--- license: apache-2.0 tags: - model_hub_mixin - pytorch_model_hub_mixin - learned-optimizer --- # Description `btherien/mulo` is a learned optimizer meta-trained in μ-parameterization. It corresponds to the μLO_M optimizer from [μLO: Compute-Efficient Meta-Generalization of Learned Optimizers](https://arxiv.org/abs/2406.00153). Due to being meta-trained in μP, μLO_M has strong meta-generalization capabilities (i.e., the ability to optimize unseen tasks), despite its relatively short and inexpensive meta-training distribution. ### Learned optimizer meta training and architectural details | **Field** | **Value** | |------------------------------|---------------------------------------------------------------------------| | **Meta-training distribution** | ImageNet classification, 3-layer MLP, width ∈ {128, 512, 1024} | | **Number of meta-training steps** | 5000 | | **Target inner problem length** | 1000 iterations | | **Gradient estimator** | Persistent Evolution Strategies | | **Truncation length** | 50 | | **Architecture** | small_fc_lopt | | **Optimizer Input size** | 39 | | **Optimizer Hidden size** | 32 | | **Optimizer Output size** | 2 | # Usage --- ## 1) Install PyLO The following ```bash git clone https://github.com/Belilovsky-Lab/pylo cd pylo pip install . --config-settings="--build-option=--cuda" #Optional installation with Cuda ``` ## (2) Use $\mu$LO as a drop-in replacement for pytorch learned optimizers ```python if USE_CUDA_KERNEL: from pylo.optim import MuLO_CUDA optimizer = MuLO_CUDA(model.parameters(), hf_key='btherien/mulo') else: from pylo.optim import MuLO_naive optimizer = MuLO_naive(model.parameters(), hf_key='btherien/mulo') ``` ## (3) A simple example The following example is for illustration purposes and does not implement the correct parameterizaiton. For a correct implementation see https://github.com/Belilovsky-Lab/pylo/tree/main/examples ```python import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader # Model class MLP(nn.Module): def __init__(self): super().__init__() self.net = nn.Sequential( nn.Flatten(), nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 10) ) def forward(self, x): return self.net(x) model = MLP().to(device) ######################### Setup Learned Optimizer ######################### #USE_CUDA_KERNEL=True # Uncomment for accelerated kernels if USE_CUDA_KERNEL: from pylo.optim import MuLO_CUDA optimizer = MuLO_CUDA(model.parameters(), hf_key='btherien/mulo') else: from pylo.optim import MuLO_naive optimizer = MuLO_naive(model.parameters(), hf_key='btherien/mulo') # Device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # Data transform = transforms.ToTensor() train_loader = DataLoader(datasets.MNIST(root='./data', train=True, download=True, transform=transform), batch_size=64, shuffle=True) criterion = nn.CrossEntropyLoss() # Training loop for epoch in range(1): # Just 1 epoch for simplicity for x, y in train_loader: x, y = x.to(device), y.to(device) optimizer.zero_grad() loss = criterion(model(x), y) loss.backward() optimizer.step() print("Done!") ``` ### Per-Parameter Input Features Used by MuLO | **Type** | **# Features** | **Description** | **Equation** | |---------------------------|----------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------| | **Accumulators** | 3 | Momentum accumulators with coefficients βᵢ, i ∈ {1, 2, 3}. | mₜ,ᵢ = βᵢ·mₜ₋₁,ᵢ + (1 − βᵢ)·∇ₜ | | | 1 | Second moment accumulator with coefficient β₄. | vₜ = β₄·vₜ₋₁ + (1 − β₄)·∇ₜ² | | | 3 | Adafactor row accumulators with coefficients βᵢ, i ∈ {5, 6, 7}. | rₜ,ᵢ = βᵢ·rₜ₋₁,ᵢ + (1 − βᵢ)·row_mean(∇ₜ²) | | | 3 | Adafactor column accumulators with coefficients βᵢ, i ∈ {5, 6, 7}. | cₜ,ᵢ = βᵢ·cₜ₋₁,ᵢ + (1 − βᵢ)·col_mean(∇ₜ²) | | **Accumulator Features** | 3 | Normalized momentum: momentum divided by sqrt of second moment for i ∈ {5, 6, 7}. | mₜ,ᵢ / √v | | | 1 | Reciprocal sqrt of second moment value. | 1 / √v | | | 6 | Reciprocal sqrt of Adafactor accumulators. | 1 / √(rₜ,ᵢ or cₜ,ᵢ) | | | 3 | Adafactor gradient features for i ∈ {5, 6, 7}. | ∇ₜ × rₜ,ᵢ × cₜ,ᵢ | | | 3 | Adafactor momentum features for (i, j) ∈ {(5,1), (6,2), (7,3)}. | mₜ,ⱼ × rₜ,ᵢ × cₜ,ᵢ | | **Time Features** | 11 | Time features for x ∈ {1, 3, 10, 30, 100, 300, 1000, 3000, 10⁴, 3·10⁴, 10⁵}. | tanh(t / x) | | **Parameters** | 1 | Parameter value. | wₜ | | | 1 | Gradient value. | ∇ₜ | | **Total** | 39 | — | — | # Cite If you found this optimizer useful in your research, please consider citing our work: ```bibtex @misc{therien2024mulo, title = {$\mu$LO: Compute-Efficient Meta-Generalization of Learned Optimizers}, author = {Benjamin Thérien and Charles-Étienne Joseph and Boris Knyazev and Edouard Oyallon and Irina Rish and Eugene Belilovsky}, year = {2024}, eprint = {2406.00153}, archivePrefix = {arXiv}, primaryClass = {cs.LG}, url = {https://arxiv.org/abs/2406.00153} } ```