File size: 27,594 Bytes
5000658 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
"""This code is adapted from Alpa https://github.com/alpa-projects/alpa/ with some changes.
"""
import multiprocessing
import time
import warnings
from collections import defaultdict
import numpy as np
import pulp
from pulp import LpMinimize, LpProblem, LpVariable, lpDot, lpSum
from ..logger import logger
class Solution:
def __init__(self, leaf_strategies, s_val, e_val, edge_pairs,
node_index_dict, total_cost):
self.leaf_strategies = leaf_strategies
self.nodes = [
strategies_vector.node for strategies_vector in self.leaf_strategies
]
self.s_val = s_val
self.e_val = e_val
self.total_cost = total_cost
self.edge_pairs = list(np.reshape(edge_pairs, (-1, 2)))
self.node_index_dict = node_index_dict
self.index_node_dict = {}
for node, index in self.node_index_dict.items():
self.index_node_dict[index] = node
self.node_best_strategy = {}
self._annotate_strategy()
def _annotate_strategy(self):
self.node_best_strategy = {}
for index, node in enumerate(self.nodes):
best_strategy_id = self.s_val[index]
best_strategy = self.leaf_strategies[index][best_strategy_id]
self.node_best_strategy[node.node_name] = best_strategy
for edge_idx, edge_pair in enumerate(self.edge_pairs):
src_node = self.index_node_dict[edge_pair[0]]
dst_node = self.index_node_dict[edge_pair[1]]
src_node_index = self.node_index_dict[src_node]
for dst_pre_node in dst_node.predecessor_nodes:
if dst_pre_node is None:
continue
if src_node.node_name == dst_pre_node.node_name:
self.node_best_strategy[
dst_node.node_name].best_resharding_cost[
src_node.node_name] = [
self.node_best_strategy[dst_node.node_name].
resharding_costs[src_node.node_name][
self.s_val[src_node_index]]
]
def print_solution(self):
for index, node in enumerate(self.nodes):
best_strategy = self.node_best_strategy[node.node_name]
print(f'\n[{index}]: node_name = {node.node_name}')
best_strategy.print_strategy(best_resharding_cost_only=True)
print(f'solution total cost = {self.total_cost}')
class CostGraph:
'''
A graph data structure to simplify the edge cost graph. It has two main functions:
1. To feed the quadratic resharding costs into solver, we need to linearize it. We build edge_cost in
CostGraph, and it stored every combinations of strategies for a src-dst node pair in an 1D list.
2. To reduce the searching space, we merge computationally-trivial operators, such as
element-wise operators, transpose, and reduction, into their following nodes. The merging information will
be given by the StrategiesVector depending on the type of target node and following nodes.
Argument:
leaf_strategies(List[StrategiesVector]): It stores StrategiesVector of every nodes on the graph.
simplify(bool, optional): The generated cost graph will be simplified if it is true. (default to True)
'''
def __init__(self, leaf_strategies):
self.leaf_strategies = leaf_strategies
self.nodes = [
strategies_vector.node for strategies_vector in leaf_strategies
]
# stores number of strategies in each node
self.node_strategies_vector = {}
for node, strategies_vector in zip(self.nodes, self.leaf_strategies):
self.node_strategies_vector[node] = strategies_vector
# extra_node_costs will store the extra costs introduced by merging nodes
self.extra_node_costs = {}
self.following_dict = {}
self._build_cost_graph()
def _remove_invalid_node(self, node, attr_name):
remove_list = []
target_node_list = getattr(node, attr_name, [])
for target_node in target_node_list:
if target_node not in self.nodes:
remove_list.append(target_node)
for element in remove_list:
target_node_list.remove(element)
def _build_cost_graph(self):
'''
This method will generate edge_cost for adjacent node pair. Additionally, 'parents' and 'children' attribute will be
set to node.
'''
self.edge_costs = {}
for dst_node, strategies_vector in zip(self.nodes,
self.leaf_strategies):
# build edge_cost
for src_node in dst_node.predecessor_nodes:
if src_node is None:
continue
if src_node not in self.nodes:
continue
node_pair = (src_node, dst_node)
edge_cost = {}
for i in range(len(strategies_vector)):
for j in range(len(self.node_strategies_vector[src_node])):
resharding_cost = strategies_vector[i].resharding_costs[
src_node.node_name][j][-1]
edge_cost[(j, i)] = resharding_cost
self.edge_costs[node_pair] = edge_cost
def get_edge_cost(self, src_node, dst_node):
return self.edge_costs[(src_node, dst_node)]
class Solver:
INFINITY_COST = 1e13
def __init__(self,
cost_graph: CostGraph,
memory_budget: float = -1.0,
solution_numbers: int = 1,
memory_increasing_coefficient: float = 1.3,
verbose=False):
'''
Solver class will integrate information provided by the components and use ILP solver to find a possible optimal strategies combination for target computing graph.
Argument:
graph: The computing graph to be optimized.
strategies_constructor: It will provide all the possible strategies for each node in the computing graph.
cost_graph: A graph data structure to simplify the edge cost graph.
graph_analyser: graph_analyser will analyse the graph to obtain the variable liveness information, which will be used to generate memory constraints.
memory_budget: Memory constraint for the solution.
solution_numbers: If solution_numbers is larger than one, solver will us a serious of solutions based on different memory budget.
memory_increasing_coefficient: If solution_numbers is larger than one, we will use this coefficient to generate new memory budget.
'''
self.cost_graph = cost_graph
self.leaf_strategies = cost_graph.leaf_strategies
self.nodes = cost_graph.nodes
self.memory_budget = memory_budget
self.solution_numbers = solution_numbers
if self.solution_numbers > 1:
self.memory_increasing_coefficient = memory_increasing_coefficient
else:
self.memory_increasing_coefficient = 1
# temporarily we use all nodes as liveness list, we count the backward memory cost together with
# forward memory cost into the node memory cost, and no activation checkpoint is used in this phase.
# self.liveness_list = self.graph_analyser.liveness_analysis()
self.liveness_list = self.nodes
self.node_index_dict = self._generate_node_index_dict()
# The last solution vector of auto sharding.
self.last_s_val = None
# The last objective value of the best ILP solution.
self.last_objective = None
self.verbose = verbose
def _generate_node_index_dict(self):
node_index_dict = {}
for index, node in enumerate(self.nodes):
node_index_dict[node] = index
return node_index_dict
def _prepare_data_for_solver(self):
'''
Extract information from components for solver.
'''
node_nums = len(self.leaf_strategies)
memory_budget = self.memory_budget
# prepare strategies_len
strategies_len = []
for node in self.nodes:
strategies_len.append(
len(self.cost_graph.node_strategies_vector[node]))
strategies_len = np.array(strategies_len)
# prepare edge_pairs and resharding costs
edge_pairs = []
resharding_costs = []
edge_cost_level = []
edge_resharding_weights = []
for pairs, edge_cost in self.cost_graph.edge_costs.items():
src_node = pairs[0]
dst_node = pairs[1]
src_node_index = self.node_index_dict[src_node]
dst_node_index = self.node_index_dict[dst_node]
edge_pairs.append(src_node_index)
edge_pairs.append(dst_node_index)
edge_cost_level.append(
(dst_node.building_block_id, dst_node.cost_level))
for i in range(strategies_len[src_node_index]):
for j in range(strategies_len[dst_node_index]):
resharding_costs.append(edge_cost[(i, j)])
edge_resharding_weights.append(dst_node.resharding_weight +
dst_node.pipeline_weight)
edge_pairs = np.array(edge_pairs)
resharding_costs = np.array(resharding_costs)
edge_resharding_weights = np.array(edge_resharding_weights)
# prepare compute_costs, communication_costs and memory_costs
compute_costs = []
communication_costs = []
memory_costs = []
peak_act_memory_costs, constant_memory_costs = [], []
node_sharding_weights = []
for node, strategies_vector in zip(self.nodes, self.leaf_strategies):
for index, strategy in enumerate(strategies_vector):
compute_cost = strategy.sharding_cost
origin_communication_cost = strategy.communication_cost
memory_cost = strategy.const_memory_footprint * node.sharding_weight
peak_act_memory = strategy.peak_memory_footprint
# extract the memory cost in float from MemoryCost item and sum them up
compute_costs.append(compute_cost)
# node in extra_node_costs means it has some extra communication
# cost from node merging, so we need to add those extra communication
# cost into
communication_costs.append(origin_communication_cost)
peak_act_memory_costs.append(peak_act_memory)
constant_memory_costs.append(memory_cost)
node_sharding_weights.append(node.sharding_weight +
node.pipeline_weight)
compute_costs = np.array(compute_costs)
communication_costs = np.array(communication_costs)
memory_costs = np.array([constant_memory_costs, peak_act_memory_costs])
node_sharding_weights = np.array(node_sharding_weights)
same_spec_nodes_dict = defaultdict(list)
node_cost_level = []
for idx, node in enumerate(self.nodes):
if node.same_spec_id >= 0:
same_spec_nodes_dict[node.same_spec_id].append(idx)
node_cost_level.append((node.building_block_id, node.cost_level))
# omit initial value for nodes
s_init_np = None
following_nodes = [-1 for i in range(node_nums)]
liveness_set = self.nodes
alias_set = []
alias_convert_costs = None
return node_nums, memory_budget, strategies_len, following_nodes, edge_pairs, alias_set, liveness_set, compute_costs, communication_costs, memory_costs, resharding_costs, node_sharding_weights, edge_resharding_weights, same_spec_nodes_dict, node_cost_level, edge_cost_level, alias_convert_costs, s_init_np, self.verbose
def _call_solver_serialized_args(self,
node_nums,
memory_budget,
strategies_len,
following_nodes,
edge_pairs,
alias_set,
liveness_set,
compute_costs,
communication_costs,
memory_costs,
resharding_costs,
node_sharding_weights,
edge_resharding_weights,
same_spec_nodes_dict,
node_cost_level,
edge_cost_level,
alias_convert_costs,
s_init_np=None,
verbose=True):
"""
Call the solver with serialized arguments.
"""
time.time()
for x in [
strategies_len, edge_pairs, compute_costs, communication_costs,
memory_costs, resharding_costs, node_sharding_weights,
edge_resharding_weights
]:
assert isinstance(x, np.ndarray)
assert len(strategies_len) == node_nums, "strategies_len"
def get_non_zero_index(binary_vector):
"""
Get the index of non-zero item in a vector.
"""
ct = 0
ret = None
for i, elem in enumerate(binary_vector):
if pulp.value(elem):
ret = i
ct += 1
assert ct == 1
return ret
# 0. Unpack flatten numpy arrays
s_follow = following_nodes
s_alias = alias_set
E = edge_pairs.reshape((-1, 2)) # noqa
r = []
pt = 0
edge_set = set()
for (i, j) in E:
prod_length = strategies_len[i] * strategies_len[j]
if (i, j) in edge_set:
raise ValueError(f"Duplicated edges: {(i, j)}")
edge_set.add((i, j))
r.append(resharding_costs[pt:pt + prod_length])
pt += prod_length
assert pt == len(resharding_costs)
######################
# omit alias set now #
######################
# A = alias_set.reshape((-1, 2)) # noqa
# for (i, j) in A:
# prod_length = strategies_len[i] * strategies_len[j]
# v.append(alias_convert_costs[pt:pt + prod_length])
# pt += prod_length
# assert pt == len(alias_convert_costs)
# L = [] # noqa
# pt = node_nums
# for i in range(node_nums):
# length = liveness_set[i]
# L.append(liveness_set[pt:pt + length])
# pt += length
# assert pt == len(liveness_set)
pt = 0
c = []
d = []
m = []
peak_m = []
pt = 0
for i in range(node_nums):
length = strategies_len[i]
c.append(compute_costs[pt:pt + length])
d.append(communication_costs[pt:pt + length])
m.append(memory_costs[0][pt:pt + length])
peak_m.append(memory_costs[1][pt:pt + length])
pt += length
assert pt == len(compute_costs), f"{pt} == {len(compute_costs)}"
assert pt == len(
communication_costs), f"{pt} == {len(communication_costs)}"
assert pt == len(memory_costs[0]), f"{pt} == {len(memory_costs[0])}"
# 1. Create variables
#############################
# create variables for node #
#############################
s = []
num_nodes = 0
reverse_follow_backpatch = []
for i in range(node_nums):
if s_follow[i] < 0:
if strategies_len[i] == 1:
s.append([1])
else:
if i not in s_alias:
num_nodes += 1
s.append(
LpVariable.matrix(f"s[{i}]",
(range(strategies_len[i]), ),
cat="Binary"))
else:
s.append(s[s_alias[i]])
else:
if s_follow[i] < len(s):
s.append(s[s_follow[i]])
else:
s.append(None)
reverse_follow_backpatch.append(i)
for i in reverse_follow_backpatch:
s[i] = s[s_follow[i]]
#############################
# create variables for edge #
#############################
e = []
num_edges = 0
map_edge_to_idx = {}
for (idx, (i, j)) in enumerate(E):
if len(s[i]) == 1:
e.append(s[j])
elif len(s[j]) == 1:
e.append(s[i])
else:
if i in s_alias and j in s_alias and (
s_alias[i], s_alias[j]) in map_edge_to_idx:
e.append(e[map_edge_to_idx[(s_alias[i], s_alias[j])]])
else:
num_edges += 1
e.append(
LpVariable.matrix(f"e[{i},{j}]",
(range(len(s[i]) * len(s[j])), ),
cat="Binary"))
assert len(e[idx]) == len(r[idx])
map_edge_to_idx[(i, j)] = idx
for element in s:
assert len(element) > 0
# 2. Set initial value
######################################
# set a initial value for warm start #
######################################
if s_init_np is not None:
s_init = s_init_np.reshape((-1, 3))
for (idx, value, fix) in s_init:
for i in range(len(s[idx])):
s[idx][i].setInitialValue(i == value)
if fix:
s[idx][i].fixValue()
# 3. Objective
prob = LpProblem("myProblem", LpMinimize)
###################################################################
# computing the node cost(computing cost and communication cost) #
###################################################################
obj = 0
block_cost_level_dict = {}
for i in range(node_nums):
assert len(s[i]) == len(c[i])
assert len(s[i]) == len(d[i])
obj += (lpDot(s[i], c[i]) +
lpDot(s[i], d[i])) * node_sharding_weights[i]
cost_level = node_cost_level[i]
if -1 != cost_level[1]:
if cost_level in block_cost_level_dict:
block_cost_level_dict[cost_level] += lpDot(
s[i], c[i]) + lpDot(s[i], d[i])
else:
block_cost_level_dict[cost_level] = lpDot(
s[i], c[i]) + lpDot(s[i], d[i])
#############################################
# computing the edge cost(resharding cost) #
#############################################
for i in range(len(E)):
assert len(e[i]) == len(r[i])
obj += lpDot(e[i], r[i]) * edge_resharding_weights[i]
cost_level = edge_cost_level[i]
if -1 != cost_level[1]:
if cost_level in block_cost_level_dict:
block_cost_level_dict[cost_level] += lpDot(e[i], r[i])
else:
block_cost_level_dict[cost_level] = lpDot(e[i], r[i])
prob += obj
if len(block_cost_level_dict) >= 2:
block_cost_levels = [key for key in block_cost_level_dict.keys()]
for i in range(len(block_cost_levels)):
for j in range(i + 1, len(block_cost_levels)):
if block_cost_levels[i][1] > block_cost_levels[j][1]:
prob += block_cost_level_dict[
block_cost_levels[i]] >= block_cost_level_dict[
block_cost_levels[j]] + 1e-6
elif block_cost_levels[i][1] < block_cost_levels[j][1]:
prob += block_cost_level_dict[
block_cost_levels[j]] >= block_cost_level_dict[
block_cost_levels[i]] + 1e-6
# 4. Constraints
# (a). specified by `cat="Binary"`
# (b)
#################################################
# make sure each node only choose one strategy #
#################################################
for i in range(node_nums):
if s_follow[i] < 0:
prob += lpSum(s[i]) == 1
# (c)
#################################################
# force to constrain some nodes have the same sharding specs #
#################################################
for spec_id, same_spec_nodes_id in same_spec_nodes_dict.items():
num_same_spec_nodes = len(same_spec_nodes_id)
if num_same_spec_nodes >= 2:
src_node_s = s[same_spec_nodes_id[0]]
num_specs = len(src_node_s)
for i in range(1, num_same_spec_nodes):
dst_node_s = s[same_spec_nodes_id[i]]
assert len(
dst_node_s
) == num_specs, f'unmatched num_specs when force node {same_spec_nodes_id[0]} and {same_spec_nodes_id[i]} the same specs'
for j in range(num_specs):
prob += (src_node_s[j] == dst_node_s[j])
# (c)
#################################################
# compute memory consumption with liveness set #
#################################################
if memory_budget > 0:
# calculate the constant memory
mem = 0
for node in liveness_set:
if node not in self.node_index_dict:
continue
node_index = self.node_index_dict[node]
mem += lpSum(s[node_index][j] * m[node_index][j]
for j in range(len(s[node_index])))
# calculate the peak activation memory
for node in liveness_set:
if node not in self.node_index_dict:
continue
node_index = self.node_index_dict[node]
cur_peak_mem = lpSum(s[node_index][j] * peak_m[node_index][j]
for j in range(len(s[node_index])))
total_mem = mem + cur_peak_mem
prob += total_mem <= memory_budget
# (d). specified by `cat="Binary"`
for (idx, (i, j)) in enumerate(E):
if strategies_len[i] == 1 or strategies_len[j] == 1:
continue
# (e)
prob += lpSum(e[idx]) == 1
# (f)
for row in range(len(s[i])):
C = len(s[j]) # noqa
prob += lpSum(e[idx][row * C + col]
for col in range(0, C)) <= s[i][row]
# (g)
for col in range(len(s[j])):
R = len(s[i]) # noqa
C = len(s[j]) # noqa
prob += lpSum(e[idx][row * C + col]
for row in range(0, R)) <= s[j][col]
if prob.objective.isNumericalConstant():
objective = float(pulp.value(prob.objective))
status = pulp.LpStatusOptimal
else:
msg = verbose
time_limit = 600
solver = pulp.PULP_CBC_CMD(
mip=True,
msg=msg,
timeLimit=time_limit,
threads=multiprocessing.cpu_count(),
)
prob.solve(solver)
status = prob.status
objective = pulp.value(prob.objective)
objective = float(
objective) if objective is not None else self.INFINITY_COST
if prob.status in [pulp.LpStatusInfeasible]:
objective = self.INFINITY_COST
# Get and check results
s_val = np.full((node_nums, ), -1, dtype=np.int32)
for i in range(node_nums):
s_val[i] = get_non_zero_index(s[i])
e_val = np.full((len(E), ), -1, dtype=np.int32)
for (idx, (i, j)) in enumerate(E):
e_val[idx] = get_non_zero_index(e[idx])
i_spec_index = e_val[idx] // len(s[j])
j_spec_index = e_val[idx] % len(s[j])
assert i_spec_index == s_val[i], f"e_val[{i}][{j}]"
assert j_spec_index == s_val[j], f"e_val[{i}][{j}]"
if verbose and r[idx][e_val[idx]] > 0:
print(f"Edge cost {(i, j)} : {r[idx][e_val[idx]]}")
self.last_s_val = list(s_val)
# self._recover_merged_node_strategy()
self.last_objective = objective
if objective >= self.INFINITY_COST:
warnings.warn(
f"Cannot find an optimized solution given memory budget {self.memory_budget}, Please consider\n" + \
f"1. increase memory budget if possible\n" + \
f"2. enlarge mesh shape if possible\n" + \
f"3. decrease the maximum parameters(i.e., max_batch_size, max_seq_len, etc.) in building config")
if memory_budget > 0:
# calculate the constant memory
mem = 0
for node in liveness_set:
if node not in self.node_index_dict:
continue
node_index = self.node_index_dict[node]
j = self.last_s_val[node_index]
mem += m[node_index][j]
max_peak_mem = 0
for node in liveness_set:
if node not in self.node_index_dict:
continue
node_index = self.node_index_dict[node]
j = self.last_s_val[node_index]
cur_peak_mem = peak_m[node_index][j]
max_peak_mem = max(max_peak_mem, cur_peak_mem)
logger.debug(
f'constant_mem = {mem}, peak_mem = {max_peak_mem}, memory_budget = {memory_budget}'
)
solution = Solution(self.leaf_strategies, self.last_s_val, e_val,
edge_pairs, self.node_index_dict,
self.last_objective)
return status, solution
def find_solution(self):
"""
Call the solver with serialized arguments and handle python errors. Additionally,
we could give a serious of solutions with different memory budget.
"""
if self.solution_numbers == 1:
args = self._prepare_data_for_solver()
ret = self._call_solver_serialized_args(*args)
return ret
origin_memory_budget = self.memory_budget
memory_budget_list = [
origin_memory_budget * self.memory_increasing_coefficient**i
for i in range(self.solution_numbers)
]
ret_list = []
for memory_budget in memory_budget_list:
self.memory_budget = memory_budget
args = self._prepare_data_for_solver()
ret = self._call_solver_serialized_args(*args)
ret_list.append(ret)
return ret_list
|