clone / evaluation /valid_score_in_500.json
chenyili818's picture
Add files using upload-large-folder tool
661c54a verified
{
"summary": {
"total_with_gt": 239,
"matched": 89,
"accuracy": 0.3723849372384937
},
"details": [
{
"id": 0,
"match": false,
"ground_truth": "apply HasDerivAt.sub",
"model_output": "apply HasDerivAt.sub\n · exact hasDerivAt_const t 1\n exact hasDerivAt_id' t"
},
{
"id": 1,
"match": true,
"ground_truth": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring",
"model_output": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring"
},
{
"id": 2,
"match": true,
"ground_truth": "rw [← EReal.coe_sub]",
"model_output": "rw [← EReal.coe_sub]"
},
{
"id": 3,
"match": false,
"ground_truth": "ext x",
"model_output": "exact convex_indicator_empty"
},
{
"id": 4,
"match": true,
"ground_truth": "exact ah",
"model_output": "exact ah"
},
{
"id": 5,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp",
"model_output": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply Ne.bot_lt\n apply EReal.coe_ne_bot"
},
{
"id": 6,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩",
"model_output": "have h1 : b - b = 0 := by\n lift b to ℝ using ⟨hb1, hb2⟩\n simp only [sub_self]"
},
{
"id": 7,
"match": true,
"ground_truth": "apply hasDerivAt_mul_const c⁻¹",
"model_output": "apply hasDerivAt_mul_const c⁻¹"
},
{
"id": 8,
"match": false,
"ground_truth": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono (A := A) (x := x) H, α_subseq_converge (Aφ_sub H)⟩",
"model_output": "have h := lim_inf_def A\n have h1 := h\n have h2 := h1\n exact (tendsto_iff_subseq_tendsto (A := A.x)).mp h2"
},
{
"id": 9,
"match": true,
"ground_truth": "· rw [ha1];simp",
"model_output": "· rw [ha1];simp"
},
{
"id": 10,
"match": true,
"ground_truth": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩",
"model_output": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩"
},
{
"id": 11,
"match": false,
"ground_truth": "ext i j",
"model_output": "ext i j; simp [g, h]"
},
{
"id": 12,
"match": false,
"ground_truth": "apply glt",
"model_output": "have : g ≤ 1 := by\n simp at hg\n exact hg.1"
},
{
"id": 13,
"match": true,
"ground_truth": "apply add_le_add_right a",
"model_output": "apply add_le_add_right a"
},
{
"id": 14,
"match": false,
"ground_truth": "left",
"model_output": "left; exact hdomsf"
},
{
"id": 15,
"match": false,
"ground_truth": "ext j",
"model_output": "rw [Matrix.mulVec]"
},
{
"id": 16,
"match": false,
"ground_truth": "intro i",
"model_output": "intro i j"
},
{
"id": 17,
"match": true,
"ground_truth": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2",
"model_output": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2"
},
{
"id": 18,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor\n · intro h x hx\n simp at *\n exact ⟨hx.left, le_trans (h x.1 hx.left) hx.right⟩\n intro h x hx\n have : (x, g x) ∈ {p | p.1 ∈ s ∧ g p.1 ≤ p.2} := by simpa\n have := h this\n simp at this\n apply this.2"
},
{
"id": 19,
"match": false,
"ground_truth": "by_cases hA : A = 0",
"model_output": "intro x\n let A' : Matrix (Fin n) (Fin m) ℝ := Aᵀ\n let A'' : Matrix (Fin n) (Fin n) ℝ := A' *ᵥ A\n have h1 : HasGradientAt (fun x => x ⬝ᵥ A'' *ᵥ x) (A'' *ᵥ x) x := by\n apply gradient_of_dotProduct\n simp at h1; exact h1"
},
{
"id": 20,
"match": false,
"ground_truth": "by norm_num",
"model_output": "norm_num [a]"
},
{
"id": 21,
"match": false,
"ground_truth": "by\n obtain hcon := subdifferential_subset f x₀\n apply hcon; exact first_order_optimality_condition f x₀ hx",
"model_output": "apply first_order_optimality_condition\n · exact hx\n apply convex_univ\n simp [subdifferential]"
},
{
"id": 22,
"match": true,
"ground_truth": "exact h",
"model_output": "exact h"
},
{
"id": 23,
"match": true,
"ground_truth": "by\n have : (fun x ↦ (inner (ℝ) x a : ℝ)) = fun x ↦ (inner (ℝ) a x : ℝ) := by\n ext y; exact real_inner_comm a y\n rw [this]; apply gradient_of_inner_const",
"model_output": "apply gradient_of_inner_const"
},
{
"id": 24,
"match": true,
"ground_truth": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)\n refine prod_erase_mul univ (fun «x» ↦ A «x» «x») ?_\n exact mem_univ j",
"model_output": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)"
},
{
"id": 25,
"match": true,
"ground_truth": "intro x y hy",
"model_output": "intro x y hy"
},
{
"id": 26,
"match": false,
"ground_truth": "simp [LowerSemicontinuousHull]",
"model_output": "rw [lowersemicontinuoushul_intersection]"
},
{
"id": 27,
"match": true,
"ground_truth": "simp at hfy",
"model_output": "simp at hfy"
},
{
"id": 28,
"match": false,
"ground_truth": "rw [Fin.sum_univ_succ]",
"model_output": "have : ∀ (i : Fin (n + 1)), f i.succ ≠ ⊥ := fun i ↦ p i.succ"
},
{
"id": 29,
"match": true,
"ground_truth": "by_cases hx2 : f x = ⊥",
"model_output": "by_cases hx2 : f x = ⊥"
},
{
"id": 30,
"match": false,
"ground_truth": "rw [@mem_iInter]",
"model_output": "rw [mem_intrinsicClosure, mem_iInter] at hx"
},
{
"id": 31,
"match": false,
"ground_truth": "rcases h with ⟨δ, dpos, h⟩",
"model_output": "rcases h with ⟨δ, dpos, h⟩\n use δ; constructor\n · exact dpos\n intro x' h'; simp at h'\n rw [← dist_eq_norm]\n apply le_of_lt\n apply h'"
},
{
"id": 32,
"match": false,
"ground_truth": "exact half_lt_self dpos",
"model_output": "linarith"
},
{
"id": 33,
"match": true,
"ground_truth": "apply pin",
"model_output": "apply pin"
},
{
"id": 34,
"match": false,
"ground_truth": "by_cases hf_pinf : f = ⊤",
"model_output": "apply convex_conjugate_convex"
},
{
"id": 35,
"match": false,
"ground_truth": "by\n apply intrinsicInterior_subset.antisymm\n nth_rw 1 [intrinsicInterior]\n rw [intrinsicInterior, image_subset_iff]\n rw [affineSpan_intrinsicInterior hsc]\n rw [Function.Injective.preimage_image Subtype.val_injective]\n simp [intrinsicInterior]",
"model_output": "apply intrinsicInterior_subset.antisymm\n apply intrinsicInterior_subset\n exact subset_intrinsicInterior hsc"
},
{
"id": 36,
"match": true,
"ground_truth": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]",
"model_output": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]"
},
{
"id": 37,
"match": false,
"ground_truth": "rw [EReal.coe_le_coe_iff] at hccleq",
"model_output": "apply EReal.coe_le_coe_iff.2 at hccleq"
},
{
"id": 38,
"match": false,
"ground_truth": "intro z",
"model_output": "intro x hx\n rw [intrinsicInterior_iff (convex_intrinsicClosure ℝ h) (nonempty_of_mem (mem_image_of_mem f hx))]\n apply preimage_mono (f := f) (intrinsicClosure_mono (fun ⦃a⦄ a ↦ a) h) |>.mpr\n apply intrinsicInterior_mono h\n apply preimage_mono (f := f) (subset_intrinsicClosure h) |>.mpr hx\n apply subset_intrinsicClosure\n exact hn"
},
{
"id": 39,
"match": false,
"ground_truth": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]",
"model_output": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite; simp\n apply Orthonormal.finite_set_range hv\n exact Orthonormal.ne_zero hv"
},
{
"id": 40,
"match": true,
"ground_truth": "rw [h2]",
"model_output": "rw [h2]"
},
{
"id": 41,
"match": true,
"ground_truth": "apply banach_steinhaus",
"model_output": "apply banach_steinhaus"
},
{
"id": 42,
"match": true,
"ground_truth": "intro h\n apply HasFDeriv_Convergence\n exact h",
"model_output": "intro h\n apply HasFDeriv_Convergence\n exact h"
},
{
"id": 43,
"match": false,
"ground_truth": "· apply Convergence_HasFDeriv",
"model_output": "exact fun a ↦ HasFDeriv_iff_Convergence_Point.mpr a"
},
{
"id": 44,
"match": false,
"ground_truth": "by\n rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]",
"model_output": "rw [←intrinsicInterior_affineSubspace_eq_self] at hn"
},
{
"id": 45,
"match": true,
"ground_truth": "apply alg.ha 0",
"model_output": "apply alg.ha 0"
},
{
"id": 46,
"match": true,
"ground_truth": "rw [h2]",
"model_output": "rw [h2]"
},
{
"id": 47,
"match": true,
"ground_truth": "rcases this with ⟨xn, hxn1, hxn2⟩",
"model_output": "rcases this with ⟨xn, hxn1, hxn2⟩"
},
{
"id": 48,
"match": false,
"ground_truth": "have h2 := tendsto_add (A:=A) (B:=B)",
"model_output": "have h2 := lim_inf_def B.x hBa"
},
{
"id": 49,
"match": false,
"ground_truth": "have : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [mul_pow, WithLp.prod_norm_sq_eq_of_L2, WithLp.prod_norm_sq_eq_of_L2]\n simp only [WithLp.smul_fst, WithLp.smul_snd]\n rw [norm_smul, norm_smul, mul_add, mul_pow, mul_pow]",
"model_output": "apply norm_smul_le"
},
{
"id": 50,
"match": false,
"ground_truth": "by_cases ht : i ∈ σ",
"model_output": "by_cases hs : i ∈ σ"
},
{
"id": 51,
"match": false,
"ground_truth": "simp",
"model_output": "simp; exact ⟨hd, fun x _ y _ a b _ _ _ => by simp⟩"
},
{
"id": 52,
"match": true,
"ground_truth": "by rw [h y ys, hf]; exact hg y ys",
"model_output": "rw [h y ys, hf]; exact hg y ys"
},
{
"id": 53,
"match": false,
"ground_truth": "exact in_of_le_sinf_of_b_top hx",
"model_output": "apply in_of_le_sinf_of_b_top hx"
},
{
"id": 54,
"match": false,
"ground_truth": "intro hmin",
"model_output": "intro hmin\n exact first_order_unconstrained hf hmin hfc"
},
{
"id": 55,
"match": false,
"ground_truth": "simp [hx2, hw.2]",
"model_output": "constructor"
},
{
"id": 56,
"match": true,
"ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]",
"model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]"
},
{
"id": 57,
"match": true,
"ground_truth": "simp [ConvexCone.addPoint] at hx",
"model_output": "simp [ConvexCone.addPoint] at hx"
},
{
"id": 58,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x xs y ys\n apply lagrange hs hf x xs y ys\n simp only [ne_eq, gt_iff_lt, zero_lt_one, not_false_eq_true,\n mem_Ioo, and_self]"
},
{
"id": 59,
"match": false,
"ground_truth": "simp",
"model_output": "simp [coe_mul] at hx"
},
{
"id": 60,
"match": false,
"ground_truth": "by\n simp only [mem_setOf_eq]\n intro _ _ _ _ hp1 hp2 hp3\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]",
"model_output": "intro _ _ _ _ _ hp1 hp2 hp3\n simp only [mem_setOf_eq]\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub]\n simp_rw [hp1, hp2, hp3]\n ring"
},
{
"id": 61,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [ht]"
},
{
"id": 62,
"match": true,
"ground_truth": "simp [h]",
"model_output": "simp [h]"
},
{
"id": 63,
"match": true,
"ground_truth": "simp [g]",
"model_output": "simp [g]"
},
{
"id": 64,
"match": false,
"ground_truth": "rw [Prod.tendsto_iff] at xntend",
"model_output": "simp at xnin"
},
{
"id": 65,
"match": false,
"ground_truth": "by_cases ha1 : a = 0",
"model_output": "have : a • ⊤ + b • f y = ⊤ := by\n rw [EReal.smul_top_of_pos (lt_of_le_of_ne ha (id (Ne.symm hb))))]\n simp\n rw [this]\n apply le_top"
},
{
"id": 66,
"match": false,
"ground_truth": "by_cases hb1 : b = 0",
"model_output": "simp [h2]"
},
{
"id": 67,
"match": false,
"ground_truth": "congr",
"model_output": "congr; ext a; congr; ext b\n rw [← EReal.coe_sub, ← EReal.coe_sub, ← EReal.coe_add, ← EReal.coe_add, ← EReal.coe_mul]\n apply EReal.coe_eq_coe_iff.mpr\n apply forall_congr'\n simp; apply add_comm ℝ l x"
},
{
"id": 68,
"match": false,
"ground_truth": "intro z",
"model_output": "intro z hz\n have h1 : HasFDerivAt f (f' z) z := hu3 z hz\n have h2 : gradient f z = (toDual ℝ E) (f' z) := by\n exact (hasGradientAt_iff_hasFDerivAt.mpr h1).gradient\n symm; exact h2"
},
{
"id": 69,
"match": true,
"ground_truth": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl",
"model_output": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl"
},
{
"id": 70,
"match": false,
"ground_truth": "intro y",
"model_output": "intro y hy"
},
{
"id": 71,
"match": false,
"ground_truth": "have hb : b = 1 := by linarith",
"model_output": "simp [ha] at absum ⊢\n rw [absum]\n simp\n apply convex_conjugate_le_cc"
},
{
"id": 72,
"match": false,
"ground_truth": "intro x y r",
"model_output": "have h' : A = 0 := by\n apply (funext_iff.mp (affine_map_representation A)).1\n simp only [map_smul, map_sub, map_add, sub_smul, smul_add, sub_add_cancel]"
},
{
"id": 73,
"match": true,
"ground_truth": "rw [hab]",
"model_output": "rw [hab]"
},
{
"id": 74,
"match": false,
"ground_truth": "obtain h := ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff\n rw [slope_def_field, le_div_iff₀] at h\n repeat linarith",
"model_output": "apply ConcaveOn.slope_le_deriv h1 hy' hx' xgt hdiff"
},
{
"id": 75,
"match": false,
"ground_truth": "have ze : z ≠ 0 := by\n by_contra hz; simp [hz] at zin; simp [r] at zin",
"model_output": "by_cases z0 : z = 0"
},
{
"id": 76,
"match": false,
"ground_truth": "rw [← hEq]",
"model_output": "rw [← hEq]\n exact affine_map_representation A x y r"
},
{
"id": 77,
"match": false,
"ground_truth": "have h1 : M -ᵥ M ⊆ Submodule.comap (LinearMap.inl R α β) v := by\n rintro p ⟨c, hc, d, hd, rfl⟩\n exact Submodule.subset_span ⟨⟨c, n0⟩, ⟨hc, hn0⟩, ⟨d, n0⟩, ⟨hd, hn0⟩, by simp⟩",
"model_output": "have : (m, n) = (m0, n0) - (m0, 0) + (m, 0) := by simp [Prod.sub_mk, Prod.mk_sub_mk]"
},
{
"id": 78,
"match": false,
"ground_truth": "have h_nonempty : S.Nonempty := by\n obtain ⟨a, ha⟩ := @NormedSpace.sphere_nonempty_rclike 𝕜 _ V _ _ _ 1 zero_le_one\n use a",
"model_output": "have h_nonempty : S.Nonempty := by\n obtain ⟨v, hv⟩ := exists_ne 0\n exact Nonempty.to_subtype ⟨v, hv⟩"
},
{
"id": 79,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [hy2, hx₂]"
},
{
"id": 80,
"match": false,
"ground_truth": "apply DifferentiableAt.hasGradientAt",
"model_output": "apply DifferentiableAt.hasGradientAt\n apply diff_prod₁ h"
},
{
"id": 81,
"match": false,
"ground_truth": "rcases lbdf with ⟨L, Lbound⟩",
"model_output": "have bddImS : BddBelow ImS := by\n simp only [BddBelow, lowerBounds]\n use (f x - ‖x‖ ^ 2 / 2)\n intro r hr y hy\n simp only [mem_image, mem_univ, true_and, mem_preimage, mem_setOf_eq] at hy\n rw [← hy]\n simp only [sub_le_sub_iff_right, le_div_iff₀ (by norm_num)]\n apply hr\n simp only [Real.norm_eq_abs, sq_abs, le_abs_self]"
},
{
"id": 82,
"match": false,
"ground_truth": "simp",
"model_output": "simp; linarith [μpos]"
},
{
"id": 83,
"match": false,
"ground_truth": "norm_num",
"model_output": "linarith"
},
{
"id": 84,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x hx\n have : x ∈ Icc 0 1 := by simp at hx; simp; constructor <;> linarith\n exact h1 x this"
},
{
"id": 85,
"match": true,
"ground_truth": "intro x _",
"model_output": "intro x _"
},
{
"id": 86,
"match": true,
"ground_truth": "rw [mem_setOf]",
"model_output": "rw [mem_setOf]"
},
{
"id": 87,
"match": false,
"ground_truth": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n rw[← inequ₂''];\n exact inequ₂' y nonempty lscf x_converge g_converge",
"model_output": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n exact Eq.symm (tendsto_const_nhds)"
},
{
"id": 88,
"match": false,
"ground_truth": "refine norm_ne_zero_iff.mpr ?_",
"model_output": "refine norm_ne_zero_iff.mpr ?_\n exact Basis.ne_zero b i"
},
{
"id": 89,
"match": false,
"ground_truth": "rw [← hT.span_range_v_eq_orthogonal_ker,\n mem_span_range_iff_exists_fun] at hx₂",
"model_output": "have : x₂ ∈ (ker T) := by\n simp [ker, hT]\n use x₂\n simp\n use x₂\n simp\n exact hx₂"
},
{
"id": 90,
"match": false,
"ground_truth": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]",
"model_output": "· rcases hx with ⟨hx1, hx2⟩\n use (fun n => (x.1, ⊤))\n constructor\n · intro n\n simpa using hx1\n rw [Prod.tendsto_iff]\n simp [hx2, hx1]"
},
{
"id": 91,
"match": false,
"ground_truth": "apply Finset.sum_eq_zero",
"model_output": "apply Finset.sum_eq_zero\n intro i _\n rw [hx.1.2 _ i.2, mul_zero]"
},
{
"id": 92,
"match": false,
"ground_truth": "mul_inv_cancel₀ (by linarith),",
"model_output": "rw [mul_inv_cancel₀ (by linarith), mul_div_assoc, ← mul_assoc]"
},
{
"id": 93,
"match": true,
"ground_truth": "by rw [one_smul]; rfl",
"model_output": "rw [one_smul]"
},
{
"id": 94,
"match": false,
"ground_truth": "intro b",
"model_output": "intro b hb"
},
{
"id": 95,
"match": false,
"ground_truth": "by linarith",
"model_output": "linarith [hc]"
},
{
"id": 96,
"match": true,
"ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]",
"model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]"
},
{
"id": 97,
"match": true,
"ground_truth": "· rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]; exact mk_mem_prod (by simp) hx",
"model_output": "rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]"
},
{
"id": 98,
"match": true,
"ground_truth": "rw [alg.γeq k, alg.teq k]",
"model_output": "rw [alg.γeq k, alg.teq k]"
},
{
"id": 99,
"match": false,
"ground_truth": "intro i _",
"model_output": "intro i _ [h4]"
},
{
"id": 100,
"match": true,
"ground_truth": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩",
"model_output": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩"
},
{
"id": 101,
"match": false,
"ground_truth": "exact hu.2.2 (mem_inter hu.2.1 hx)",
"model_output": "apply hu.2.2 (mem_inter hu.2.1 hx)"
},
{
"id": 102,
"match": false,
"ground_truth": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf",
"model_output": "have h1 :A x j + ε + ∑ x_1 with ¬ x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf [add_comm, add_left_comm]"
},
{
"id": 103,
"match": true,
"ground_truth": "intro x",
"model_output": "intro x"
},
{
"id": 104,
"match": false,
"ground_truth": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a",
"model_output": "simp [Module.dualProdDualEquivDual_apply_apply ℝ E ℝ g a]"
},
{
"id": 105,
"match": false,
"ground_truth": "rw[Metric.isOpen_iff] at isopen",
"model_output": "rcases Lipschitz_of_Bounded hf isopen x_pos with ⟨K, hK⟩\n use K; use t ∩ s; constructor\n · exact mem_nhdsWithin_of_mem_nhds isopen x_pos\n · exact ⟨hf.mono inter_subset_left, isopen, hK.mono inter_subset_right⟩"
},
{
"id": 106,
"match": false,
"ground_truth": "rw [deriv_of_const_mul_func (f u - f x)]",
"model_output": "have h' : ‖u - x‖ + ‖f u - f x‖ < c := by\n rw [← add_halves c]\n apply add_lt_add\n · apply mem_ball_iff_norm.1 hu.left\n · simp at *\n rw [abs_eq_self.2] <;> linarith"
},
{
"id": 107,
"match": false,
"ground_truth": "rcases exists_seq_tendsto_sInf hs hs' with ⟨fx, _, cfx, fxs⟩",
"model_output": "have hs'' : ∃ x, x ∈ {x | ∃ x_1 ∈ f ⁻¹' Iic y, f x_1 = x} := hs"
},
{
"id": 108,
"match": false,
"ground_truth": "induction n with",
"model_output": "have : Φ n ≤ C := by apply Φ_le_C' n\n apply lt_of_le_of_lt this; apply strict_inequ₁\n apply n_pos"
},
{
"id": 109,
"match": false,
"ground_truth": "simp at ht",
"model_output": "simp at ht [Icc]"
},
{
"id": 110,
"match": false,
"ground_truth": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]",
"model_output": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht]; apply cpos i ht\n · simp [ht]"
},
{
"id": 111,
"match": false,
"ground_truth": "rw [subdiff_gradient g g' hg gradcon]",
"model_output": "rw [subdiff_gradient g g' hg gradcon]\n simp\n exact hg x"
},
{
"id": 112,
"match": false,
"ground_truth": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity), mul_comm] at hd",
"model_output": "rw [div_mul_cancel₀ _ hne] at hd"
},
{
"id": 113,
"match": false,
"ground_truth": "simp [phi_add] at this",
"model_output": "rw [phi_add] at this [hz] [this]"
},
{
"id": 114,
"match": false,
"ground_truth": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]",
"model_output": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z; simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]"
},
{
"id": 115,
"match": false,
"ground_truth": "lift t to ℝ using ⟨LT.lt.ne_top fx_le_top, LT.lt.ne_bot fx_ge_bot⟩",
"model_output": "rw [← EReal.coe_toReal (LT.lt.ne_top fx_le_top) (LT.lt.ne_bot fx_ge_bot)]"
},
{
"id": 116,
"match": false,
"ground_truth": "rcases zin with ⟨u,hux,hufx,hv⟩",
"model_output": "rcases zin with ⟨u, utend, funtend, vin, hv⟩"
},
{
"id": 117,
"match": false,
"ground_truth": "by linarith",
"model_output": "apply h.1"
},
{
"id": 118,
"match": true,
"ground_truth": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex",
"model_output": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex"
},
{
"id": 119,
"match": false,
"ground_truth": "have hΦ : ∃ r_Φ, range Φ ⊆ Metric.ball 0 r_Φ := by apply Φ_isBounded'",
"model_output": "apply A₁e₁_A₂e₂_isBounded'"
},
{
"id": 120,
"match": true,
"ground_truth": "· simp",
"model_output": "· simp"
},
{
"id": 121,
"match": true,
"ground_truth": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this",
"model_output": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this"
},
{
"id": 122,
"match": true,
"ground_truth": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]",
"model_output": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]"
},
{
"id": 123,
"match": false,
"ground_truth": "by_cases u₁_eq_0 : u₁ = 0",
"model_output": "have : u₁ ∈ (ker T) := by\n rw [← hu₁]\n apply Finsupp.sum_mem_span\n intro j _\n exact mem_span_of_mem (by simp)"
},
{
"id": 124,
"match": false,
"ground_truth": "apply mul_pos",
"model_output": "· linarith"
},
{
"id": 125,
"match": false,
"ground_truth": "exact this",
"model_output": "apply this"
},
{
"id": 126,
"match": false,
"ground_truth": "intro y",
"model_output": "intro y hy_ne"
},
{
"id": 127,
"match": true,
"ground_truth": "calc\n _= inner ℝ (u (n) - (- A₁† y')) (x₁ (n) - x₁') := by simp\n _≥ (0 : ℝ) := by\n apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁",
"model_output": "apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁"
},
{
"id": 128,
"match": false,
"ground_truth": "simp [grad_fun_comp,grad_comp] at h",
"model_output": "simp [grad_fun_comp, grad_comp] at h"
},
{
"id": 129,
"match": true,
"ground_truth": "exact hu₂",
"model_output": "exact hu₂"
},
{
"id": 130,
"match": true,
"ground_truth": "apply Finset.card_eq_zero.2",
"model_output": "apply Finset.card_eq_zero.2"
},
{
"id": 131,
"match": true,
"ground_truth": "exact False.elim (by simp at this)",
"model_output": "simp at this"
},
{
"id": 132,
"match": false,
"ground_truth": "simp",
"model_output": "simp [sq_nonneg (b - 1)]"
},
{
"id": 133,
"match": true,
"ground_truth": "rw [← add_assoc, ← add_assoc]",
"model_output": "rw [← add_assoc, ← add_assoc]"
},
{
"id": 134,
"match": false,
"ground_truth": "simp",
"model_output": "simp [Metric.ball, dist_eq_norm]"
},
{
"id": 135,
"match": false,
"ground_truth": "intro y yin z zin a b anneg bnneg absum1",
"model_output": "intro y yin z zin a b apos bpos absum1"
},
{
"id": 136,
"match": false,
"ground_truth": "gcongr",
"model_output": "apply mul_lt_mul_of_pos_left _ hc'"
},
{
"id": 137,
"match": false,
"ground_truth": "have hzd : ∀ n, d n = z n - loc := fun _ => eq_sub_of_add_eq' rfl",
"model_output": "have hz1 : ∀ n, z n ∈ s1 := by\n intro n\n simp [z]\n apply εball\n constructor\n · apply Metric.mem_ball_self\n apply lt_of_le_of_lt (hf.locally_lipschitz (ε / 2) (half_pos εpos)) (by simp)\n · apply ha\n apply le_of_lt (half_pos εpos)"
},
{
"id": 138,
"match": true,
"ground_truth": "rfl",
"model_output": "rfl"
},
{
"id": 139,
"match": false,
"ground_truth": "rw [mul_one] at htp",
"model_output": "simp at htp ⊢\n apply lt_of_mul_neg_right htp zero_lt_one"
},
{
"id": 140,
"match": false,
"ground_truth": "apply Continuous.tendsto",
"model_output": "apply Continuous.tendsto\n apply ContinuousLinearMap.continuous"
},
{
"id": 141,
"match": true,
"ground_truth": "by\n have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero",
"model_output": "have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero"
},
{
"id": 142,
"match": false,
"ground_truth": "apply A₁e₁_converge_zero",
"model_output": "have : Tendsto (fun n => √((‖A₁ (e₁ n)‖)^2 + (‖A₂ (e₂ n)‖)^2)) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply (tendsto_congr' (Eventually.of_forall (fun n ↦ ?_))).mp this\n intro n\n rw [Real.sqrt_sq]\n exact norm_nonneg (A₁ (e₁ n))"
},
{
"id": 143,
"match": false,
"ground_truth": "intro j",
"model_output": "have h4 : ∀ j, ∑ i, A i j = 1 := by\n intro j\n have hcol_sum_le : ∑ i, A i j ≤ 1 := hA_col_sum j\n have hcol_sum_pos : ∑ i, A i j ≥ 0 := by\n apply Finset.sum_nonneg\n intro i _\n exact hA_pos i j\n linarith [hcol_sum_pos, hcol_sum_le]"
},
{
"id": 144,
"match": true,
"ground_truth": "rw[this]",
"model_output": "rw[this]"
},
{
"id": 145,
"match": false,
"ground_truth": "· simp; linarith [μpos]",
"model_output": "simp [le_of_lt μpos]"
},
{
"id": 146,
"match": false,
"ground_truth": "ext x",
"model_output": "simp only [c]\n ext x\n rw[sub_neg_eq_add, add_sub]\n ring_nf"
},
{
"id": 147,
"match": false,
"ground_truth": "have xBall_in_U : xBall ⊆ U := by\n apply l1Ball_sub_convexHull r_pos hn",
"model_output": "have xBall_isopen' : IsOpen xBall := by exact isOpen_ball"
},
{
"id": 148,
"match": false,
"ground_truth": "rw [← zero_pow]",
"model_output": "apply squeeze_zero_norm\n[· apply A₁e₁_A₂e₂_subseq_converge_zero]\n[· apply A₁e₁_A₂e₂_subseq_bounded]"
},
{
"id": 149,
"match": false,
"ground_truth": "apply mul_nonneg",
"model_output": "apply mul_nonneg\n · apply mul_nonneg\n · apply le_of_lt h1\n · apply h2\n · simp only [ge_iff_le, pow_two_nonneg]"
},
{
"id": 150,
"match": true,
"ground_truth": "by simp at h; simpa [h]",
"model_output": "simp at h; simpa [h]"
},
{
"id": 151,
"match": true,
"ground_truth": "rw [← mul_neg]",
"model_output": "rw [← mul_neg]"
},
{
"id": 152,
"match": true,
"ground_truth": "exact h",
"model_output": "exact h"
},
{
"id": 153,
"match": true,
"ground_truth": "by rw [z]; simp; left; rw [z]; simp",
"model_output": "rw [z]; simp; left; rw [z]; simp"
},
{
"id": 154,
"match": false,
"ground_truth": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:=by\n simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos",
"model_output": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:= simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos"
},
{
"id": 155,
"match": true,
"ground_truth": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩",
"model_output": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩"
},
{
"id": 156,
"match": false,
"ground_truth": "intro n x",
"model_output": "intro n x\n apply inner_gradient\n · apply y_isLinear\n · apply A₁_isLinear\n · apply const_isLinear\n · apply b_isLinear"
},
{
"id": 157,
"match": true,
"ground_truth": "simp [coef.mem_support_toFun]; rfl",
"model_output": "simp [coef.mem_support_toFun]"
},
{
"id": 158,
"match": false,
"ground_truth": "simp only [Set.mem_union, Set.mem_iUnion, Set.mem_singleton_iff]",
"model_output": "by_cases h : i = n + 1"
},
{
"id": 159,
"match": false,
"ground_truth": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le",
"model_output": "have h2: ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := norm_sub_le (x + xx) xx"
},
{
"id": 160,
"match": true,
"ground_truth": "apply eq4 u v",
"model_output": "apply eq4 u v"
},
{
"id": 161,
"match": false,
"ground_truth": "have : IsClosed ((MM x).carrier ∩ (f.Epi univ)) := by\n rw [ht]; exact IsClosed.prod isClosed_singleton isClosed_Ici",
"model_output": "have h1 : (MM x).carrier ∩ (f.Epi univ) = (MM x).carrier ∩ ((f.closure univ).Epi univ) := by\n rw [epi_closure_eq_epi f (by simp) x (by trivial)]"
},
{
"id": 162,
"match": true,
"ground_truth": "simp [z]",
"model_output": "simp [z]"
},
{
"id": 163,
"match": true,
"ground_truth": "by\n apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2",
"model_output": "apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2"
},
{
"id": 164,
"match": false,
"ground_truth": "· have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt",
"model_output": "have h0 : ∑ j, C x j = ∑ j, A x j := dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt"
},
{
"id": 165,
"match": true,
"ground_truth": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]",
"model_output": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]"
},
{
"id": 166,
"match": false,
"ground_truth": "intro n",
"model_output": "intro n\n let S := SubderivAt f₁ (x₁ n)\n let p := A₁† (y (n - 1))\n let q := ρ • (A₁† (A₁ (x₁ n) + A₂ (x₂ (n - 1)) - b))\n change (- p - q) ∈ S\n have := ADMM_iter_process₁' n\n change 0 ∈ S + {p} + {q} at this\n apply change_item this"
},
{
"id": 167,
"match": true,
"ground_truth": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp",
"model_output": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp"
},
{
"id": 168,
"match": true,
"ground_truth": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]",
"model_output": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]"
},
{
"id": 169,
"match": false,
"ground_truth": "suffices 0 ≤ (a1 • tx + b1 • ty) by exact this",
"model_output": "intro i; simp; apply add_nonneg; apply smul_nonneg; apply le_of_lt anng; apply txcond\n apply smul_nonneg; apply le_of_lt bnng; apply tycond"
},
{
"id": 170,
"match": true,
"ground_truth": "by\n rw [sub_right_comm]",
"model_output": "rw [sub_right_comm]"
},
{
"id": 171,
"match": false,
"ground_truth": "intro i hi",
"model_output": "intro i hi\n apply iSup₂_le\n intro y hy\n apply ht1 y hy\n exact hi"
},
{
"id": 172,
"match": true,
"ground_truth": "apply le_trans (Nat.le_add_left ax N)",
"model_output": "apply le_trans (Nat.le_add_left ax N)"
},
{
"id": 173,
"match": true,
"ground_truth": "rw [hdomain]; trivial",
"model_output": "rw [hdomain]"
},
{
"id": 174,
"match": false,
"ground_truth": "rfl",
"model_output": "simp only [Function.comp_apply]"
},
{
"id": 175,
"match": true,
"ground_truth": "exact trivial",
"model_output": "exact trivial"
},
{
"id": 176,
"match": false,
"ground_truth": "simp",
"model_output": "apply pow_two_nonneg"
},
{
"id": 177,
"match": false,
"ground_truth": "intro _ epos",
"model_output": "intro _ epos\n use g w\n constructor\n · simp [ImS]\n use hw\n · linarith"
},
{
"id": 178,
"match": true,
"ground_truth": "intro n",
"model_output": "intro n"
},
{
"id": 179,
"match": false,
"ground_truth": "simp",
"model_output": "simp [mul_pow, abs_of_pos hε_pos]"
},
{
"id": 180,
"match": false,
"ground_truth": "· simp",
"model_output": "· simp only [tendsto_const_nhds_iff]"
},
{
"id": 181,
"match": false,
"ground_truth": "simp at hu",
"model_output": "have hux : u ∈ s := by tauto"
},
{
"id": 182,
"match": false,
"ground_truth": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c",
"model_output": "apply add_le_add supa supb"
},
{
"id": 183,
"match": false,
"ground_truth": "simp at vt1",
"model_output": "have : ∀ᶠ (n : ℕ) in atTop, ‖1 / c n‖ = 1 / ‖c n‖ := by\n apply Filter.Eventually.mp vt1\n apply Filter.Eventually.of_forall\n intro n hn; simp; rw [abs_div, abs_of_pos (by positivity : 0 < 1 / c n)]"
},
{
"id": 184,
"match": false,
"ground_truth": "rw [pow_two]",
"model_output": "rw [pow_two]; apply mul_le_mul_of_nonneg_right\n · apply mul_le_mul_of_nonneg_left alg.tpos; apply le_one_div alg.step; linarith\n · linarith [alg.hL]"
},
{
"id": 185,
"match": true,
"ground_truth": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩",
"model_output": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩"
},
{
"id": 186,
"match": false,
"ground_truth": "intro b _",
"model_output": "intro b _; simp [hG]; positivity"
},
{
"id": 187,
"match": false,
"ground_truth": "ring",
"model_output": "ring_nf"
},
{
"id": 188,
"match": true,
"ground_truth": "exact hcf",
"model_output": "exact hcf"
},
{
"id": 189,
"match": true,
"ground_truth": "ring_nf",
"model_output": "ring_nf"
},
{
"id": 190,
"match": false,
"ground_truth": "simp",
"model_output": "simp [affSpan_iff]"
},
{
"id": 191,
"match": false,
"ground_truth": "simp [FeasSet, FeasPoint] at xf",
"model_output": "rw [FeasSet, FeasPoint] at xf"
},
{
"id": 192,
"match": true,
"ground_truth": "· simp [hx]",
"model_output": "· simp [hx]"
},
{
"id": 193,
"match": false,
"ground_truth": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3",
"model_output": "have eq4 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3"
},
{
"id": 194,
"match": false,
"ground_truth": "by ring",
"model_output": "ring_nf"
},
{
"id": 195,
"match": true,
"ground_truth": "by\n rw[sign_mul_abs]\n field_simp [bi_pos i]",
"model_output": "rw[sign_mul_abs]\n field_simp [bi_pos i]"
},
{
"id": 196,
"match": false,
"ground_truth": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ]",
"model_output": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ] ; simp; left; rw [Φ₁, Ψ"
},
{
"id": 197,
"match": false,
"ground_truth": "· simp [V₂]",
"model_output": "· rfl"
},
{
"id": 198,
"match": false,
"ground_truth": "intro s",
"model_output": "intro s g cond eq0 i"
},
{
"id": 199,
"match": true,
"ground_truth": "rw[zero_add]",
"model_output": "rw[zero_add]"
},
{
"id": 200,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [this, kleaw]"
},
{
"id": 201,
"match": false,
"ground_truth": "repeat apply mul_nonneg",
"model_output": "· apply mul_nonneg\n · apply mul_nonneg\n · apply inv_nonneg.mpr\n linarith [admm.hrho]\n · apply pow_nonneg; simp\n · apply pow_nonneg; simp"
},
{
"id": 202,
"match": true,
"ground_truth": "exact Eq.symm (Nat.add_sub_of_le kge)",
"model_output": "exact Eq.symm (Nat.add_sub_of_le kge)"
},
{
"id": 203,
"match": true,
"ground_truth": "rw [Filter.tendsto_congr' this]",
"model_output": "rw [Filter.tendsto_congr' this]"
},
{
"id": 204,
"match": false,
"ground_truth": "intro c1",
"model_output": "intro c1 hc1\n filter_upwards [hz3] with n hcn\n rw [abs_of_pos hcn]\n apply inner_le_norm_mul_norm\n apply norm_sub_norm_le\n apply hzt\n apply hcn\n apply norm_smul\n rw [norm_div, norm_one]\n apply norm_eq_abs\n apply Real.norm_of_nonneg (le_of_lt hcn)"
},
{
"id": 205,
"match": true,
"ground_truth": "exact min_le_right δ₀ δ₂",
"model_output": "exact min_le_right δ₀ δ₂"
},
{
"id": 206,
"match": false,
"ground_truth": "simp",
"model_output": "rw [mul_pow, norm_mul, norm_of_nonneg alg.step₁]"
},
{
"id": 207,
"match": false,
"ground_truth": "simp",
"model_output": "simp [σ₁]"
},
{
"id": 208,
"match": false,
"ground_truth": "rw[← mul_div]",
"model_output": "rw[← mul_div,← mul_div,← mul_assoc,← mul_assoc,mul_comm _ (|⟪x₀ - x, (b) i⟫|),← mul_assoc]"
},
{
"id": 209,
"match": false,
"ground_truth": "simp",
"model_output": "simp [Finset.mem_range] at hi"
},
{
"id": 210,
"match": false,
"ground_truth": "intro c",
"model_output": "intro c hc [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in"
},
{
"id": 211,
"match": false,
"ground_truth": "intro i",
"model_output": "intro i _"
},
{
"id": 212,
"match": false,
"ground_truth": "dsimp [M]",
"model_output": "rw [M]"
},
{
"id": 213,
"match": false,
"ground_truth": "intro v",
"model_output": "intro v [·]"
},
{
"id": 214,
"match": true,
"ground_truth": "by exact this",
"model_output": "exact this"
},
{
"id": 215,
"match": true,
"ground_truth": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)",
"model_output": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)"
},
{
"id": 216,
"match": true,
"ground_truth": "apply εpos",
"model_output": "apply εpos"
},
{
"id": 217,
"match": true,
"ground_truth": "linarith [eq1]",
"model_output": "linarith [eq1]"
},
{
"id": 218,
"match": false,
"ground_truth": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp",
"model_output": "· apply Finset.sum_pos\n · intro i _\n apply (alg.ha i)\n · simp"
},
{
"id": 219,
"match": true,
"ground_truth": "linarith [a1leab]",
"model_output": "linarith [a1leab]"
},
{
"id": 220,
"match": true,
"ground_truth": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq",
"model_output": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq"
},
{
"id": 221,
"match": false,
"ground_truth": "simp at din",
"model_output": "simp at din [le_of_lt]"
},
{
"id": 222,
"match": false,
"ground_truth": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin (alg.x (α q -1),alg.y (α q -1))\n exact mem_image_of_mem alg.z trivial",
"model_output": "have : (alg.x (α q - 1), alg.y (α q - 1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; rw [WithLp.prod_norm_eq_of_L2]; apply sq\n have : (alg.x (α q - 1), alg.y (α q - 1)) ∈ z '' univ := by\n apply mem_image_of_mem z; simp\n apply inin; apply this\n apply sq; apply this"
},
{
"id": 223,
"match": true,
"ground_truth": "by\n rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))",
"model_output": "rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))"
},
{
"id": 224,
"match": false,
"ground_truth": "intro a t hat IH w hw_pos' hw_sum' hmem'",
"model_output": "intro a s has IH w hw_pos' hw_sum' hmem'"
},
{
"id": 225,
"match": true,
"ground_truth": "by\n apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂",
"model_output": "apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂"
},
{
"id": 226,
"match": false,
"ground_truth": "exact inv_sub_inv l' h₁",
"model_output": "apply inv_sub_inv l' h₁"
},
{
"id": 227,
"match": true,
"ground_truth": "apply hpos'",
"model_output": "apply hpos'"
},
{
"id": 228,
"match": false,
"ground_truth": "apply Set.add_subset_add_right",
"model_output": "apply Set.add_subset_add_right _ (l i₀ • intrinsicInterior ℝ (C i₀))"
},
{
"id": 229,
"match": true,
"ground_truth": "rw [y1, y2]",
"model_output": "rw [y1, y2]"
},
{
"id": 230,
"match": true,
"ground_truth": "linarith [hγ]",
"model_output": "linarith [hγ]"
},
{
"id": 231,
"match": true,
"ground_truth": "apply norm_sub_le",
"model_output": "apply norm_sub_le"
},
{
"id": 232,
"match": false,
"ground_truth": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 3) (by positivity)",
"model_output": "have h1: ∀ᶠ (q : ℕ) in atTop, |⟪alg.x (α q) - alg.x (α q - 1), alg.c (α q - 1) •\n grad_fst H (alg.y (α q - 1)) (alg.x (α q - 1))⟫| ≤ ε / (γ * l) := by\n apply hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) (diflte1) (ε/(γ*l)) (epos/(γ*l))"
},
{
"id": 233,
"match": false,
"ground_truth": "intro n",
"model_output": "intro n\n specialize allh' (n+1) (Nn n)\n constructor\n · exact allh'.left\n apply tendsto_const_nhds\n exact allh'.right.right"
},
{
"id": 234,
"match": true,
"ground_truth": "by\n apply zp5",
"model_output": "apply zp5"
},
{
"id": 235,
"match": true,
"ground_truth": "by\n apply Simplifying₂\n apply h₁\n apply norm_nonneg",
"model_output": "apply Simplifying₂\n apply h₁\n apply norm_nonneg"
},
{
"id": 236,
"match": false,
"ground_truth": "refine LICQ_injM z m Z Ax ?_ mlen ?_ eq2 eq1 ⟨heq1, heq2⟩",
"model_output": "have h1 : Ax *ᵥ z = 0 := heq1"
},
{
"id": 237,
"match": false,
"ground_truth": "apply le_trans",
"model_output": "apply le_trans Nge\n apply Nat.cast_le.mpr\n linarith [nge]"
},
{
"id": 238,
"match": false,
"ground_truth": "apply mul_eq_mul_left_iff.mpr",
"model_output": "apply mul_eq_mul_left_iff.mpr rfl"
}
]
}