.ndarray [shape=(..., n_fft // 2 + 1, t), non-negative] |
|
|
An array of short-time Fourier transform magnitudes as produced by |
|
|
`stft`. |
|
|
|
|
|
n_iter : int > 0 |
|
|
The number of iterations to run |
|
|
|
|
|
hop_length : None or int > 0 |
|
|
The hop length of the STFT. If not provided, it will default to ``n_fft // 4`` |
|
|
|
|
|
win_length : None or int > 0 |
|
|
The window length of the STFT. By default, it will equal ``n_fft`` |
|
|
|
|
|
n_fft : None or int > 0 |
|
|
The number of samples per frame. |
|
|
By default, this will be inferred from the shape of ``S`` as an even number. |
|
|
However, if an odd frame length was used, you can explicitly set ``n_fft``. |
|
|
|
|
|
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] |
|
|
A window specification as supported by `stft` or `istft` |
|
|
|
|
|
center : boolean |
|
|
If ``True``, the STFT is assumed to use centered frames. |
|
|
If ``False``, the STFT is assumed to use left-aligned frames. |
|
|
|
|
|
dtype : np.dtype |
|
|
Real numeric type for the time-domain signal. Default is inferred |
|
|
to match the precision of the input spectrogram. |
|
|
|
|
|
length : None or int > 0 |
|
|
If provided, the output ``y`` is zero-padded or clipped to exactly ``length`` |
|
|
samples. |
|
|
|
|
|
pad_mode : string |
|
|
If ``center=True``, the padding mode to use at the edges of the signal. |
|
|
By default, STFT uses zero padding. |
|
|
|
|
|
momentum : number >= 0 |
|
|
The momentum parameter for fast Griffin-Lim. |
|
|
Setting this to 0 recovers the original Griffin-Lim method [1]_. |
|
|
Values near 1 can lead to faster convergence, but above 1 may not converge. |
|
|
|
|
|
init : None or 'random' [default] |
|
|
If 'random' (the default), then phase values are initialized randomly |
|
|
according to ``random_state``. This is recommended when the input ``S`` is |
|
|
a magnitude spectrogram with no initial phase estimates. |
|
|
|
|
|
If `None`, then the phase is initialized from ``S``. This is useful when |
|
|
an initial guess for phase can be provided, or when you want to resume |
|
|
Griffin-Lim from a previous output. |
|
|
|
|
|
random_state : None, int, or np.random.RandomState |
|
|
If int, random_state is the seed used by the random number generator |
|
|
for phase initialization. |
|
|
|
|
|
If `np.random.RandomState` instance, the random number |
|
|
generator itself. |
|
|
|
|
|
If `None`, defaults to the current `np.random` object. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
y : np.ndarray [shape=(..., n)] |
|
|
time-domain signal reconstructed from ``S`` |
|
|
|
|
|
See Also |
|
|
-------- |
|
|
stft |
|
|
istft |
|
|
magphase |
|
|
filters.get_window |
|
|
|
|
|
Examples |
|
|
-------- |
|
|
A basic STFT inverse example |
|
|
|
|
|
>>> y, sr = librosa.load(librosa.ex('trumpet')) |
|
|
>>> # Get the magnitude spectrogram |
|
|
>>> S = np.abs(librosa.stft(y)) |
|
|
>>> # Invert using Griffin-Lim |
|
|
>>> y_inv = librosa.griffinlim(S) |
|
|
>>> # Invert without estimating phase |
|
|
>>> y_istft = librosa.istft(S) |
|
|
|
|
|
Wave-plot the results |
|
|
|
|
|
>>> import matplotlib.pyplot as plt |
|
|
>>> fig, ax = plt.subplots(nrows=3, sharex=True, sharey=True) |
|
|
>>> librosa.display.waveshow(y, sr=sr, color='b', ax=ax[0]) |
|
|
>>> ax[0].set(title='Original', xlabel=None) |
|
|
>>> ax[0].label_outer() |
|
|
>>> librosa.display.waveshow(y_inv, sr=sr, color='g', ax=ax[1]) |
|
|
>>> ax[1].set(title='Griffin-Lim reconstruction', xlabel=None) |
|
|
>>> ax[1].label_outer() |
|
|
>>> librosa.display.waveshow(y_istft, sr=sr, color='r', ax=ax[2]) |
|
|
>>> ax[2].set_title('Magnitude-only istft reconstruction') |
|
|
""" |
|
|
|
|
|
if random_state is None: |
|
|
rng = np.random |
|
|
elif isinstance(random_state, int): |
|
|
rng = np.random.RandomState(seed=random_state) |
|
|
elif isinstance(random_state, np.random.RandomState): |
|
|
rng = random_state |
|
|
|
|
|
if momentum > 1: |
|
|
warnings.warn( |
|
|
"Griffin-Lim with momentum={} > 1 can be unstable. " |
|
|
"Proceed with caution!".format(momentum), |
|
|
stacklevel=2, |
|
|
) |
|
|
elif momentum < 0: |
|
|
raise ParameterError( |
|
|
"griffinlim() called with momentum={} < 0".format(momentum) |
|
|
) |
|
|
|
|
|
|
|
|
if n_fft is None: |
|
|
n_fft = 2 * (S.shape[-2] - 1) |
|
|
|
|
|
|
|
|
angles = np.empty(S.shape, dtype=np.complex64) |
|
|
eps = util.tiny(angles) |
|
|
|
|
|
if init == "random": |
|
|
|
|
|
angles[:] = np.exp(2j * np.pi * rng.rand(*S.shape)) |
|
|
elif init is None: |
|
|
|
|
|
angles[:] = 1.0 |
|
|
else: |
|
|
raise ParameterError("init={} must either None or 'random'".format(init)) |
|
|
|
|
|
|
|
|
rebuilt = 0.0 |
|
|
|
|
|
for _ in range(n_iter): |
|
|
|
|
|
tprev = rebuilt |
|
|
|
|
|
|
|
|
inverse = istft( |
|
|
S * angles, |
|
|
hop_length=hop_length, |
|
|
win_length=win_length, |
|
|
n_fft=n_fft, |
|
|
window=window, |
|
|
center=center, |
|
|
dtype=dtype, |
|
|
length=length, |
|
|
) |
|
|
|
|
|
|
|
|
rebuilt = stft( |
|
|
inverse, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
win_length=win_length, |
|
|
window=window, |
|
|
center=center, |
|
|
pad_mode=pad_mode, |
|
|
) |
|
|
|
|
|
|
|
|
angles[:] = rebuilt - (momentum / (1 + momentum)) * tprev |
|
|
angles[:] /= np.abs(angles) + eps |
|
|
|
|
|
|
|
|
return istft( |
|
|
S * angles, |
|
|
hop_length=hop_length, |
|
|
win_length=win_length, |
|
|
n_fft=n_fft, |
|
|
window=window, |
|
|
center=center, |
|
|
dtype=dtype, |
|
|
length=length, |
|
|
) |
|
|
|
|
|
|
|
|
def _spectrogram( |
|
|
*, |
|
|
y=None, |
|
|
S=None, |
|
|
n_fft=2048, |
|
|
hop_length=512, |
|
|
power=1, |
|
|
win_length=None, |
|
|
window="hann", |
|
|
center=True, |
|
|
pad_mode="constant", |
|
|
): |
|
|
"""Helper function to retrieve a magnitude spectrogram. |
|
|
|
|
|
This is primarily used in feature extraction functions that can operate on |
|
|
either audio time-series or spectrogram input. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
y : None or np.ndarray |
|
|
If provided, an audio time series |
|
|
|
|
|
S : None or np.ndarray |
|
|
Spectrogram input, optional |
|
|
|
|
|
n_fft : int > 0 |
|
|
STFT window size |
|
|
|
|
|
hop_length : int > 0 |
|
|
STFT hop length |
|
|
|
|
|
power : float > 0 |
|
|
Exponent for the magnitude spectrogram, |
|
|
e.g., 1 for energy, 2 for power, etc. |
|
|
|
|
|
win_length : int <= n_fft [scalar] |
|
|
Each frame of audio is windowed by ``window``. |
|
|
The window will be of length ``win_length`` and then padded |
|
|
with zeros to match ``n_fft``. |
|
|
|
|
|
If unspecified, defaults to ``win_length = n_fft``. |
|
|
|
|
|
window : string, tuple, number, function, or np.ndarray [shape=(n_fft,)] |
|
|
- a window specification (string, tuple, or number); |
|
|
see `scipy.signal.get_window` |
|
|
- a window function, such as `scipy.signal.windows.hann` |
|
|
- a vector or array of length ``n_fft`` |
|
|
|
|
|
.. see also:: `filters.get_window` |
|
|
|
|
|
center : boolean |
|
|
- If ``True``, the signal ``y`` is padded so that frame |
|
|
``t`` is centered at ``y[t * hop_length]``. |
|
|
- If ``False``, then frame ``t`` begins at ``y[t * hop_length]`` |
|
|
|
|
|
pad_mode : string |
|
|
If ``center=True``, the padding mode to use at the edges of the signal. |
|
|
By default, STFT uses zero padding. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
S_out : np.ndarray [dtype=np.float] |
|
|
- If ``S`` is provided as input, then ``S_out == S`` |
|
|
- Else, ``S_out = |stft(y, ...)|**power`` |
|
|
n_fft : int > 0 |
|
|
- If ``S`` is provided, then ``n_fft`` is inferred from ``S`` |
|
|
- Else, copied from input |
|
|
""" |
|
|
|
|
|
if S is not None: |
|
|
|
|
|
if n_fft // 2 + 1 != S.shape[-2]: |
|
|
n_fft = 2 * (S.shape[-2] - 1) |
|
|
else: |
|
|
|
|
|
S = ( |
|
|
np.abs( |
|
|
stft( |
|
|
y, |
|
|
n_fft=n_fft, |
|
|
hop_length=hop_length, |
|
|
win_length=win_length, |
|
|
center=center, |
|
|
window=window, |
|
|
pad_mode=pad_mode, |
|
|
) |
|
|
) |
|
|
** power |
|
|
) |
|
|
|
|
|
return S, n_fft |
|
|
|