calebnwokocha commited on
Commit
2a1ac65
·
verified ·
1 Parent(s): c8a2f63

Upload De_Rham_Cohomology_of_smooth_manifolds.cpp

Browse files
De_Rham_Cohomology_of_smooth_manifolds.cpp CHANGED
@@ -26,41 +26,30 @@ int main (/* implementation-defined */)
26
  Suppose_literal (for_all_p_there_is_an_open_neighbourhood_U, true);
27
  Suppose_literal (U_is_homeomorphic_to_an_open_subset_V, true);
28
 
29
- auto manifold_of_dimension_n = M_is_Hausdorff. And (points_can_be_seperated_by_open_sets).
30
- And (M_is_second_countable). And (M_has_a_countable_topological_base).
31
- And (p_is_element_of_M). And (U_is_proper_subset_of_M).
32
- And (V_is_subset_of_real_coordinate_space_of_dimension_n).
33
- And (for_all_p_there_is_an_open_neighbourhood_U).
34
- And (U_is_homeomorphic_to_an_open_subset_V).
35
- Implying (a_topological_space_M);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
- bool M_is_a_manifold_of_dimension_n = manifold_of_dimension_n. Value (/* truth value */);
38
- Suppose_literal (let_M_be_a_manifold_of_dimension_n, M_is_a_manifold_of_dimension_n);
39
-
40
- // like the supposed literal a_topological_space_M, you may introduce a function for each literal below
41
- Suppose_literal (U_is_element_of_M, true);
42
- Suppose_literal (a_pair_U_psi_where_U_is_open, true);
43
- Suppose_literal (psi_maps_U_to_V_a_homeomorphism_to_some_open_V, true);
44
-
45
- auto chart = let_M_be_a_manifold_of_dimension_n. And (U_is_element_of_M).
46
- And (a_pair_U_psi_where_U_is_open). And (psi_maps_U_to_V_a_homeomorphism_to_some_open_V);
47
-
48
- Suppose_literal (the_pair_U_phi_is_a_chart_M, chart. Value(/* truth value */));
49
-
50
- // like the supposed literal a_topological_space_M, you may introduce a function for each literal below
51
- Suppose_literal (p_is_element_of_the_pair_U_phi, true);
52
- Suppose_literal (p_is_element_of_U, true);
53
- Suppose_literal (for_all_p_for_some_chart, true);
54
-
55
- auto remark_2_1 = the_pair_U_phi_is_a_chart_M. And (p_is_element_of_U).
56
- Implying (p_is_element_of_the_pair_U_phi);
57
-
58
- auto third_condition_from_definition_2_1 = for_all_p_there_is_an_open_neighbourhood_U.
59
- And (U_is_element_of_M). And (U_is_homeomorphic_to_an_open_subset_V).
60
- And (V_is_subset_of_real_coordinate_space_of_dimension_n);
61
-
62
- auto rewrite_third_condition_from_definition_2_1 = for_all_p_for_some_chart.
63
- Implying (third_condition_from_definition_2_1);
64
-
65
  return 0;
66
  }
 
26
  Suppose_literal (for_all_p_there_is_an_open_neighbourhood_U, true);
27
  Suppose_literal (U_is_homeomorphic_to_an_open_subset_V, true);
28
 
29
+ auto manifold_of_dimension_n = M_is_Hausdorff. And (points_can_be_seperated_by_open_sets). And (M_is_second_countable). And (M_has_a_countable_topological_base). And (p_is_element_of_M). And (U_is_proper_subset_of_M). And (V_is_subset_of_real_coordinate_space_of_dimension_n). And (for_all_p_there_is_an_open_neighbourhood_U). And (U_is_homeomorphic_to_an_open_subset_V). Implying (a_topological_space_M);
30
+
31
+ bool M_is_a_manifold_of_dimension_n = manifold_of_dimension_n. Value (/* truth value */);
32
+ Suppose_literal (let_M_be_a_manifold_of_dimension_n, M_is_a_manifold_of_dimension_n);
33
+
34
+ // like the supposed literal a_topological_space_M, you may introduce a function for each literal below
35
+ Suppose_literal (U_is_element_of_M, true);
36
+ Suppose_literal (a_pair_U_psi_where_U_is_open, true);
37
+ Suppose_literal (psi_maps_U_to_V_a_homeomorphism_to_some_open_V, true);
38
+
39
+ auto chart = let_M_be_a_manifold_of_dimension_n. And (U_is_element_of_M). And (a_pair_U_psi_where_U_is_open). And (psi_maps_U_to_V_a_homeomorphism_to_some_open_V);
40
+
41
+ Suppose_literal (the_pair_U_phi_is_a_chart_M, chart. Value(/* truth value */));
42
+
43
+ // like the supposed literal a_topological_space_M, you may introduce a function for each literal below
44
+ Suppose_literal (p_is_element_of_the_pair_U_phi, true);
45
+ Suppose_literal (p_is_element_of_U, true);
46
+ Suppose_literal (for_all_p_for_some_chart, true);
47
+
48
+ auto remark_2_1 = the_pair_U_phi_is_a_chart_M. And (p_is_element_of_U). Implying (p_is_element_of_the_pair_U_phi);
49
+
50
+ auto third_condition_from_definition_2_1 = for_all_p_there_is_an_open_neighbourhood_U. And (U_is_element_of_M). And (U_is_homeomorphic_to_an_open_subset_V). And (V_is_subset_of_real_coordinate_space_of_dimension_n);
51
+
52
+ auto rewrite_third_condition_from_definition_2_1 = for_all_p_for_some_chart. Implying (third_condition_from_definition_2_1);
53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  return 0;
55
  }