| { | |
| "summary": { | |
| "total_with_gt": 239, | |
| "matched": 105, | |
| "accuracy": 0.4393305439330544 | |
| }, | |
| "details": [ | |
| { | |
| "id": 0, | |
| "match": true, | |
| "ground_truth": "apply HasDerivAt.sub", | |
| "model_output": "apply HasDerivAt.sub" | |
| }, | |
| { | |
| "id": 1, | |
| "match": true, | |
| "ground_truth": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring", | |
| "model_output": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring" | |
| }, | |
| { | |
| "id": 2, | |
| "match": true, | |
| "ground_truth": "rw [← EReal.coe_sub]", | |
| "model_output": "rw [← EReal.coe_sub]" | |
| }, | |
| { | |
| "id": 3, | |
| "match": false, | |
| "ground_truth": "ext x", | |
| "model_output": "exact convex_indicator_empty" | |
| }, | |
| { | |
| "id": 4, | |
| "match": true, | |
| "ground_truth": "exact ah", | |
| "model_output": "exact ah" | |
| }, | |
| { | |
| "id": 5, | |
| "match": true, | |
| "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp", | |
| "model_output": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp" | |
| }, | |
| { | |
| "id": 6, | |
| "match": false, | |
| "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩", | |
| "model_output": "have h1 : b - b = 0 := by\n lift b to ℝ using ⟨hb1, hb2⟩\n simp only [sub_self]" | |
| }, | |
| { | |
| "id": 7, | |
| "match": true, | |
| "ground_truth": "apply hasDerivAt_mul_const c⁻¹", | |
| "model_output": "apply hasDerivAt_mul_const c⁻¹" | |
| }, | |
| { | |
| "id": 8, | |
| "match": false, | |
| "ground_truth": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono (A := A) (x := x) H, α_subseq_converge (Aφ_sub H)⟩", | |
| "model_output": "have h := lim_inf_def A\n rw[← H] at h\n exact (subseq_tendsto_of_liminf h).choose_spec" | |
| }, | |
| { | |
| "id": 9, | |
| "match": true, | |
| "ground_truth": "· rw [ha1];simp", | |
| "model_output": "· rw [ha1];simp" | |
| }, | |
| { | |
| "id": 10, | |
| "match": true, | |
| "ground_truth": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩", | |
| "model_output": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩" | |
| }, | |
| { | |
| "id": 11, | |
| "match": true, | |
| "ground_truth": "ext i j", | |
| "model_output": "ext i j" | |
| }, | |
| { | |
| "id": 12, | |
| "match": false, | |
| "ground_truth": "apply glt", | |
| "model_output": "have : g ≤ 1 := by\n calc\n g = inner (ℝ) g 1 := by simp\n _ ≤ 1 := hg" | |
| }, | |
| { | |
| "id": 13, | |
| "match": true, | |
| "ground_truth": "apply add_le_add_right a", | |
| "model_output": "apply add_le_add_right a" | |
| }, | |
| { | |
| "id": 14, | |
| "match": false, | |
| "ground_truth": "left", | |
| "model_output": "left; exact hdomsf" | |
| }, | |
| { | |
| "id": 15, | |
| "match": false, | |
| "ground_truth": "ext j", | |
| "model_output": "ext i; simp [Matrix.mulVec]" | |
| }, | |
| { | |
| "id": 16, | |
| "match": false, | |
| "ground_truth": "intro i", | |
| "model_output": "intro i j" | |
| }, | |
| { | |
| "id": 17, | |
| "match": true, | |
| "ground_truth": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2", | |
| "model_output": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2" | |
| }, | |
| { | |
| "id": 18, | |
| "match": false, | |
| "ground_truth": "constructor", | |
| "model_output": "constructor\n · intro h x hx\n simp at *\n exact ⟨hx.left, le_trans (h x.1 hx.left) hx.right⟩\n intro h x hx\n have : (x, g x) ∈ {p | p.1 ∈ s ∧ g p.1 ≤ p.2} := by simpa\n have := h this\n simp at this\n apply this.2" | |
| }, | |
| { | |
| "id": 19, | |
| "match": false, | |
| "ground_truth": "by_cases hA : A = 0", | |
| "model_output": "intro x\n rw [HasGradient_iff_Convergence_Point]\n intro ε εpos\n use 1; simp\n intro y _\n rw [Matrix.mulVec_sub, dotProduct_sub, sub_mul, sub_mul, sub_add_cancel]\n rw [← Matrix.mulVec_mulVec Aᵀ A x (y - x)]\n rw [Matrix.mulVec_mulVec, ← Matrix.mulVec_mulVec]\n rw [Matrix.mul_assoc, Matrix.mul_assoc, ← Matrix.mulVec_mulVec]\n rw [Matrix.mulVec_mulVec, ← Matrix.mulVec_mulVec]\n rw [Matrix.mulVec_mulVec" | |
| }, | |
| { | |
| "id": 20, | |
| "match": false, | |
| "ground_truth": "by norm_num", | |
| "model_output": "norm_num [a]" | |
| }, | |
| { | |
| "id": 21, | |
| "match": false, | |
| "ground_truth": "by\n obtain hcon := subdifferential_subset f x₀\n apply hcon; exact first_order_optimality_condition f x₀ hx", | |
| "model_output": "apply first_order_optimality_condition f x₀ hx" | |
| }, | |
| { | |
| "id": 22, | |
| "match": true, | |
| "ground_truth": "exact h", | |
| "model_output": "exact h" | |
| }, | |
| { | |
| "id": 23, | |
| "match": true, | |
| "ground_truth": "by\n have : (fun x ↦ (inner (ℝ) x a : ℝ)) = fun x ↦ (inner (ℝ) a x : ℝ) := by\n ext y; exact real_inner_comm a y\n rw [this]; apply gradient_of_inner_const", | |
| "model_output": "apply gradient_of_inner_const" | |
| }, | |
| { | |
| "id": 24, | |
| "match": true, | |
| "ground_truth": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)\n refine prod_erase_mul univ (fun «x» ↦ A «x» «x») ?_\n exact mem_univ j", | |
| "model_output": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)" | |
| }, | |
| { | |
| "id": 25, | |
| "match": true, | |
| "ground_truth": "intro x y hy", | |
| "model_output": "intro x y hy" | |
| }, | |
| { | |
| "id": 26, | |
| "match": false, | |
| "ground_truth": "simp [LowerSemicontinuousHull]", | |
| "model_output": "rw [LowerSemicontinuousHull, iInter_setOf]" | |
| }, | |
| { | |
| "id": 27, | |
| "match": true, | |
| "ground_truth": "simp at hfy", | |
| "model_output": "simp at hfy" | |
| }, | |
| { | |
| "id": 28, | |
| "match": true, | |
| "ground_truth": "rw [Fin.sum_univ_succ]", | |
| "model_output": "rw [Fin.sum_univ_succ]" | |
| }, | |
| { | |
| "id": 29, | |
| "match": true, | |
| "ground_truth": "by_cases hx2 : f x = ⊥", | |
| "model_output": "by_cases hx2 : f x = ⊥" | |
| }, | |
| { | |
| "id": 30, | |
| "match": false, | |
| "ground_truth": "rw [@mem_iInter]", | |
| "model_output": "rw [mem_intrinsicClosure] at hx" | |
| }, | |
| { | |
| "id": 31, | |
| "match": false, | |
| "ground_truth": "rcases h with ⟨δ, dpos, h⟩", | |
| "model_output": "rcases h with ⟨δ, dpos, h⟩\n use δ; constructor\n · exact dpos\n intro x' h'; simp at h'\n rw [← dist_eq_norm]\n apply le_of_lt (h' ▸ Metric.mem_ball.1)" | |
| }, | |
| { | |
| "id": 32, | |
| "match": false, | |
| "ground_truth": "exact half_lt_self dpos", | |
| "model_output": "linarith" | |
| }, | |
| { | |
| "id": 33, | |
| "match": true, | |
| "ground_truth": "apply pin", | |
| "model_output": "apply pin" | |
| }, | |
| { | |
| "id": 34, | |
| "match": false, | |
| "ground_truth": "by_cases hf_pinf : f = ⊤", | |
| "model_output": "apply convex_conjugate_convex" | |
| }, | |
| { | |
| "id": 35, | |
| "match": true, | |
| "ground_truth": "by\n apply intrinsicInterior_subset.antisymm\n nth_rw 1 [intrinsicInterior]\n rw [intrinsicInterior, image_subset_iff]\n rw [affineSpan_intrinsicInterior hsc]\n rw [Function.Injective.preimage_image Subtype.val_injective]\n simp [intrinsicInterior]", | |
| "model_output": "rw [intrinsicInterior, image_subset_iff]" | |
| }, | |
| { | |
| "id": 36, | |
| "match": true, | |
| "ground_truth": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]", | |
| "model_output": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]" | |
| }, | |
| { | |
| "id": 37, | |
| "match": false, | |
| "ground_truth": "rw [EReal.coe_le_coe_iff] at hccleq", | |
| "model_output": "apply EReal.coe_le_coe_iff.2 at hccleq" | |
| }, | |
| { | |
| "id": 38, | |
| "match": false, | |
| "ground_truth": "intro z", | |
| "model_output": "intro x hx\n rw [intrinsicInterior_iff (convex_intrinsicClosure ℝ h) (nonempty_of_mem (mem_image_of_mem f (hn.choose_spec)))]\n exact in_interior_intrinsicClosure h hn.choose_spec" | |
| }, | |
| { | |
| "id": 39, | |
| "match": true, | |
| "ground_truth": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]", | |
| "model_output": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]" | |
| }, | |
| { | |
| "id": 40, | |
| "match": false, | |
| "ground_truth": "rw [h2]", | |
| "model_output": "rw [h2] at h1 ⊢" | |
| }, | |
| { | |
| "id": 41, | |
| "match": true, | |
| "ground_truth": "apply banach_steinhaus", | |
| "model_output": "apply banach_steinhaus" | |
| }, | |
| { | |
| "id": 42, | |
| "match": true, | |
| "ground_truth": "intro h\n apply HasFDeriv_Convergence\n exact h", | |
| "model_output": "intro h\n apply HasFDeriv_Convergence\n exact h" | |
| }, | |
| { | |
| "id": 43, | |
| "match": true, | |
| "ground_truth": "· apply Convergence_HasFDeriv", | |
| "model_output": "apply Convergence_HasFDeriv" | |
| }, | |
| { | |
| "id": 44, | |
| "match": true, | |
| "ground_truth": "by\n rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]", | |
| "model_output": "rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]" | |
| }, | |
| { | |
| "id": 45, | |
| "match": true, | |
| "ground_truth": "apply alg.ha 0", | |
| "model_output": "apply alg.ha 0" | |
| }, | |
| { | |
| "id": 46, | |
| "match": true, | |
| "ground_truth": "rw [h2]", | |
| "model_output": "rw [h2]" | |
| }, | |
| { | |
| "id": 47, | |
| "match": true, | |
| "ground_truth": "rcases this with ⟨xn, hxn1, hxn2⟩", | |
| "model_output": "rcases this with ⟨xn, hxn1, hxn2⟩" | |
| }, | |
| { | |
| "id": 48, | |
| "match": false, | |
| "ground_truth": "have h2 := tendsto_add (A:=A) (B:=B)", | |
| "model_output": "have h2 := tendsto_atTop_ciInf (A_α_isMono hAa) (α_α_bddbelow hAa)" | |
| }, | |
| { | |
| "id": 49, | |
| "match": false, | |
| "ground_truth": "have : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [mul_pow, WithLp.prod_norm_sq_eq_of_L2, WithLp.prod_norm_sq_eq_of_L2]\n simp only [WithLp.smul_fst, WithLp.smul_snd]\n rw [norm_smul, norm_smul, mul_add, mul_pow, mul_pow]", | |
| "model_output": "apply norm_smul_le" | |
| }, | |
| { | |
| "id": 50, | |
| "match": false, | |
| "ground_truth": "by_cases ht : i ∈ σ", | |
| "model_output": "by_cases hs : i ∈ σ\n[. simp [hs]\n apply cpos]\n simp [hs]" | |
| }, | |
| { | |
| "id": 51, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp; apply hdti" | |
| }, | |
| { | |
| "id": 52, | |
| "match": true, | |
| "ground_truth": "by rw [h y ys, hf]; exact hg y ys", | |
| "model_output": "rw [h y ys, hf]; exact hg y ys" | |
| }, | |
| { | |
| "id": 53, | |
| "match": false, | |
| "ground_truth": "exact in_of_le_sinf_of_b_top hx", | |
| "model_output": "apply in_of_le_sinf_of_b_top hx" | |
| }, | |
| { | |
| "id": 54, | |
| "match": false, | |
| "ground_truth": "intro hmin", | |
| "model_output": "intro hmin\n exact first_order_unconstrained hf hmin hfc" | |
| }, | |
| { | |
| "id": 55, | |
| "match": false, | |
| "ground_truth": "simp [hx2, hw.2]", | |
| "model_output": "constructor\n · simp\n · simp [hx2]" | |
| }, | |
| { | |
| "id": 56, | |
| "match": true, | |
| "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", | |
| "model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]" | |
| }, | |
| { | |
| "id": 57, | |
| "match": true, | |
| "ground_truth": "simp [ConvexCone.addPoint] at hx", | |
| "model_output": "simp [ConvexCone.addPoint] at hx" | |
| }, | |
| { | |
| "id": 58, | |
| "match": false, | |
| "ground_truth": "intro x", | |
| "model_output": "intro x xs y ys\n apply lagrange hs hf x xs y ys\n apply interior_nonempty\n exact convex_segment_interior hs hf x xs y ys" | |
| }, | |
| { | |
| "id": 59, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp [EReal.bot_lt_coe] at hx" | |
| }, | |
| { | |
| "id": 60, | |
| "match": false, | |
| "ground_truth": "by\n simp only [mem_setOf_eq]\n intro _ _ _ _ hp1 hp2 hp3\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]", | |
| "model_output": "intro _ _ _ _ _ hp1 hp2 hp3\n simp only [mem_setOf_eq]\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]" | |
| }, | |
| { | |
| "id": 61, | |
| "match": false, | |
| "ground_truth": "linarith", | |
| "model_output": "linarith [ht]" | |
| }, | |
| { | |
| "id": 62, | |
| "match": true, | |
| "ground_truth": "simp [h]", | |
| "model_output": "simp [h]" | |
| }, | |
| { | |
| "id": 63, | |
| "match": true, | |
| "ground_truth": "simp [g]", | |
| "model_output": "simp [g]" | |
| }, | |
| { | |
| "id": 64, | |
| "match": false, | |
| "ground_truth": "rw [Prod.tendsto_iff] at xntend", | |
| "model_output": "simp at xnin" | |
| }, | |
| { | |
| "id": 65, | |
| "match": false, | |
| "ground_truth": "by_cases ha1 : a = 0", | |
| "model_output": "have : a • ⊤ + b • f y = ⊤ := by\n rw [EReal.smul_top_of_pos (lt_of_le_of_ne ha (id (Ne.symm hb)))]\n simp\n rw [hab]\n simp\n exact lt_of_le_of_ne hb (id (Ne.symm ha))" | |
| }, | |
| { | |
| "id": 66, | |
| "match": false, | |
| "ground_truth": "by_cases hb1 : b = 0", | |
| "model_output": "simp [h2]" | |
| }, | |
| { | |
| "id": 67, | |
| "match": false, | |
| "ground_truth": "congr", | |
| "model_output": "congr; ext a; congr; ext x; exact Iff.symm (le_sub_iff_add_le' (x := inner ℝ l x))" | |
| }, | |
| { | |
| "id": 68, | |
| "match": false, | |
| "ground_truth": "intro z", | |
| "model_output": "intro z hz\n have : HasFDerivAt f ((toDual ℝ E) ((LinearIsometryEquiv.symm (toDual ℝ E)) (f' z))) z := by\n apply HasFDerivAt.congr (hu3 z hz) (by simp)\n rw [hasFDerivAt_iff_hasGradientAt] at this\n exact this.unique (hasGradientAt_iff_hasFDerivAt.mpr hu2 hz)" | |
| }, | |
| { | |
| "id": 69, | |
| "match": true, | |
| "ground_truth": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl", | |
| "model_output": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl" | |
| }, | |
| { | |
| "id": 70, | |
| "match": false, | |
| "ground_truth": "intro y", | |
| "model_output": "intro y hy" | |
| }, | |
| { | |
| "id": 71, | |
| "match": false, | |
| "ground_truth": "have hb : b = 1 := by linarith", | |
| "model_output": "simp [ha] at absum ⊢\n rw [absum]\n simp\n apply convex_conjugate_le_cc" | |
| }, | |
| { | |
| "id": 72, | |
| "match": true, | |
| "ground_truth": "intro x y r", | |
| "model_output": "intro x y r" | |
| }, | |
| { | |
| "id": 73, | |
| "match": true, | |
| "ground_truth": "rw [hab]", | |
| "model_output": "rw [hab]" | |
| }, | |
| { | |
| "id": 74, | |
| "match": false, | |
| "ground_truth": "obtain h := ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff\n rw [slope_def_field, le_div_iff₀] at h\n repeat linarith", | |
| "model_output": "apply ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff" | |
| }, | |
| { | |
| "id": 75, | |
| "match": false, | |
| "ground_truth": "have ze : z ≠ 0 := by\n by_contra hz; simp [hz] at zin; simp [r] at zin", | |
| "model_output": "by_cases z0 : z = 0" | |
| }, | |
| { | |
| "id": 76, | |
| "match": false, | |
| "ground_truth": "rw [← hEq]", | |
| "model_output": "rw [← hEq]\n exact affine_map_representation A x y r" | |
| }, | |
| { | |
| "id": 77, | |
| "match": false, | |
| "ground_truth": "have h1 : M -ᵥ M ⊆ Submodule.comap (LinearMap.inl R α β) v := by\n rintro p ⟨c, hc, d, hd, rfl⟩\n exact Submodule.subset_span ⟨⟨c, n0⟩, ⟨hc, hn0⟩, ⟨d, n0⟩, ⟨hd, hn0⟩, by simp⟩", | |
| "model_output": "have : (m, n) = (m0, n0) + ((m - m0), (n - n0)) := by simp [Prod.eq_iff_fst_eq_snd_eq]" | |
| }, | |
| { | |
| "id": 78, | |
| "match": false, | |
| "ground_truth": "have h_nonempty : S.Nonempty := by\n obtain ⟨a, ha⟩ := @NormedSpace.sphere_nonempty_rclike 𝕜 _ V _ _ _ 1 zero_le_one\n use a", | |
| "model_output": "have h_nonempty : S.Nonempty := by\n obtain ⟨v, hv⟩ := @NormedSpace.sphere_nonempty 𝕜 V _ _ _ 1 (0 : V)\n use v; simp [S] at hv; exact hv.1" | |
| }, | |
| { | |
| "id": 79, | |
| "match": false, | |
| "ground_truth": "linarith", | |
| "model_output": "linarith [hy2, hx₂]" | |
| }, | |
| { | |
| "id": 80, | |
| "match": false, | |
| "ground_truth": "apply DifferentiableAt.hasGradientAt", | |
| "model_output": "apply DifferentiableAt.hasGradientAt\n apply diff_prod₁ h" | |
| }, | |
| { | |
| "id": 81, | |
| "match": false, | |
| "ground_truth": "rcases lbdf with ⟨L, Lbound⟩", | |
| "model_output": "have bddImS : BddBelow ImS := by\n rcases lbdf with ⟨L, Lbound⟩\n use L; intro gy; simp [ImS]; intro y; simp [g]; linarith [Lbound y]" | |
| }, | |
| { | |
| "id": 82, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp; linarith [μpos]" | |
| }, | |
| { | |
| "id": 83, | |
| "match": true, | |
| "ground_truth": "norm_num", | |
| "model_output": "norm_num" | |
| }, | |
| { | |
| "id": 84, | |
| "match": false, | |
| "ground_truth": "intro x hx", | |
| "model_output": "intro x hx\n have : x ∈ Icc 0 1 := by simp at hx; simp; constructor <;> linarith\n exact h1 x this" | |
| }, | |
| { | |
| "id": 85, | |
| "match": true, | |
| "ground_truth": "intro x _", | |
| "model_output": "intro x _" | |
| }, | |
| { | |
| "id": 86, | |
| "match": true, | |
| "ground_truth": "rw [mem_setOf]", | |
| "model_output": "rw [mem_setOf]" | |
| }, | |
| { | |
| "id": 87, | |
| "match": false, | |
| "ground_truth": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n rw[← inequ₂''];\n exact inequ₂' y nonempty lscf x_converge g_converge", | |
| "model_output": "apply inequ₃2 y nonempty lscf x_converge g_converge" | |
| }, | |
| { | |
| "id": 88, | |
| "match": false, | |
| "ground_truth": "refine norm_ne_zero_iff.mpr ?_", | |
| "model_output": "refine norm_ne_zero_iff.mpr ?_\n exact Basis.ne_zero b i" | |
| }, | |
| { | |
| "id": 89, | |
| "match": false, | |
| "ground_truth": "rw [← hT.span_range_v_eq_orthogonal_ker,\n mem_span_range_iff_exists_fun] at hx₂", | |
| "model_output": "have := hT.2 x₂" | |
| }, | |
| { | |
| "id": 90, | |
| "match": false, | |
| "ground_truth": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]", | |
| "model_output": "· rcases hx with ⟨hx, hy⟩\n use (fun n => (x.1, ⊤))\n constructor\n · intro n\n simpa using hx.1\n rw [Prod.tendsto_iff]\n simp [hy, hx.1]" | |
| }, | |
| { | |
| "id": 91, | |
| "match": false, | |
| "ground_truth": "apply Finset.sum_eq_zero", | |
| "model_output": "apply Finset.sum_eq_zero\n intro i _\n rw [hx.1.2 _ i.2, mul_zero]" | |
| }, | |
| { | |
| "id": 92, | |
| "match": false, | |
| "ground_truth": "mul_inv_cancel₀ (by linarith),", | |
| "model_output": "rw [mul_inv_cancel₀ (by linarith), mul_div_assoc, ← mul_assoc]" | |
| }, | |
| { | |
| "id": 93, | |
| "match": true, | |
| "ground_truth": "by rw [one_smul]; rfl", | |
| "model_output": "rw [one_smul]" | |
| }, | |
| { | |
| "id": 94, | |
| "match": false, | |
| "ground_truth": "intro b", | |
| "model_output": "intro b hb" | |
| }, | |
| { | |
| "id": 95, | |
| "match": false, | |
| "ground_truth": "by linarith", | |
| "model_output": "linarith [hc]" | |
| }, | |
| { | |
| "id": 96, | |
| "match": true, | |
| "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", | |
| "model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]" | |
| }, | |
| { | |
| "id": 97, | |
| "match": true, | |
| "ground_truth": "· rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]; exact mk_mem_prod (by simp) hx", | |
| "model_output": "rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]" | |
| }, | |
| { | |
| "id": 98, | |
| "match": true, | |
| "ground_truth": "rw [alg.γeq k, alg.teq k]", | |
| "model_output": "rw [alg.γeq k, alg.teq k]" | |
| }, | |
| { | |
| "id": 99, | |
| "match": false, | |
| "ground_truth": "intro i _", | |
| "model_output": "intro i _ [h4]" | |
| }, | |
| { | |
| "id": 100, | |
| "match": true, | |
| "ground_truth": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩", | |
| "model_output": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩" | |
| }, | |
| { | |
| "id": 101, | |
| "match": false, | |
| "ground_truth": "exact hu.2.2 (mem_inter hu.2.1 hx)", | |
| "model_output": "apply hu.2.2 (mem_inter hu.2.1 hx)" | |
| }, | |
| { | |
| "id": 102, | |
| "match": true, | |
| "ground_truth": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf", | |
| "model_output": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf" | |
| }, | |
| { | |
| "id": 103, | |
| "match": true, | |
| "ground_truth": "intro x", | |
| "model_output": "intro x" | |
| }, | |
| { | |
| "id": 104, | |
| "match": true, | |
| "ground_truth": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a", | |
| "model_output": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a" | |
| }, | |
| { | |
| "id": 105, | |
| "match": false, | |
| "ground_truth": "rw[Metric.isOpen_iff] at isopen", | |
| "model_output": "rcases (Metric.isOpen_iff t_isOpen).1 isopen x x_pos with ⟨ε , εpos , εball⟩" | |
| }, | |
| { | |
| "id": 106, | |
| "match": false, | |
| "ground_truth": "rw [deriv_of_const_mul_func (f u - f x)]", | |
| "model_output": "have : ‖u - x‖ + ‖f u - f x‖ < c := by\n rw [← add_halves c]\n apply add_lt_add\n · apply mem_ball_iff_norm.1 hu.left\n · simp at *\n rw [abs_eq_self.2] <;> linarith" | |
| }, | |
| { | |
| "id": 107, | |
| "match": false, | |
| "ground_truth": "rcases exists_seq_tendsto_sInf hs hs' with ⟨fx, _, cfx, fxs⟩", | |
| "model_output": "have hs'' : ∃ x, x ∈ {f x | x ∈ (f ⁻¹' Set.Iic y)} := by\n apply Set.Nonempty_def.1 hs" | |
| }, | |
| { | |
| "id": 108, | |
| "match": false, | |
| "ground_truth": "induction n with", | |
| "model_output": "have : Φ n ≤ (Φ n) + (1 / (n + 1)) * (Φ 0) := by\n have : (1 / (n + 1)) * (Φ 0) ≥ 0 := by apply mul_nonneg; simp; apply Φ_is_nonneg\n linarith\n apply lt_of_le_of_lt this\n apply Φ_le_C\n apply Φ_is_nonneg\n apply Φ_is_nonneg\n linarith" | |
| }, | |
| { | |
| "id": 109, | |
| "match": false, | |
| "ground_truth": "simp at ht", | |
| "model_output": "simp at ht [Icc] ; constructor <;> linarith" | |
| }, | |
| { | |
| "id": 110, | |
| "match": true, | |
| "ground_truth": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]", | |
| "model_output": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]" | |
| }, | |
| { | |
| "id": 111, | |
| "match": false, | |
| "ground_truth": "rw [subdiff_gradient g g' hg gradcon]", | |
| "model_output": "rw [subdiff_gradient g g' hg gradcon]\n simp" | |
| }, | |
| { | |
| "id": 112, | |
| "match": false, | |
| "ground_truth": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity), mul_comm] at hd", | |
| "model_output": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity)] at hd" | |
| }, | |
| { | |
| "id": 113, | |
| "match": false, | |
| "ground_truth": "simp [phi_add] at this", | |
| "model_output": "rw [phi_add] at this [hz] [this]" | |
| }, | |
| { | |
| "id": 114, | |
| "match": false, | |
| "ground_truth": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]", | |
| "model_output": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z; simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]" | |
| }, | |
| { | |
| "id": 115, | |
| "match": false, | |
| "ground_truth": "lift t to ℝ using ⟨LT.lt.ne_top fx_le_top, LT.lt.ne_bot fx_ge_bot⟩", | |
| "model_output": "rw [← EReal.coe_toReal (LT.lt.ne_top fx_le_top) (LT.lt.ne_bot fx_ge_bot)]" | |
| }, | |
| { | |
| "id": 116, | |
| "match": false, | |
| "ground_truth": "rcases zin with ⟨u,hux,hufx,hv⟩", | |
| "model_output": "rcases zin with ⟨u, ⟨utend, ⟨funlim, ⟨v, hv⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩⟩" | |
| }, | |
| { | |
| "id": 117, | |
| "match": false, | |
| "ground_truth": "by linarith", | |
| "model_output": "apply h.1" | |
| }, | |
| { | |
| "id": 118, | |
| "match": true, | |
| "ground_truth": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex", | |
| "model_output": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex" | |
| }, | |
| { | |
| "id": 119, | |
| "match": false, | |
| "ground_truth": "have hΦ : ∃ r_Φ, range Φ ⊆ Metric.ball 0 r_Φ := by apply Φ_isBounded'", | |
| "model_output": "apply A₁e₁_A₂e₂_isBounded'" | |
| }, | |
| { | |
| "id": 120, | |
| "match": true, | |
| "ground_truth": "· simp", | |
| "model_output": "· simp" | |
| }, | |
| { | |
| "id": 121, | |
| "match": true, | |
| "ground_truth": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this", | |
| "model_output": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this" | |
| }, | |
| { | |
| "id": 122, | |
| "match": true, | |
| "ground_truth": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]", | |
| "model_output": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]" | |
| }, | |
| { | |
| "id": 123, | |
| "match": false, | |
| "ground_truth": "by_cases u₁_eq_0 : u₁ = 0", | |
| "model_output": "have : u₁ ∈ (ker T) := by\n rw [← hu₁]; apply mem_ker_iff.mpr; simp [Tu_eq_0]" | |
| }, | |
| { | |
| "id": 124, | |
| "match": false, | |
| "ground_truth": "apply mul_pos", | |
| "model_output": "· linarith" | |
| }, | |
| { | |
| "id": 125, | |
| "match": false, | |
| "ground_truth": "exact this", | |
| "model_output": "apply this" | |
| }, | |
| { | |
| "id": 126, | |
| "match": false, | |
| "ground_truth": "intro y", | |
| "model_output": "intro y hy_ne" | |
| }, | |
| { | |
| "id": 127, | |
| "match": true, | |
| "ground_truth": "calc\n _= inner ℝ (u (n) - (- A₁† y')) (x₁ (n) - x₁') := by simp\n _≥ (0 : ℝ) := by\n apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁", | |
| "model_output": "apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁" | |
| }, | |
| { | |
| "id": 128, | |
| "match": true, | |
| "ground_truth": "simp [grad_fun_comp,grad_comp] at h", | |
| "model_output": "simp [grad_fun_comp,grad_comp] at h" | |
| }, | |
| { | |
| "id": 129, | |
| "match": true, | |
| "ground_truth": "exact hu₂", | |
| "model_output": "exact hu₂" | |
| }, | |
| { | |
| "id": 130, | |
| "match": true, | |
| "ground_truth": "apply Finset.card_eq_zero.2", | |
| "model_output": "apply Finset.card_eq_zero.2" | |
| }, | |
| { | |
| "id": 131, | |
| "match": true, | |
| "ground_truth": "exact False.elim (by simp at this)", | |
| "model_output": "simp at this" | |
| }, | |
| { | |
| "id": 132, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp [sq_nonneg (b - 1)]" | |
| }, | |
| { | |
| "id": 133, | |
| "match": true, | |
| "ground_truth": "rw [← add_assoc, ← add_assoc]", | |
| "model_output": "rw [← add_assoc, ← add_assoc]" | |
| }, | |
| { | |
| "id": 134, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "rw [Metric.ball, mem_setOf, dist_zero_right]" | |
| }, | |
| { | |
| "id": 135, | |
| "match": false, | |
| "ground_truth": "intro y yin z zin a b anneg bnneg absum1", | |
| "model_output": "intro y _ a b ha hb hab" | |
| }, | |
| { | |
| "id": 136, | |
| "match": true, | |
| "ground_truth": "gcongr", | |
| "model_output": "gcongr" | |
| }, | |
| { | |
| "id": 137, | |
| "match": false, | |
| "ground_truth": "have hzd : ∀ n, d n = z n - loc := fun _ => eq_sub_of_add_eq' rfl", | |
| "model_output": "have hz1 : ∀ᶠ (n : ℕ) in atTop, z n ∈ Metric.ball loc ε := by\n apply Filter.Eventually.mp (tendsto_atTop.1 vt1)\n apply Filter.Eventually.of_forall\n intro n hn; simp [z, hn]" | |
| }, | |
| { | |
| "id": 138, | |
| "match": true, | |
| "ground_truth": "rfl", | |
| "model_output": "rfl" | |
| }, | |
| { | |
| "id": 139, | |
| "match": false, | |
| "ground_truth": "rw [mul_one] at htp", | |
| "model_output": "simp at htp ⊢\n exact lt_of_mul_neg_left htp zero_lt_one" | |
| }, | |
| { | |
| "id": 140, | |
| "match": false, | |
| "ground_truth": "apply Continuous.tendsto", | |
| "model_output": "apply Continuous.tendsto\n apply ContinuousLinearMap.continuous" | |
| }, | |
| { | |
| "id": 141, | |
| "match": true, | |
| "ground_truth": "by\n have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero", | |
| "model_output": "have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero" | |
| }, | |
| { | |
| "id": 142, | |
| "match": false, | |
| "ground_truth": "apply A₁e₁_converge_zero", | |
| "model_output": "have : Tendsto (fun n => √((‖A₁ (e₁ n)‖)^2 + (‖A₂ (e₂ n)‖)^2)) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply (tendsto_congr' (Eventually.of_forall (fun n => ?_))).mp this\n intro n\n rw [Real.sqrt_sq]\n apply norm_nonneg" | |
| }, | |
| { | |
| "id": 143, | |
| "match": false, | |
| "ground_truth": "intro j", | |
| "model_output": "have h4 : (Finset.univ.filter fun j => ∑ i, A i j < 1) = ∅ := by\n rw [Finset.filter_eq_empty_iff]; intro j hj\n have col_sum_eq : ∑ i, A i j = 1 := have h1 : j ∈ Finset.univ.filter fun j => ∑ i, A i j < 1 := by\n apply Finset.mem_filter.2; constructor; apply Finset.mem_univ; exact hj\n have h2 : j ∉ Finset.univ.filter fun j => ∑" | |
| }, | |
| { | |
| "id": 144, | |
| "match": true, | |
| "ground_truth": "rw[this]", | |
| "model_output": "rw[this]" | |
| }, | |
| { | |
| "id": 145, | |
| "match": true, | |
| "ground_truth": "· simp; linarith [μpos]", | |
| "model_output": "simp; linarith [μpos]" | |
| }, | |
| { | |
| "id": 146, | |
| "match": false, | |
| "ground_truth": "ext x", | |
| "model_output": "simp only [c]\n ext x\n rw[sub_neg_eq_add, add_sub]\n ring_nf" | |
| }, | |
| { | |
| "id": 147, | |
| "match": false, | |
| "ground_truth": "have xBall_in_U : xBall ⊆ U := by\n apply l1Ball_sub_convexHull r_pos hn", | |
| "model_output": "have xBall_isopen' : IsOpen xBall := by apply isOpen_interior" | |
| }, | |
| { | |
| "id": 148, | |
| "match": false, | |
| "ground_truth": "rw [← zero_pow]", | |
| "model_output": "apply squeeze_zero_norm\n · have (n : ℕ) : ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖ ^ 2 ≤ (τ * ρ) * Φ (φ n) := by\n apply Φ_isdescending_inequ₁\n apply this\n apply Φ_isdescending_inequ₂\n apply this\n rw [← mul_zero (τ * ρ)]\n apply Filter.Tendsto.const_mul (τ * ρ) (Φ_converge_zero fullrank₁ fullrank₂)\n apply �" | |
| }, | |
| { | |
| "id": 149, | |
| "match": false, | |
| "ground_truth": "apply mul_nonneg", | |
| "model_output": "apply mul_nonneg\n apply mul_nonneg\n apply le_of_lt admm.hrho\n apply pow_two_nonneg\n apply max_tau_nonneg h1 h2" | |
| }, | |
| { | |
| "id": 150, | |
| "match": true, | |
| "ground_truth": "by simp at h; simpa [h]", | |
| "model_output": "simp at h; simpa [h]" | |
| }, | |
| { | |
| "id": 151, | |
| "match": true, | |
| "ground_truth": "rw [← mul_neg]", | |
| "model_output": "rw [← mul_neg]" | |
| }, | |
| { | |
| "id": 152, | |
| "match": true, | |
| "ground_truth": "exact h", | |
| "model_output": "exact h" | |
| }, | |
| { | |
| "id": 153, | |
| "match": false, | |
| "ground_truth": "by rw [z]; simp; left; rw [z]; simp", | |
| "model_output": "rw [z]; simp; left; rfl" | |
| }, | |
| { | |
| "id": 154, | |
| "match": false, | |
| "ground_truth": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:=by\n simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos", | |
| "model_output": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:= simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos" | |
| }, | |
| { | |
| "id": 155, | |
| "match": true, | |
| "ground_truth": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩", | |
| "model_output": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩" | |
| }, | |
| { | |
| "id": 156, | |
| "match": false, | |
| "ground_truth": "intro n x", | |
| "model_output": "intro n x\n apply ADMM_iter_process₁'_eq3_2' n x\n apply ADMM_iter_process₁'_eq3_1' n x\n apply ADMM_iter_process₁'_eq3_1'_h n x" | |
| }, | |
| { | |
| "id": 157, | |
| "match": true, | |
| "ground_truth": "simp [coef.mem_support_toFun]; rfl", | |
| "model_output": "simp [coef.mem_support_toFun]" | |
| }, | |
| { | |
| "id": 158, | |
| "match": false, | |
| "ground_truth": "simp only [Set.mem_union, Set.mem_iUnion, Set.mem_singleton_iff]", | |
| "model_output": "by_cases h₁ : i = n + 1" | |
| }, | |
| { | |
| "id": 159, | |
| "match": false, | |
| "ground_truth": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le", | |
| "model_output": "have h2: ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le" | |
| }, | |
| { | |
| "id": 160, | |
| "match": true, | |
| "ground_truth": "apply eq4 u v", | |
| "model_output": "apply eq4 u v" | |
| }, | |
| { | |
| "id": 161, | |
| "match": false, | |
| "ground_truth": "have : IsClosed ((MM x).carrier ∩ (f.Epi univ)) := by\n rw [ht]; exact IsClosed.prod isClosed_singleton isClosed_Ici", | |
| "model_output": "have h2 : (MM x).carrier ∩ (f.Epi univ) = (MM x).carrier ∩ ((f.closure univ).Epi univ) := by\n sorry [Epi_eq f]" | |
| }, | |
| { | |
| "id": 162, | |
| "match": true, | |
| "ground_truth": "simp [z]", | |
| "model_output": "simp [z]" | |
| }, | |
| { | |
| "id": 163, | |
| "match": true, | |
| "ground_truth": "by\n apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2", | |
| "model_output": "apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2" | |
| }, | |
| { | |
| "id": 164, | |
| "match": false, | |
| "ground_truth": "· have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt", | |
| "model_output": "have h0 : ∑ j, C x j = ∑ j, A x j := dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt" | |
| }, | |
| { | |
| "id": 165, | |
| "match": true, | |
| "ground_truth": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]", | |
| "model_output": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]" | |
| }, | |
| { | |
| "id": 166, | |
| "match": false, | |
| "ground_truth": "intro n", | |
| "model_output": "intro n\n apply ADMM_iter_process₁'_eq3_2' n\n apply ADMM_iter_process₁'_eq3_1' n\n apply ADMM_iter_process₁'_eq3_1'_aux n" | |
| }, | |
| { | |
| "id": 167, | |
| "match": true, | |
| "ground_truth": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp", | |
| "model_output": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp" | |
| }, | |
| { | |
| "id": 168, | |
| "match": true, | |
| "ground_truth": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]", | |
| "model_output": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]" | |
| }, | |
| { | |
| "id": 169, | |
| "match": false, | |
| "ground_truth": "suffices 0 ≤ (a1 • tx + b1 • ty) by exact this", | |
| "model_output": "intro i; simp; apply add_nonneg; apply smul_nonneg; linarith; apply txcond i\n apply smul_nonneg; linarith; apply tycond i" | |
| }, | |
| { | |
| "id": 170, | |
| "match": true, | |
| "ground_truth": "by\n rw [sub_right_comm]", | |
| "model_output": "rw [sub_right_comm]" | |
| }, | |
| { | |
| "id": 171, | |
| "match": false, | |
| "ground_truth": "intro i hi", | |
| "model_output": "intro i hi\n apply iSup₂_le\n intro y hy\n exact ht1 y hy" | |
| }, | |
| { | |
| "id": 172, | |
| "match": false, | |
| "ground_truth": "apply le_trans (Nat.le_add_left ax N)", | |
| "model_output": "apply le_trans (Nat.le_add_left ax N) (Nat.le_add_right ax N)" | |
| }, | |
| { | |
| "id": 173, | |
| "match": true, | |
| "ground_truth": "rw [hdomain]; trivial", | |
| "model_output": "rw [hdomain]" | |
| }, | |
| { | |
| "id": 174, | |
| "match": false, | |
| "ground_truth": "rfl", | |
| "model_output": "simp only [Function.comp_apply]" | |
| }, | |
| { | |
| "id": 175, | |
| "match": true, | |
| "ground_truth": "exact trivial", | |
| "model_output": "exact trivial" | |
| }, | |
| { | |
| "id": 176, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "apply sq_nonneg" | |
| }, | |
| { | |
| "id": 177, | |
| "match": false, | |
| "ground_truth": "intro _ epos", | |
| "model_output": "intro _ epos\n use g w\n constructor\n · exact gwin\n linarith" | |
| }, | |
| { | |
| "id": 178, | |
| "match": true, | |
| "ground_truth": "intro n", | |
| "model_output": "intro n" | |
| }, | |
| { | |
| "id": 179, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp [abs_of_nonneg, hσ_zero, mul_pow, ← mul_assoc, mul_comm, mul_left_comm]" | |
| }, | |
| { | |
| "id": 180, | |
| "match": false, | |
| "ground_truth": "· simp", | |
| "model_output": "· simp only [tendsto_const_nhds_iff]" | |
| }, | |
| { | |
| "id": 181, | |
| "match": false, | |
| "ground_truth": "simp at hu", | |
| "model_output": "have hux : u ∈ s := by tauto" | |
| }, | |
| { | |
| "id": 182, | |
| "match": false, | |
| "ground_truth": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c", | |
| "model_output": "apply add_le_add supa supb" | |
| }, | |
| { | |
| "id": 183, | |
| "match": false, | |
| "ground_truth": "simp at vt1", | |
| "model_output": "have : ∀ᶠ (n : ℕ) in atTop, ‖1 / c n‖ = 1 / ‖c n‖ := by\n apply Filter.Eventually.mp vt1\n apply Filter.Eventually.of_forall\n intro n hn; simp; rw [abs_div, abs_of_nonneg (le_of_lt (inv_pos.mpr hn))]" | |
| }, | |
| { | |
| "id": 184, | |
| "match": false, | |
| "ground_truth": "rw [pow_two]", | |
| "model_output": "rw [pow_two]; apply mul_le_mul_of_nonneg_right\n rw [mul_le_mul_iff_right₀ alg.tpos]; exact alg.step; simp; linarith [alg.step]" | |
| }, | |
| { | |
| "id": 185, | |
| "match": true, | |
| "ground_truth": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩", | |
| "model_output": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩" | |
| }, | |
| { | |
| "id": 186, | |
| "match": false, | |
| "ground_truth": "intro b _", | |
| "model_output": "intro b _; simp [hG]; positivity" | |
| }, | |
| { | |
| "id": 187, | |
| "match": false, | |
| "ground_truth": "ring", | |
| "model_output": "ring_nf" | |
| }, | |
| { | |
| "id": 188, | |
| "match": true, | |
| "ground_truth": "exact hcf", | |
| "model_output": "exact hcf" | |
| }, | |
| { | |
| "id": 189, | |
| "match": true, | |
| "ground_truth": "ring_nf", | |
| "model_output": "ring_nf" | |
| }, | |
| { | |
| "id": 190, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp; apply (affSpan_iff x).mpr; simp; exact And.intro x.property.1 x.property.2" | |
| }, | |
| { | |
| "id": 191, | |
| "match": false, | |
| "ground_truth": "simp [FeasSet, FeasPoint] at xf", | |
| "model_output": "rw [FeasSet, FeasPoint] at xf" | |
| }, | |
| { | |
| "id": 192, | |
| "match": true, | |
| "ground_truth": "· simp [hx]", | |
| "model_output": "· simp [hx]" | |
| }, | |
| { | |
| "id": 193, | |
| "match": true, | |
| "ground_truth": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3", | |
| "model_output": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3" | |
| }, | |
| { | |
| "id": 194, | |
| "match": false, | |
| "ground_truth": "by ring", | |
| "model_output": "ring_nf" | |
| }, | |
| { | |
| "id": 195, | |
| "match": true, | |
| "ground_truth": "by\n rw[sign_mul_abs]\n field_simp [bi_pos i]", | |
| "model_output": "rw[sign_mul_abs]\n field_simp [bi_pos i]" | |
| }, | |
| { | |
| "id": 196, | |
| "match": false, | |
| "ground_truth": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ]", | |
| "model_output": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ] ; simp; left; rfl\n rw[this]" | |
| }, | |
| { | |
| "id": 197, | |
| "match": true, | |
| "ground_truth": "· simp [V₂]", | |
| "model_output": "· simp [V₂]" | |
| }, | |
| { | |
| "id": 198, | |
| "match": false, | |
| "ground_truth": "intro s", | |
| "model_output": "intro s g cond eq0 i" | |
| }, | |
| { | |
| "id": 199, | |
| "match": true, | |
| "ground_truth": "rw[zero_add]", | |
| "model_output": "rw[zero_add]" | |
| }, | |
| { | |
| "id": 200, | |
| "match": false, | |
| "ground_truth": "linarith", | |
| "model_output": "linarith [this, kleaw]" | |
| }, | |
| { | |
| "id": 201, | |
| "match": false, | |
| "ground_truth": "repeat apply mul_nonneg", | |
| "model_output": "· apply mul_nonneg\n · apply mul_nonneg\n · linarith [inv_nonneg.mpr (le_of_lt admm.hrho)]\n · linarith [h1]\n · apply pow_nonneg; simp" | |
| }, | |
| { | |
| "id": 202, | |
| "match": true, | |
| "ground_truth": "exact Eq.symm (Nat.add_sub_of_le kge)", | |
| "model_output": "exact Eq.symm (Nat.add_sub_of_le kge)" | |
| }, | |
| { | |
| "id": 203, | |
| "match": true, | |
| "ground_truth": "rw [Filter.tendsto_congr' this]", | |
| "model_output": "rw [Filter.tendsto_congr' this]" | |
| }, | |
| { | |
| "id": 204, | |
| "match": false, | |
| "ground_truth": "intro c1", | |
| "model_output": "intro c1 hc1\n filter_upwards [hz3] with n hn\n rw [abs_of_pos (by positivity : 0 < 1 / c n)]\n rw [inner_sub_left, inner_smul_right, inner_self_eq_norm_sq_to_K]\n apply le_trans (hmin (z n) (by simp [s1]; rw [← hzd]; exact hn))\n simp; apply mul_le_mul_of_nonneg_right\n apply le_of_lt (by exact hcp)\n apply norm_nonneg" | |
| }, | |
| { | |
| "id": 205, | |
| "match": true, | |
| "ground_truth": "exact min_le_right δ₀ δ₂", | |
| "model_output": "exact min_le_right δ₀ δ₂" | |
| }, | |
| { | |
| "id": 206, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "rw [abs_of_pos alg.step₁]" | |
| }, | |
| { | |
| "id": 207, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp [σ₁]" | |
| }, | |
| { | |
| "id": 208, | |
| "match": false, | |
| "ground_truth": "rw[← mul_div]", | |
| "model_output": "rw[← mul_div,← mul_div,← mul_assoc,← mul_assoc]" | |
| }, | |
| { | |
| "id": 209, | |
| "match": false, | |
| "ground_truth": "simp", | |
| "model_output": "simp [Finset.mem_range] at hi" | |
| }, | |
| { | |
| "id": 210, | |
| "match": false, | |
| "ground_truth": "intro c", | |
| "model_output": "intro c hc [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in_Ω c hc)] [hφ c (mem_t_in" | |
| }, | |
| { | |
| "id": 211, | |
| "match": false, | |
| "ground_truth": "intro i", | |
| "model_output": "intro i _" | |
| }, | |
| { | |
| "id": 212, | |
| "match": true, | |
| "ground_truth": "dsimp [M]", | |
| "model_output": "dsimp [M]" | |
| }, | |
| { | |
| "id": 213, | |
| "match": false, | |
| "ground_truth": "intro v", | |
| "model_output": "intro v [·]" | |
| }, | |
| { | |
| "id": 214, | |
| "match": true, | |
| "ground_truth": "by exact this", | |
| "model_output": "exact this" | |
| }, | |
| { | |
| "id": 215, | |
| "match": true, | |
| "ground_truth": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)", | |
| "model_output": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)" | |
| }, | |
| { | |
| "id": 216, | |
| "match": true, | |
| "ground_truth": "apply εpos", | |
| "model_output": "apply εpos" | |
| }, | |
| { | |
| "id": 217, | |
| "match": true, | |
| "ground_truth": "linarith [eq1]", | |
| "model_output": "linarith [eq1]" | |
| }, | |
| { | |
| "id": 218, | |
| "match": true, | |
| "ground_truth": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp", | |
| "model_output": "apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp" | |
| }, | |
| { | |
| "id": 219, | |
| "match": true, | |
| "ground_truth": "linarith [a1leab]", | |
| "model_output": "linarith [a1leab]" | |
| }, | |
| { | |
| "id": 220, | |
| "match": false, | |
| "ground_truth": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq", | |
| "model_output": "rw [←add_assoc] at ieq" | |
| }, | |
| { | |
| "id": 221, | |
| "match": true, | |
| "ground_truth": "simp at din", | |
| "model_output": "simp at din" | |
| }, | |
| { | |
| "id": 222, | |
| "match": false, | |
| "ground_truth": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin (alg.x (α q -1),alg.y (α q -1))\n exact mem_image_of_mem alg.z trivial", | |
| "model_output": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin; exact mem_image_of_mem alg.z trivial" | |
| }, | |
| { | |
| "id": 223, | |
| "match": true, | |
| "ground_truth": "by\n rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))", | |
| "model_output": "rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))" | |
| }, | |
| { | |
| "id": 224, | |
| "match": false, | |
| "ground_truth": "intro a t hat IH w hw_pos' hw_sum' hmem'", | |
| "model_output": "intro a s has IH w hw_pos' hw_sum' hmem'" | |
| }, | |
| { | |
| "id": 225, | |
| "match": true, | |
| "ground_truth": "by\n apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂", | |
| "model_output": "apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂" | |
| }, | |
| { | |
| "id": 226, | |
| "match": false, | |
| "ground_truth": "exact inv_sub_inv l' h₁", | |
| "model_output": "apply inv_sub_inv l' h₁" | |
| }, | |
| { | |
| "id": 227, | |
| "match": true, | |
| "ground_truth": "apply hpos'", | |
| "model_output": "apply hpos'" | |
| }, | |
| { | |
| "id": 228, | |
| "match": false, | |
| "ground_truth": "apply Set.add_subset_add_right", | |
| "model_output": "apply add_subset_add_right _ (l i₀ • intrinsicInterior ℝ (C i₀))" | |
| }, | |
| { | |
| "id": 229, | |
| "match": true, | |
| "ground_truth": "rw [y1, y2]", | |
| "model_output": "rw [y1, y2]" | |
| }, | |
| { | |
| "id": 230, | |
| "match": true, | |
| "ground_truth": "linarith [hγ]", | |
| "model_output": "linarith [hγ]" | |
| }, | |
| { | |
| "id": 231, | |
| "match": false, | |
| "ground_truth": "apply norm_sub_le", | |
| "model_output": "apply norm_sub_le _ _" | |
| }, | |
| { | |
| "id": 232, | |
| "match": false, | |
| "ground_truth": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 3) (by positivity)", | |
| "model_output": "have h1: ∀ᶠ (q : ℕ) in atTop, |⟪alg.x (α q) - alg.x (α q - 1), alg.c (α q - 1) •\n grad_fst H (alg.y (α q - 1)) (alg.x (α q - 1))⟫| ≤ ε / (γ * l) := by\n apply hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) (diflte1) (ε/(γ*l)) (epos/(γ*l))" | |
| }, | |
| { | |
| "id": 233, | |
| "match": false, | |
| "ground_truth": "intro n", | |
| "model_output": "intro n\n specialize allh' (n+1) (Nn n)\n constructor\n · exact allh'.left\n apply tendsto_const_nhds\n simp only [Nat.succ_eq_add_one, Nat.cast_add, Nat.cast_one] at hNn'\n apply hNn'.right.right" | |
| }, | |
| { | |
| "id": 234, | |
| "match": true, | |
| "ground_truth": "by\n apply zp5", | |
| "model_output": "apply zp5" | |
| }, | |
| { | |
| "id": 235, | |
| "match": true, | |
| "ground_truth": "by\n apply Simplifying₂\n apply h₁\n apply norm_nonneg", | |
| "model_output": "apply Simplifying₂\n apply h₁\n apply norm_nonneg" | |
| }, | |
| { | |
| "id": 236, | |
| "match": false, | |
| "ground_truth": "refine LICQ_injM z m Z Ax ?_ mlen ?_ eq2 eq1 ⟨heq1, heq2⟩", | |
| "model_output": "rw [← Matrix.mulVec_eq_zero] at heq2" | |
| }, | |
| { | |
| "id": 237, | |
| "match": false, | |
| "ground_truth": "apply le_trans", | |
| "model_output": "apply le_trans Nge\n apply Nat.cast_le.mpr\n linarith [nge]" | |
| }, | |
| { | |
| "id": 238, | |
| "match": false, | |
| "ground_truth": "apply mul_eq_mul_left_iff.mpr", | |
| "model_output": "rw [mul_eq_mul_left_iff]" | |
| } | |
| ] | |
| } |