File size: 16,035 Bytes
451da7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import sympy
import numpy as np
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.metrics import mean_absolute_error
from scipy.optimize import minimize
import math
import re
class Expression:
SAFE_FUNCTIONS = {
'sqrt': np.sqrt,
'log': np.log,
'exp': np.exp,
'sin': np.sin,
'cos': np.cos,
'tan': np.tan,
'asin': np.arcsin, # Corrected to np.arcsin
'abs': np.abs,
'pow': np.power, # Use np.power for vectorization and NaN handling
# '**' is handled by Python's eval; if operands are numpy arrays, np.power is used.
}
OPERATOR_ARITY = {
'+': 2,
'-': 2,
'*': 2,
'/': 2,
'**': 2, # Changed from '^' to '**'
'sin': 1,
'cos': 1,
'tan': 1,
'log': 1,
'sqrt': 1,
'exp': 1
}
OPERATOR_FUNCS = {
'+': sympy.Add,
'-': lambda x, y: x - y,
'*': sympy.Mul,
'/': lambda x, y: x / y,
'**': sympy.Pow, # Changed from '^' to '**', sympy.Pow handles both
'sin': sympy.sin,
'cos': sympy.cos,
'tan': sympy.tan,
'log': sympy.log,
'sqrt': sympy.sqrt,
'exp': sympy.exp
}
def parse_prefix(self, tokens):
"""Parse prefix notation expression to SymPy.
Example: ['*', 'x_1', '+', 'x_2', 'C'] -> x_1*(x_2 + C)
"""
if not tokens:
raise ValueError("Empty token list")
# Define unary and binary operators
UNARY_OPS = {'sin', 'cos', 'tan', 'exp', 'log', 'sqrt', 'abs', 'asin'}
BINARY_OPS = {'+', '-', '*', '/', '**', '^'}
stack = []
# Process tokens in reverse order
for token in reversed(tokens):
if token in BINARY_OPS or token in UNARY_OPS:
# Operator: pop operands from stack
if token in UNARY_OPS:
if len(stack) < 1:
raise ValueError(f"Not enough operands for {token}")
arg = stack.pop()
if token in ['sin', 'cos', 'tan', 'exp', 'log', 'sqrt', 'abs', 'asin']:
stack.append(f"{token}({arg})")
else:
raise ValueError(f"Unknown unary operator: {token}")
else: # Binary operator
if len(stack) < 2:
raise ValueError(f"Not enough operands for {token}")
right = stack.pop()
left = stack.pop()
# Handle operator mapping
op_map = {'+': '+', '-': '-', '*': '*', '/': '/', '**': '**', '^': '**'}
op = op_map.get(token, token)
if op in ['**', '^']:
stack.append(f"({left})**({right})")
elif op == '/':
stack.append(f"({left})/({right})")
else:
stack.append(f"({left}){op}({right})")
else:
# Operand: push to stack
stack.append(token)
if len(stack) != 1:
raise ValueError(f"Invalid prefix expression, {len(stack)} elements remaining")
return sympy.sympify(stack[0], evaluate=False)
def __init__(self, expression, is_prefix=False):
try:
self.original_expression = expression # Save original
if is_prefix:
# Ensure input prefix uses '**' if converting from external source
tokens = expression.replace('^', '**').split()
self.sympy_expression = self.parse_prefix(tokens)
else:
# Load the expression as a sympy expression without simplification
self.sympy_expression = sympy.sympify(expression, evaluate=False)
except Exception as e:
raise ValueError(f"Failed to parse expression: {e}")
self.max_var = 0
for symbol in self.sympy_expression.free_symbols:
if symbol.name.startswith('x_'):
try:
index = int(symbol.name.split('_')[1])
self.max_var = max(self.max_var, index)
except ValueError:
# Handle symbols that look like x_ but aren't x_number
pass # Or raise ValueError(f"Invalid variable name: {symbol.name}") if strict
computable_expression = str(self.sympy_expression)
for i in range(1, self.max_var + 1):
# Use regex to match whole words to avoid issues with x_1 followed by x_11
computable_expression = re.sub(rf'\bx_{i}\b', f'x[{i-1}]', computable_expression)
self.computable_expression = computable_expression.replace('**C', '**2')
self.constant_count = self.computable_expression.count('C')
self.best_constants = [1.0] * self.constant_count
if self.constant_count > 0:
# Replace 'C' with indexable constants
split_expr = self.computable_expression.split('C')
new_expr = split_expr[0] # Start with first part
for i in range(1, len(split_expr)):
# Add constant reference
new_expr += f'constants[{i-1}]'
# Add next part
new_expr += split_expr[i]
self.computable_expression = new_expr
def __str__(self):
return f"Expression: {self.original_expression}, Best constants: {self.best_constants}"
def sympy_str(self):
"""
Returns the string representation of the sympy expression.
"""
return str(self.sympy_expression)
def is_valid_on_dataset(self, X, test_constants_list=None):
"""
Checks if the expression evaluates to valid (finite) values for all rows in X,
across one or more sets of test constants.
Args:
X (np.ndarray): Input data, shape (n_samples, n_features)
test_constants_list (list of lists): Optional. Defaults to [[1.0]*count].
Example: [[1.0]*n, [0.5]*n, [2.0]*n] to test more thoroughly.
Returns:
bool: True if no evaluation returns nan/inf or crashes. False otherwise.
"""
if test_constants_list is None:
test_constants_list = [[1.0] * self.constant_count]
try:
for constants in test_constants_list:
results = self.evaluate(X, constants)
if not np.all(np.isfinite(results)):
return False
return True
except Exception:
return False
# Inside the Expression class
def evaluate(self, X, constants=None):
# with warnings.catch_warnings():
# warnings.simplefilter("ignore", category=RuntimeWarning) # Hide power/tan warnings
# np.seterr(invalid='ignore', divide='ignore')
if constants is None:
# print("No constants provided, using best constants.") # Optional: uncomment for debugging
constants = self.best_constants
try:
local_env = {
"constants": np.array(constants), # Ensure constants is a numpy array for broadcasting
**self.SAFE_FUNCTIONS,
"__builtins__": None
}
if not isinstance(X, np.ndarray):
X = np.array(X) # Ensure X is a numpy array
# Ensure X is 2D, even if it has only one sample
if X.ndim == 1:
X = X.reshape(1, -1)
# x becomes a list of columns (1D arrays of shape (n_samples,))
x_cols = [X[:, i] for i in range(X.shape[1])]
local_env["x"] = x_cols
# The result will be a numpy array of shape (n_samples,)
try:
y_pred_array = eval(self.computable_expression, local_env)
except FloatingPointError as e:
# print(f"FloatingPointError during eval: {e}")
# print(f"Expression: {self.computable_expression}")
# print(f"Constants: {constants}")
return np.full(X.shape[0], np.nan) # Return NaNs to be caught by loss
except Exception as e:
# print(f"General exception during eval: {e}")
return np.full(X.shape[0], np.nan)
finally:
np.seterr(all='warn') # 🔁 Reset to default behavior
# Ensure output is float to avoid issues with mixed types if some results are int
return np.asarray(y_pred_array, dtype=float)
except Exception as e:
# Return an array of NaNs of the expected shape to ensure loss calculation doesn't break
num_samples = X.shape[0] if X.ndim > 0 else 1
return np.full(num_samples, np.nan) # Return NaNs on error
def fit_constants(self, X, y):
X = np.array(X)
y = np.array(y)
if self.constant_count == 0:
try:
y_pred = self.evaluate(X) # Vectorized call
if not np.all(np.isfinite(y_pred)): # Check for NaNs/Infs
return -np.inf
if np.all(y_pred == y_pred[0]) and len(np.unique(y)) > 1: # Avoid R2 issues with constant prediction for non-constant y
return 0.0 # Or handle as per specific requirements
return r2_score(y, y_pred)
except Exception as e: # Broader catch for any eval issue
return -np.inf
def loss(current_constants):
try:
y_pred = self.evaluate(X, current_constants)
except Exception as e:
print(f"Exception during evaluation: {e}")
return np.inf
if not np.all(np.isfinite(y_pred)):
return np.inf
# MSE calculation
mse = np.mean((y - y_pred) ** 2)
return mse
bounds = [(-2., 2.)] * self.constant_count
initial_guess = (
self.best_constants
if self.best_constants and len(self.best_constants) == self.constant_count
else [.0] * self.constant_count # Default to 1.0
)
# Ensure initial_guess is a flat numpy array
initial_guess = np.array(initial_guess, dtype=float).flatten()
# from scipy.optimize import differential_evolution
# # Step 1: Use Differential Evolution for global exploration
# print("\n--- Starting Differential Evolution ---")
# result_de = differential_evolution(loss, bounds,
# popsize=70, # Aumente para 50, 70, ou mais
# maxiter=10000, # Aumente para 5000, 10000, ou mais
# strategy='rand1bin', # Tente 'rand1exp' se rand1bin não funcionar
# tol=1e-7, # Tolerância mais apertada
# mutation=(0.8, 1.2), # Experimente valores mais altos
# recombination=0.5, # Experimente valores mais baixos
# seed=42, # Mantém a reproducibilidade
# disp=True, # Exibe o progresso
# polish=False)
# if result_de.success:
# print(f"\nDifferential Evolution finished successfully. Best raw constants: {result_de.x}, Best MSE: {result_de.fun}")
# # Use the result from DE as initial guess for local optimizer
# initial_guess_for_minimize = result_de.x
# # Step 2: (Optional but recommended) Refine with L-BFGS-B
# # L-BFGS-B will be applied to the "raw" (non-rounded) values,
# # but the loss function internally rounds for discrete ones.
# # It might still struggle if the function is too "stepped" from rounding.
# print("\n--- Starting L-BFGS-B refinement ---")
# result_min = minimize(loss,
# x0=initial_guess_for_minimize,
# method='L-BFGS-B',
# bounds=bounds,
# options={'maxiter': 500, 'ftol': 1e-9, 'disp': True} # More iterations, tighter tolerance
# )
# if result_min.success:
# print(f"\nL-BFGS-B refinement successful. Final raw constants: {result_min.x}, Final MSE: {result_min.fun}")
# self.best_constants = list(result_min.x)
# else:
# print(f"\nL-BFGS-B refinement failed: {result_min.message}. Using Differential Evolution's result.")
# self.best_constants = list(result_de.x)
# else:
# print(f"\nDifferential Evolution did not converge successfully: {result_de.message}. Cannot proceed with optimization.")
# return -np.inf # Indicate failure
# try:
# y_pred = self.evaluate(X)
# if not np.all(np.isfinite(y_pred)):
# print("Final evaluation produced non-finite values for R2 score.")
# return -np.inf
# if len(np.unique(y)) == 1:
# if np.allclose(y_pred, y[0]):
# return 1.0
# else:
# return 0.0
# return r2_score(y, y_pred)
# except Exception as e:
# print(f"Error calculating final R2: {e}")
# return -np.inf
result = minimize(loss,
x0=initial_guess,
method='L-BFGS-B',
bounds=bounds,
#options={'maxiter': 10, 'maxfun': 10, 'disp': True}
)
if result.success:
self.best_constants = result.x.tolist()
# print(f"Optimization successful. Final loss: {result.fun}") # Optional
try:
y_pred = self.evaluate(X) # Uses self.best_constants (vectorized)
if not np.all(np.isfinite(y_pred)):
return -np.inf
# Refined R2 calculation for edge cases
if len(np.unique(y)) == 1: # If y is constant
if np.allclose(y_pred, y[0]):
return 1.0 # Perfect prediction of a constant
else:
return 0.0 # Or some other metric for imperfect constant prediction
#return mean_squared_error(y, y_pred) # Use MSE for optimization
#return mean_absolute_error(y, y_pred) # Use MAE for robustness
return r2_score(y, y_pred)
except Exception as e:
return -np.inf
else:
return -np.inf
# from dataset import RegressionDataset
# import numpy as np
# import warnings
# with warnings.catch_warnings():
# warnings.simplefilter("ignore", category=RuntimeWarning)
# np.seterr(invalid='ignore')
# #reg = RegressionDataset('../data/evaluate/srsd-feynman_hard/train', 'feynman-bonus.12.txt', delimiter=' ')
# reg = RegressionDataset('./data/evaluate/srsd-feynman_easy/train', 'feynman-i.18.16.txt', delimiter=' ')
# X, y = reg.get_numpy()
# #x = np.array(X).T
# expression = "x_1*x_2*sin(x_4)"
# #expr = "0.5*x[0]*x[1]**2"
# expr = Expression(expression)
# print("Expression:", expr)
# if expr.is_valid_on_dataset(X):
# print("Expression is valid on dataset.")
# score = expr.fit_constants(X, y)
# print("Fitted constants:", expr.best_constants)
# print("R2 score:", score)
# else:
# print("Expression is not valid on dataset.") |