File size: 23,031 Bytes
da67f74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
from typing import Tuple
import math
import random
import torch
import ctypes
import triton
import triton.language as tl
from triton import Config
@triton.jit
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
"""
Quantizes the input tensor `x_ptr` and stores the result in `y_ptr` and the scaling factor in `s_ptr`.
Args:
x_ptr (triton.Pointer): Pointer to the input tensor.
y_ptr (triton.Pointer): Pointer to the output tensor where quantized values will be stored.
s_ptr (triton.Pointer): Pointer to the output tensor where scaling factors will be stored.
BLOCK_SIZE (tl.constexpr): The size of the block to be processed by each program instance.
Returns:
None
"""
pid = tl.program_id(axis=0)
offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
x = tl.load(x_ptr + offs).to(tl.float32)
s = tl.max(tl.abs(x)) / 448.
y = x / s
y = y.to(y_ptr.dtype.element_ty)
tl.store(y_ptr + offs, y)
tl.store(s_ptr + pid, s)
# 把 张量 x 进行 量化
def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Quantizes the input tensor `x` using block-wise quantization.
Args:
x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
Returns:
Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
- The quantized tensor with dtype `torch.float8_e4m3fn`.
- A tensor of scaling factors with dtype `torch.float32`.
"""
assert x.is_contiguous(), 'Input tensor must be contiguous'
assert x.size(-1) % block_size == 0, f'Last dimension size must be divisible by block_size (block_size={block_size})'
# 创建两个张量:一个形状与x 一致且dtype为FP8的张量y;一个是专门储存scale因子的张量s,依旧是每128维储存一个scale因子
# (按照上述代码来看,s的张量形状为(2, 3, 7168 // 128)=(2, 3, 56),数据类型为FP32)。
y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32)
# 之后的两行代码,便涉及到了Triton Kernel的调度计算。Triton是一个专门用于优化GPU计算的编程框架。内核调度(Kernel Scheduling)指的是
# 如何将计算任务分配给GPU上的计算单元(SMs-Streaming Multiprocessors)。内核(kernel)指的是要求在 GPU 上并行执行的那段代码(也可以说是计算任务)。
# 众所周知,GPU并不像CPU那样串行计算,而是同时运行多个计算块(blocks),每个 block又包含多个线程,它们并行执行任务,以提高计算效率。
# grid 决定多少个计算block被调度到 GPU 上。这里调用了triton.cdiv(x.numel(), meta['BLOCK_SIZE']) 来计算需要多少个 blocks。
# x.numel()是输入x张量里元素的个数,在本例中为2×3×7168个。 triton.cdiv()负责作向上取整的除法,以确保整个张量都能被块覆盖。
# meta['BLOCK_SIZE']=128 ,于是可知grid为(2×3×7168/128, )=(336, ) ,即最终会划分为336块blocks进行并行计算。
grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), )
act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size)
return y, s
@triton.jit
def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
"""
Dequantizes weights using the provided scaling factors and stores the result.
Args:
x_ptr (tl.pointer): Pointer to the quantized weights.
s_ptr (tl.pointer): Pointer to the scaling factors.
y_ptr (tl.pointer): Pointer to the output buffer for dequantized weights.
M (int): Number of rows in the weight matrix.
N (int): Number of columns in the weight matrix.
BLOCK_SIZE (tl.constexpr): Size of the block for tiling.
Returns:
None
"""
pid_m = tl.program_id(axis=0)
pid_n = tl.program_id(axis=1)
n = tl.cdiv(N, BLOCK_SIZE)
offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
offs = offs_m[:, None] * N + offs_n[None, :]
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
s = tl.load(s_ptr + pid_m * n + pid_n)
y = x * s
tl.store(y_ptr + offs, y, mask=mask)
def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
"""
Dequantizes the given weight tensor using the provided scale tensor.
Args:
x (torch.Tensor): The quantized weight tensor of shape (M, N).
s (torch.Tensor): The scale tensor of shape (M, N).
block_size (int, optional): The block size to use for dequantization. Defaults to 128.
Returns:
torch.Tensor: The dequantized weight tensor of the same shape as `x`.
Raises:
AssertionError: If `x` or `s` are not contiguous or if their dimensions are not 2.
"""
assert x.is_contiguous() and s.is_contiguous(), 'Input tensors must be contiguous'
assert x.dim() == 2 and s.dim() == 2, 'Input tensors must have 2 dimensions'
M, N = x.size()
y = torch.empty_like(x, dtype=torch.get_default_dtype())
grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)
return y
fp8_gemm_configs = [
Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
]
@triton.autotune(configs=fp8_gemm_configs, key=['N', 'K'])
@triton.jit
def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
a_s_ptr, b_s_ptr,
M, N: tl.constexpr, K: tl.constexpr,
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr):
"""
Performs a matrix multiplication operation on FP8 matrices with scaling factors.
Args:
a_ptr (tl.tensor): Pointer to the first input matrix A.
b_ptr (tl.tensor): Pointer to the second input matrix B.
c_ptr (tl.tensor): Pointer to the output matrix C.
a_s_ptr (tl.tensor): Pointer to the scaling factors for matrix A.
b_s_ptr (tl.tensor): Pointer to the scaling factors for matrix B.
M (int): Number of rows in matrix A and C.
N (tl.constexpr): Number of columns in matrix B and C.
K (tl.constexpr): Number of columns in matrix A and rows in matrix B.
BLOCK_SIZE_M (tl.constexpr): Block size for the M dimension.
BLOCK_SIZE_N (tl.constexpr): Block size for the N dimension.
BLOCK_SIZE_K (tl.constexpr): Block size for the K dimension.
Returns:
None
"""
pid_m = tl.program_id(axis=0)
pid_n = tl.program_id(axis=1)
k = tl.cdiv(K, BLOCK_SIZE_K)
offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :]
b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None]
a_s_ptrs = a_s_ptr + offs_m * k
b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for i in range(k):
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0)
a_s = tl.load(a_s_ptrs)
b_s = tl.load(b_s_ptrs)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K
b_ptrs += BLOCK_SIZE_K
a_s_ptrs += 1
b_s_ptrs += 1
c = accumulator.to(c_ptr.dtype.element_ty)
offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :]
mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
tl.store(c_ptrs, c, mask=mask)
# FP8通用矩阵乘法
def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
"""
Perform a matrix multiplication using FP8 precision.
Args:
a (torch.Tensor): The first input matrix, must be contiguous.
a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
b (torch.Tensor): The second input matrix, must be contiguous.
b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
Returns:
torch.Tensor: The result of the matrix multiplication.
"""
assert a.is_contiguous() and b.is_contiguous(), 'Input tensors must be contiguous'
assert a_s.is_contiguous() and b_s.is_contiguous(), 'Scaling factor tensors must be contiguous'
K = a.size(-1)
M = a.numel() // K
N = b.size(0)
c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N']))
fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K)
return c
# 加载 CUDA 动态库
lib = ctypes.CDLL("./libint64gemm.so")
# 定义参数类型
lib.int64_64_bmm_broadcast_launcher.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_void_p, # R
ctypes.c_longlong, ctypes.c_longlong, ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.int64_32_bmm_broadcast_launcher.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_void_p, # R
ctypes.c_longlong, ctypes.c_longlong, ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.complex_int64_mul.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.rms_norm_32.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # W
ctypes.c_void_p, # rms
ctypes.c_void_p, # C
ctypes.c_int, ctypes.c_int
]
lib.rms_norm_64.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # W
ctypes.c_void_p, # rms
ctypes.c_void_p, # C
ctypes.c_int, ctypes.c_int
]
lib.einsum_bshd_hdc_bshc.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.einsum_bshc_btc_bsht.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.einsum_bsht_btc_bshc.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.einsum_bshc_hdc_bshd.argtypes = [
ctypes.c_void_p, # A
ctypes.c_void_p, # B
ctypes.c_void_p, # C
ctypes.c_longlong,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.softmax_q21.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.softmax_q19.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.softmax_init_q21.argtypes = [
ctypes.c_void_p
]
lib.softmax_init_q19.argtypes = [
ctypes.c_void_p
]
lib.silu_q25.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.sigmoid_q25.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.silu_init_q25.argtypes = [
ctypes.c_void_p
]
lib.silu_q23.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.sigmoid_q23.argtypes = [
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_int, ctypes.c_int, ctypes.c_int
]
lib.silu_init_q23.argtypes = [
ctypes.c_void_p
]
def int64_bmm_broadcast(A: torch.Tensor, B: torch.Tensor, a_rescale, b_rescale, c_rescale) -> tuple[torch.Tensor]:
"""
int64 批量矩阵乘法: (B, M, K) x (N, K) -> (B, M, N)
"""
global lib
assert A.dtype == torch.int64
# and B.dtype == torch.int64
assert A.is_cuda and B.is_cuda
Bdim, M, K = A.shape
N, K2 = B.shape
assert K2 == K
C = torch.empty((Bdim, M, N), dtype=torch.int64, device="cuda")
R = torch.empty((Bdim, M, N), dtype=torch.int64, device="cuda")
if B.dtype == torch.int64:
lib.int64_64_bmm_broadcast_launcher(
A.data_ptr(), B.data_ptr(), C.data_ptr(), R.data_ptr(),
a_rescale, b_rescale, c_rescale,
Bdim, M, K, N
)
elif B.dtype == torch.int32:
lib.int64_32_bmm_broadcast_launcher(
A.data_ptr(), B.data_ptr(), C.data_ptr(), R.data_ptr(),
a_rescale, b_rescale, c_rescale,
Bdim, M, K, N
)
else:
print(f'Unsupported B type: {B.dtype}')
return (C, R)
def complex_int64_mul_broadcast(A: torch.Tensor, B: torch.Tensor) -> torch.Tensor:
"""
int64 复数逐元素乘法
"""
global lib
# print(f'A type: {A.dtype}, B type: {B.dtype}')
assert A.dtype == torch.int64 and B.dtype == torch.int64
assert A.is_cuda and B.is_cuda
batch = A.shape[0]
seqLen = A.shape[1]
head = A.shape[2]
headDim = A.shape[3]
C = torch.zeros(A.shape, dtype=torch.int64, device=A.device)
lib.complex_int64_mul(
A.data_ptr(), B.data_ptr(), C.data_ptr(),
# high_rescale, row_rescale,
batch, seqLen, head, headDim)
return C
def einsum_bshd_hdc_bshc(A: torch.Tensor, B: torch.Tensor, rescale) -> torch.Tensor:
global lib
assert A.shape[2] == B.shape[0] and A.shape[3] == B.shape[1]
assert A.is_cuda and B.is_cuda
Batch = A.shape[0]
S = A.shape[1]
H = A.shape[2]
D = A.shape[3]
Cp = B.shape[2]
C = torch.zeros([Batch, S, H, Cp], dtype=torch.int64, device=A.device)
lib.einsum_bshd_hdc_bshc(A.data_ptr(), B.data_ptr(), C.data_ptr(),
# (1 << rescale), Batch, S, H, D, Cp)
rescale, Batch, S, H, D, Cp)
return C
def einsum_bshc_btc_bsht(A: torch.Tensor, B: torch.Tensor, rescale) -> torch.Tensor:
global lib
Bsz = A.shape[0]
S = A.shape[1]
H = A.shape[2]
Cdim = A.shape[3]
T = B.shape[1]
assert Bsz == B.shape[0] and Cdim == B.shape[2]
assert A.is_cuda and B.is_cuda
C = torch.zeros([Bsz, S, H, T], dtype=torch.int64, device=A.device)
lib.einsum_bshc_btc_bsht(A.data_ptr(), B.data_ptr(), C.data_ptr(),
# (1 << rescale), Bsz, S, H, T, Cdim)
rescale, Bsz, S, H, T, Cdim)
return C
def einsum_bsht_btc_bshc(A: torch.Tensor, B: torch.Tensor, rescale) -> torch.Tensor:
global lib
Bsz = A.shape[0]
S = A.shape[1]
H = A.shape[2]
T = A.shape[3]
Cdim = B.shape[2]
assert Bsz == B.shape[0] and T == B.shape[1]
assert A.is_cuda and B.is_cuda
C = torch.zeros([Bsz, S, H, Cdim], dtype=torch.int64, device=A.device)
lib.einsum_bsht_btc_bshc(A.data_ptr(), B.data_ptr(), C.data_ptr(),
# (1 << rescale), Bsz, S, H, T, Cdim)
rescale, Bsz, S, H, T, Cdim)
return C
def einsum_bshc_hdc_bshd(A: torch.Tensor, B: torch.Tensor, rescale) -> torch.Tensor:
global lib
Bsz = A.shape[0]
S = A.shape[1]
H = A.shape[2]
D = B.shape[1]
Cdim = A.shape[3]
assert H == B.shape[0] and Cdim == B.shape[2]
assert A.is_cuda and B.is_cuda
C = torch.zeros([Bsz, S, H, D], dtype=torch.int64, device=A.device)
lib.einsum_bshc_hdc_bshd(A.data_ptr(), B.data_ptr(), C.data_ptr(),
# (1 << rescale), Bsz, S, H, D, Cdim)
rescale, Bsz, S, H, D, Cdim)
return C
def int64_RMS0(A: torch.Tensor, eps: int, dim: int) -> torch.Tensor:
assert A.dtype == torch.int64
assert A.ndim == 1
N = A.shape[0]
# 初始化累加器
acc = eps
for i in range(0, N):
a = A[i].item()
acc += a * a
acc = acc // dim
res1 = math.isqrt(acc)
return res1
# x 的 scale 为 2 ** 31,范围为 0 - 2^31
# weight的scale 为 2 ** 21, 范围为 2^5 - 2^20
# rms 的 scale 为 2 ** 31
# 返回的结果 scale 为 2 ** 21,31 + 21 - 31 = 21
@triton.jit
def int64_rms_norm_kernel(
A_ptr, W_ptr, C_ptr, RMS_ptr,
N,
batch_stride_a, batch_stride_c,
BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr
):
pid_m = tl.program_id(0)
for i in range(0, N):
a_ptrs = A_ptr + pid_m * batch_stride_a + i
w_ptrs = W_ptr + i
rms_ptrs = RMS_ptr + pid_m
a = tl.load(a_ptrs, mask=None)
w = tl.load(w_ptrs, mask=None)
rms = tl.load(rms_ptrs, mask=None)
res = a * w // rms
prod = a * w
tl.device_assert(prod > -2 ** 62 and prod < 2 ** 62, "Integer overflow risk!!!")
c_ptrs = C_ptr + pid_m * batch_stride_c + i
tl.store(c_ptrs, res, mask=None)
rms = torch.empty((500, ), dtype=torch.int64, device='cpu')
rms_gpu = torch.empty((500, ), dtype=torch.int64, device='cuda')
def RMS_Norm_int64(A: torch.Tensor, W: torch.Tensor, eps, dim) -> torch.Tensor:
global lib
global rms
global rms_gpu
assert A.dtype == torch.int64
assert A.is_cuda and W.is_cuda
assert A.ndim == 2
M, N = A.shape
for i in range(M):
rms[i] = int64_RMS0(A[i], eps, dim)
rms_gpu.copy_(rms)
C = torch.empty((M, N), dtype=torch.int64, device=A.device)
if W.dtype == torch.int32:
lib.rms_norm_32(A.data_ptr(), W.data_ptr(), rms_gpu.data_ptr(), C.data_ptr(), M, N)
else:
lib.rms_norm_64(A.data_ptr(), W.data_ptr(), rms_gpu.data_ptr(), C.data_ptr(), M, N)
return (C, rms)
def saveTensor(fileName, t):
with open(fileName, "w", encoding="utf-8") as f:
# for row in tensor:
# vs = [str(v.item()) for v in row]
# ss = ' '.join(vs) + '\n'
# f.write(ss)
t = t.detach()
if t.device.type != "cpu":
t = t.cpu()
t = t.contiguous()
with open(fileName, "wb") as f:
# .numpy() -> bytes(C-order)
f.write(t.numpy().tobytes(order="C"))
EXP2_FRAC_LUT_Q21 = None
# LOG_TABLE_SIZE = 10
LOG_TABLE_SIZE = 8
def softmax_init_q21():
global lib
global EXP2_FRAC_LUT_Q21
EXP2_FRAC_LUT0 = torch.zeros((2 ** LOG_TABLE_SIZE, ), dtype=torch.int64, device="cpu")
lib.softmax_init_q21(EXP2_FRAC_LUT0.data_ptr())
# print(EXP2_FRAC_LUT0[619])
EXP2_FRAC_LUT_Q21 = EXP2_FRAC_LUT0.cuda()
EXP2_FRAC_LUT_Q19 = None
def softmax_init_q19():
global lib
global EXP2_FRAC_LUT_Q19
EXP2_FRAC_LUT0 = torch.zeros((2 ** LOG_TABLE_SIZE, ), dtype=torch.int64, device="cpu")
lib.softmax_init_q19(EXP2_FRAC_LUT0.data_ptr())
# print(EXP2_FRAC_LUT0[619])
EXP2_FRAC_LUT_Q19 = EXP2_FRAC_LUT0.cuda()
# saveTensor(f'zkdata/softmax_q19_table.bin', EXP2_FRAC_LUT0.cpu())
def softmax_q21(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q21
assert R.is_cuda and C.is_cuda
# print(EXP2_FRAC_LUT_Q21)
Bsz = R.shape[0]
S = R.shape[1]
H = R.shape[2]
T = R.shape[3]
lib.softmax_q21(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q21.data_ptr(), Bsz, S, H, T)
def softmax_q19(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q19
assert R.is_cuda and C.is_cuda
# print(EXP2_FRAC_LUT_Q19)
Bsz = R.shape[0]
S = R.shape[1]
H = R.shape[2]
T = R.shape[3]
lib.softmax_q19(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q19.data_ptr(), Bsz, S, H, T)
# start of silu_q25 ---------------------------------
EXP2_FRAC_LUT_Q25 = None
def silu_init_q25():
global lib
global EXP2_FRAC_LUT_Q25
EXP2_FRAC_LUT0 = torch.zeros((2 ** LOG_TABLE_SIZE, ), dtype=torch.int64, device="cpu")
lib.silu_init_q25(EXP2_FRAC_LUT0.data_ptr())
# print(EXP2_FRAC_LUT0[619])
EXP2_FRAC_LUT_Q25 = EXP2_FRAC_LUT0.cuda()
def silu_q25(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q25
# print(EXP2_FRAC_LUT_Q25)
Bsz = R.shape[0]
S = R.shape[1]
Dim = R.shape[2]
lib.silu_q25(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q25.data_ptr(), Bsz, S, Dim)
def sigmoid_q25(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q25
Bsz = R.shape[0]
S = R.shape[1]
Dim = R.shape[2]
lib.sigmoid_q25(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q25.data_ptr(), Bsz, S, Dim)
# end of silu_q25 ---------------------------------
# start of silu_q23 ---------------------------------
EXP2_FRAC_LUT_Q23 = None
def silu_init_q23():
global lib
global EXP2_FRAC_LUT_Q23
EXP2_FRAC_LUT0 = torch.zeros((2 ** LOG_TABLE_SIZE, ), dtype=torch.int64, device="cpu")
lib.silu_init_q23(EXP2_FRAC_LUT0.data_ptr())
# print(EXP2_FRAC_LUT0[619])
EXP2_FRAC_LUT_Q23 = EXP2_FRAC_LUT0.cuda()
# saveTensor(f'zkdata/silu_q23_table.bin', EXP2_FRAC_LUT0.cpu())
def silu_q23(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q23
# print(EXP2_FRAC_LUT_Q23)
Bsz = R.shape[0]
S = R.shape[1]
Dim = R.shape[2]
lib.silu_q23(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q23.data_ptr(), Bsz, S, Dim)
def sigmoid_q23(R: torch.Tensor, C: torch.Tensor):
global lib
global EXP2_FRAC_LUT_Q23
Bsz = R.shape[0]
S = R.shape[1]
Dim = R.shape[2]
lib.sigmoid_q23(R.data_ptr(), C.data_ptr(), EXP2_FRAC_LUT_Q23.data_ptr(), Bsz, S, Dim)
# end of silu_q23 ---------------------------------
if __name__ == "__main__":
softmax_init_q21()
torch.manual_seed(0)
device = "cuda"
Bsz = 1
S = 1
H = 2
T = 10
A = torch.rand([Bsz, S, H, T], dtype=torch.bfloat16, device=device)
a = (A.to(torch.float32) * (2 ** 21)).to(torch.int64)
# a = (A * (2 ** 21)).to(torch.int64)
print('A: ' + str(A))
print('a: ' + str(a))
c = torch.zeros([Bsz, S, H, T], dtype=torch.int64, device=device)
softmax_q21(a, c)
r0 = A.softmax(dim=-1, dtype=torch.float32).type_as(A)
print('r0: ' + str(r0))
r1 = (c.to(torch.float32) * (2 ** -21)).to(torch.bfloat16)
print('r1: ' + str(r1))
R0 = (r0.to(torch.float32) * (2 ** 21)).to(torch.int64)
# R0 = (r0 * (2 ** 21)).to(torch.int64)
print('R0: ' + str(R0))
print('R1: ' + str(c))
|