clone / evaluation /valid_score_ood_0.json
chenyili818's picture
Add files using upload-large-folder tool
661c54a verified
{
"summary": {
"total_with_gt": 273,
"matched": 43,
"accuracy": 0.1575091575091575
},
"details": [
{
"id": 0,
"match": false,
"ground_truth": "· exact mul_le_mul_of_nonneg_left hyu ha",
"model_output": "apply mul_le_mul_of_nonneg_left hyu ha"
},
{
"id": 1,
"match": false,
"ground_truth": "exact mul_le_mul_of_nonneg_left hyu ha",
"model_output": "nlinarith"
},
{
"id": 2,
"match": false,
"ground_truth": "· exact mul_le_mul_of_nonneg_left hyv hb",
"model_output": "nlinarith"
},
{
"id": 3,
"match": false,
"ground_truth": "exact mul_le_mul_of_nonneg_left hyv hb",
"model_output": "nlinarith"
},
{
"id": 4,
"match": false,
"ground_truth": "rw [lipschitzWith_iff_norm_sub_le] at *",
"model_output": "apply (hl.lipschitzWith_of_fderiv_le (by simp)).congr"
},
{
"id": 5,
"match": false,
"ground_truth": "by rw [grad_snd_eq h, grad_snd_eq h]",
"model_output": "rfl"
},
{
"id": 6,
"match": false,
"ground_truth": "rw [grad_snd_eq h, grad_snd_eq h]",
"model_output": "rfl"
},
{
"id": 7,
"match": false,
"ground_truth": "apply prox_well_define f hc lbdf x",
"model_output": "apply LowerSemicontinuous.exists_prox_set ?_ ?_"
},
{
"id": 8,
"match": false,
"ground_truth": "refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩",
"model_output": "use x₁, hx₁, x₂, hx₂, hx"
},
{
"id": 9,
"match": false,
"ground_truth": "exact LinearMap.mem_ker.mp (hker hx₂)",
"model_output": "apply hker"
},
{
"id": 10,
"match": false,
"ground_truth": "simp [Orthonormal, Pairwise] at *",
"model_output": "apply Orthonormal.mk"
},
{
"id": 11,
"match": false,
"ground_truth": "by_cases hsf : ProperFunction s f",
"model_output": "apply isClosed_closure"
},
{
"id": 12,
"match": false,
"ground_truth": "· exact closure_is_closed_of_proper f hs",
"model_output": "apply Function.isClosed_closure"
},
{
"id": 13,
"match": false,
"ground_truth": "exact closure_is_closed_of_proper f hs",
"model_output": "apply isClosed_closure"
},
{
"id": 14,
"match": false,
"ground_truth": "apply IsClosed.prod hs isClosed_univ",
"model_output": "apply_rules [hs, isClosed_univ, _root_.isClosed_prod]"
},
{
"id": 15,
"match": false,
"ground_truth": "simp [w, l, g, AffineMap.decomp']",
"model_output": "apply i.h_eq_of_mem"
},
{
"id": 16,
"match": false,
"ground_truth": "rw [φ₁_equ fullrank₁ fullrank₂ n]",
"model_output": "apply Eq.symm"
},
{
"id": 17,
"match": false,
"ground_truth": "exact EReal.coe_le_coe_iff.mp h",
"model_output": "norm_cast at *"
},
{
"id": 18,
"match": false,
"ground_truth": "rw [← hT.span_range_w_eq_range]",
"model_output": "apply Eq.symm"
},
{
"id": 19,
"match": false,
"ground_truth": "apply iff_iff_implies_and_implies.mpr",
"model_output": "specialize h z"
},
{
"id": 20,
"match": false,
"ground_truth": "apply convex_conjugate_ge_bot_univ'",
"model_output": "apply lt_of_le_of_ne"
},
{
"id": 21,
"match": false,
"ground_truth": "exact HasGradientWithinAt.const_smul h c",
"model_output": "apply HasGradientWithinAt.const_smul h c"
},
{
"id": 22,
"match": false,
"ground_truth": "exact HasGradientAtFilter.const_add hf c",
"model_output": "exact hf.const_add c"
},
{
"id": 23,
"match": false,
"ground_truth": "exact HasGradientAtFilter.const_add hf c",
"model_output": "exact hf.const_add c"
},
{
"id": 24,
"match": false,
"ground_truth": "exact HasGradientAtFilter.const_sub hf c",
"model_output": "exact hf.neg.const_sub c"
},
{
"id": 25,
"match": false,
"ground_truth": "apply convex_on_p_top\n ext x; exact h x",
"model_output": "apply convexOn_of_forall_le_of_forall_le convex_univ"
},
{
"id": 26,
"match": false,
"ground_truth": "apply monotone_gradient_convex'",
"model_output": "apply ConvexOn.smul"
},
{
"id": 27,
"match": false,
"ground_truth": "exact (fun x _ => affine_sq_gradient x)",
"model_output": "aesop"
},
{
"id": 28,
"match": false,
"ground_truth": "have h_zero_eq := (hS 0).mp h_zero_mem",
"model_output": "apply_fun (fun v => B.repr v 0) at h_zero_mem"
},
{
"id": 29,
"match": false,
"ground_truth": "have : (0 : 𝕜) < (1 : 𝕜) := one_pos",
"model_output": "apply hf' x y"
},
{
"id": 30,
"match": false,
"ground_truth": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]",
"model_output": "rw [inner_add_left,smul_eq_mul,smul_eq_mul]"
},
{
"id": 31,
"match": false,
"ground_truth": "rw [← one_mul (-ε * ‖y - x‖), ← hab, add_mul]",
"model_output": "apply le_trans"
},
{
"id": 32,
"match": false,
"ground_truth": "calc\n _ = ‖(gradient H z).2 - (gradient H z').2‖ := by rw [grad_snd_eq h, grad_snd_eq h]\n _ = ‖(gradient H z - gradient H z').2‖ := rfl\n _ ≤ ‖(gradient H z - gradient H z')‖ := snd_norm_le_prod_L2 _\n _ ≤ _ := hl z z'",
"model_output": "apply hl"
},
{
"id": 33,
"match": true,
"ground_truth": "by\n intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos",
"model_output": "intro k"
},
{
"id": 34,
"match": true,
"ground_truth": "intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos",
"model_output": "intro k"
},
{
"id": 35,
"match": false,
"ground_truth": "by\n apply prox_well_define f hc lbdf x",
"model_output": "apply LowerSemicontinuous.exists_prox_set ?_ ?_"
},
{
"id": 36,
"match": false,
"ground_truth": "by\n unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]",
"model_output": "apply (LinearMap.finrank_eq_of_range_eq_top _).trans"
},
{
"id": 37,
"match": false,
"ground_truth": "unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]",
"model_output": "apply (LinearMap.finrank_eq_of_range_eq_top _).trans"
},
{
"id": 38,
"match": false,
"ground_truth": "let ⟨x₁, hx₁, x₂, hx₂, hx⟩ := exists_orthogonal_decompose s x\n refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩\n rw [hx, LinearMap.map_add]\n suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]\n exact LinearMap.mem_ker.mp (hker hx₂)",
"model_output": "apply exists_add_of_le_ker hker"
},
{
"id": 39,
"match": false,
"ground_truth": "suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [← LinearMap.map_add]"
},
{
"id": 40,
"match": false,
"ground_truth": "by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [this, add_zero]"
},
{
"id": 41,
"match": false,
"ground_truth": "rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [this, add_zero]"
},
{
"id": 42,
"match": false,
"ground_truth": "by\n simp [Orthonormal, Pairwise] at *\n aesop",
"model_output": "apply Orthonormal.mk"
},
{
"id": 43,
"match": false,
"ground_truth": "simp [Orthonormal, Pairwise] at *\n aesop",
"model_output": "apply Orthonormal.mk"
},
{
"id": 44,
"match": false,
"ground_truth": "by\n let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h",
"model_output": "apply ContinuousAt.congr ?_ (fun x hx => ?_)"
},
{
"id": 45,
"match": false,
"ground_truth": "let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h",
"model_output": "apply ContinuousAt.congr ?_ (fun x hx => ?_)"
},
{
"id": 46,
"match": false,
"ground_truth": "have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩",
"model_output": "apply ContinuousAt.comp"
},
{
"id": 47,
"match": false,
"ground_truth": "exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩",
"model_output": "apply And.intro"
},
{
"id": 48,
"match": false,
"ground_truth": "exact gradient_continuous_of_contdiffat f h",
"model_output": "apply (contDiffAt_iff_continuousAt_differentiableAt ℝ 1).mp h"
},
{
"id": 49,
"match": false,
"ground_truth": "by\n simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1",
"model_output": "apply Function.closure_univ"
},
{
"id": 50,
"match": false,
"ground_truth": "simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1",
"model_output": "apply Function.closure_univ"
},
{
"id": 51,
"match": false,
"ground_truth": "· simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ",
"model_output": "exact isClosed_discrete ⊥"
},
{
"id": 52,
"match": false,
"ground_truth": "simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ",
"model_output": "aesop"
},
{
"id": 53,
"match": false,
"ground_truth": "have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]",
"model_output": "apply epi_of_isClosed_of_frequently_eq (by simpa)"
},
{
"id": 54,
"match": false,
"ground_truth": "have h' : Epi ⊤ s = ∅ := by\n ext ⟨x, _⟩; simp [Function.Epi]",
"model_output": "simp [epigraph, univ]"
},
{
"id": 55,
"match": false,
"ground_truth": "by\n constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith",
"model_output": "rw [HasSubgradientAt, ← hasSubgradientAt_iff_banach_hasSubgradientAt]"
},
{
"id": 56,
"match": false,
"ground_truth": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith",
"model_output": "rw [HasSubgradientAt, ← hasSubgradientAt_iff_banach_hasSubgradientAt]"
},
{
"id": 57,
"match": true,
"ground_truth": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith",
"model_output": "intro h"
},
{
"id": 58,
"match": true,
"ground_truth": "intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith",
"model_output": "intro h"
},
{
"id": 59,
"match": false,
"ground_truth": "· intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx",
"model_output": "apply i.hg"
},
{
"id": 60,
"match": false,
"ground_truth": "intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx",
"model_output": "norm_cast"
},
{
"id": 61,
"match": false,
"ground_truth": "apply Filter.tendsto_iff_seq_tendsto.1 Seq_converge_zero₃",
"model_output": "apply tendsto_zero_iff_norm_tendsto_zero.mpr"
},
{
"id": 62,
"match": false,
"ground_truth": "have : (fun n => (Int.toNat (φ₁ n))) = (fun n => (φ (n+1))) := by\n ext n; rw [φ₁_equ fullrank₁ fullrank₂ n]; simp",
"model_output": "apply strictMono_nat_of_lt_succ"
},
{
"id": 63,
"match": false,
"ground_truth": "suffices 0 ≤ (c - a - b).toEReal by exact this",
"model_output": "apply le_sub_iff_add_le.2"
},
{
"id": 64,
"match": false,
"ground_truth": "have : a + b ≤ c := by exact EReal.coe_le_coe_iff.mp h",
"model_output": "norm_cast at *"
},
{
"id": 65,
"match": false,
"ground_truth": "refine EReal.coe_nonneg.mpr ?intro.intro.a",
"model_output": "norm_cast"
},
{
"id": 66,
"match": false,
"ground_truth": "by\n constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun",
"model_output": "apply And.intro hs"
},
{
"id": 67,
"match": false,
"ground_truth": "constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun",
"model_output": "apply And.intro hs"
},
{
"id": 68,
"match": false,
"ground_truth": "have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf",
"model_output": "linarith [hfun]"
},
{
"id": 69,
"match": false,
"ground_truth": "by\n rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "apply Eq.symm"
},
{
"id": 70,
"match": false,
"ground_truth": "rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "apply Eq.symm"
},
{
"id": 71,
"match": false,
"ground_truth": "simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "apply Eq.symm"
},
{
"id": 72,
"match": false,
"ground_truth": "· exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h",
"model_output": "intro hz"
},
{
"id": 73,
"match": false,
"ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h",
"model_output": "intro hz"
},
{
"id": 74,
"match": false,
"ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq t s hscv hscl a (fun x => (h x).symm)",
"model_output": "intro hzt"
},
{
"id": 75,
"match": true,
"ground_truth": "by\n intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'",
"model_output": "intro x _"
},
{
"id": 76,
"match": true,
"ground_truth": "intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'",
"model_output": "intro x _"
},
{
"id": 77,
"match": false,
"ground_truth": "have convex_conjugate_at_zero :\n convex_conjugate univ (convex_indicator s) 0 ≤ 0 := by\n refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_\n simp\n intro y\n simp [convex_indicator]\n split_ifs with hy <;> simp",
"model_output": "use 0"
},
{
"id": 78,
"match": false,
"ground_truth": "refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_",
"model_output": "apply convex_conjugate_indicator_le"
},
{
"id": 79,
"match": false,
"ground_truth": "exact lt_of_le_of_lt (convex_conjugate_at_zero) (zero_lt_top)",
"model_output": "apply lt_of_le_of_ne convex_conjugate_at_zero"
},
{
"id": 80,
"match": false,
"ground_truth": "by\n exact HasGradientWithinAt.const_smul h c",
"model_output": "apply HasGradientWithinAt.const_smul h c"
},
{
"id": 81,
"match": false,
"ground_truth": "by\n exact HasGradientAtFilter.const_add hf c",
"model_output": "exact hf.const_add c"
},
{
"id": 82,
"match": false,
"ground_truth": "by\n exact HasGradientAtFilter.const_add hf c",
"model_output": "exact hf.const_add c"
},
{
"id": 83,
"match": false,
"ground_truth": "by\n simp only [sub_eq_add_neg, gradient_add_const]",
"model_output": "apply gradient_sub_const"
},
{
"id": 84,
"match": false,
"ground_truth": "simp only [sub_eq_add_neg, gradient_add_const]",
"model_output": "apply gradient_sub_const"
},
{
"id": 85,
"match": false,
"ground_truth": "by\n exact HasGradientAtFilter.const_sub hf c",
"model_output": "exact hf.neg.const_sub c"
},
{
"id": 86,
"match": false,
"ground_truth": "by\n obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]",
"model_output": "apply Set.Nonempty.mono (dom_mono (subset_univ _))"
},
{
"id": 87,
"match": false,
"ground_truth": "obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]",
"model_output": "apply Set.Nonempty.mono (dom_mono (subset_univ _))"
},
{
"id": 88,
"match": false,
"ground_truth": "by\n apply convex_on_p_top\n ext x; exact h x",
"model_output": "apply convexOn_of_forall_le_of_forall_le convex_univ"
},
{
"id": 89,
"match": false,
"ground_truth": "by\n rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]",
"model_output": "apply Matrix.mulVec_sub"
},
{
"id": 90,
"match": false,
"ground_truth": "rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]",
"model_output": "apply Matrix.mulVec_sub"
},
{
"id": 91,
"match": false,
"ground_truth": "· exact (fun x _ => affine_sq_gradient x)",
"model_output": "fun x => Aᵀ * (A *ᵥ x - b)"
},
{
"id": 92,
"match": false,
"ground_truth": "· intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg",
"model_output": "simp [inner, mulVec, transpose]"
},
{
"id": 93,
"match": false,
"ground_truth": "intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg",
"model_output": "simp [inner, mulVec, transpose]"
},
{
"id": 94,
"match": false,
"ground_truth": "rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]",
"model_output": "apply inner_sub_nonneg"
},
{
"id": 95,
"match": false,
"ground_truth": "rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]",
"model_output": "apply dotProduct_nonneg_of_angle_le_pi_div_two"
},
{
"id": 96,
"match": false,
"ground_truth": "have h_zero_mem : (0 : E) ∈ S := S.zero_mem",
"model_output": "have := hS (0 : E)"
},
{
"id": 97,
"match": false,
"ground_truth": "have h_repr_zero : B.repr 0 = 0 := LinearEquiv.map_zero B.repr",
"model_output": "simp at h_zero_eq"
},
{
"id": 98,
"match": false,
"ground_truth": "simp only [map_zero, Finsupp.coe_zero, Pi.zero_apply] at h_zero_eq",
"model_output": "simp [h_repr_zero] at h_zero_eq"
},
{
"id": 99,
"match": false,
"ground_truth": "simp only [Matrix.mulVec_zero, add_zero] at h_zero_eq",
"model_output": "rw [Matrix.mulVec_zero, add_zero] at h_zero_eq"
},
{
"id": 100,
"match": false,
"ground_truth": "by\n unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]",
"model_output": "simp [sup_value, hp]"
},
{
"id": 101,
"match": false,
"ground_truth": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]",
"model_output": "simp [sup_value, hp]"
},
{
"id": 102,
"match": true,
"ground_truth": "by\n intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b",
"model_output": "intro b"
},
{
"id": 103,
"match": true,
"ground_truth": "intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b",
"model_output": "intro b"
},
{
"id": 104,
"match": true,
"ground_truth": "by\n rw [h]; apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [h]"
},
{
"id": 105,
"match": true,
"ground_truth": "rw [h]; apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [h]"
},
{
"id": 106,
"match": false,
"ground_truth": "apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [← h]"
},
{
"id": 107,
"match": false,
"ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "apply ContinuousLinearMap.adjoint_apply_eq_of_inner_right"
},
{
"id": 108,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "apply ContinuousLinearMap.adjoint_apply_eq_of_inner_right"
},
{
"id": 109,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]",
"model_output": "apply ContinuousLinearMap.adjoint_apply_eq_of_inner_right"
},
{
"id": 110,
"match": false,
"ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "apply ContinuousLinearMap.adjoint_apply_adjoint"
},
{
"id": 111,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "apply ContinuousLinearMap.adjoint_apply_adjoint"
},
{
"id": 112,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]",
"model_output": "apply ContinuousLinearMap.adjoint_apply_adjoint"
},
{
"id": 113,
"match": false,
"ground_truth": "by rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]",
"model_output": "apply Eq.symm"
},
{
"id": 114,
"match": false,
"ground_truth": "rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]",
"model_output": "apply Eq.symm"
},
{
"id": 115,
"match": false,
"ground_truth": "have : ConvexOn ℝ X fun _ ↦ (0: EReal) := by\n dsimp [ConvexOn]\n constructor\n exact hs\n intro x _ y _ a b _ _ _\n simp",
"model_output": "apply ConvexOn.indicator"
},
{
"id": 116,
"match": false,
"ground_truth": "have eq : EqOn (fun _ ↦ (0: EReal)) (Set.convex_indicator X) X := by\n dsimp[EqOn]\n intro x hx\n dsimp [Set.convex_indicator]\n rw [if_pos hx]",
"model_output": "apply ConvexOn.add this"
},
{
"id": 117,
"match": false,
"ground_truth": "by\n apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "apply Eq.symm"
},
{
"id": 118,
"match": false,
"ground_truth": "apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "apply Eq.symm"
},
{
"id": 119,
"match": false,
"ground_truth": "· exact iIntersection_closure_sub_closure_iIntersection'' h hinter",
"model_output": "pick_goal 2"
},
{
"id": 120,
"match": false,
"ground_truth": "exact iIntersection_closure_sub_closure_iIntersection'' h hinter",
"model_output": "apply Set.iInter_subset"
},
{
"id": 121,
"match": false,
"ground_truth": "exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "apply intrinsicClosure_iInter_subset_iInter_intrinsicClosure"
},
{
"id": 122,
"match": false,
"ground_truth": "have eqone : a + (1 - a) = 1 := add_sub_cancel a 1",
"model_output": "apply neq"
},
{
"id": 123,
"match": false,
"ground_truth": "have lta' : 0 < 1 - a := sub_pos_of_lt alt",
"model_output": "apply neq"
},
{
"id": 124,
"match": false,
"ground_truth": "have h : f (a • x + (1 - a) • y) < f y := by\n apply Eq.trans_gt (max_eq_right (hx trivial))\n apply hf' neq lta lta' eqone",
"model_output": "apply neq"
},
{
"id": 125,
"match": false,
"ground_truth": "apply Eq.trans_gt (max_eq_right (hx trivial))",
"model_output": "apply hf'"
},
{
"id": 126,
"match": false,
"ground_truth": "intro ε εpos",
"model_output": "intro ε hε"
},
{
"id": 127,
"match": false,
"ground_truth": "rw [ge_iff_le] at *",
"model_output": "apply_rules [ge_iff_le, add_mul]"
},
{
"id": 128,
"match": false,
"ground_truth": "apply add_le_add",
"model_output": "apply_rules [mul_le_mul_of_nonneg_left, add_le_add] <;> linarith"
},
{
"id": 129,
"match": false,
"ground_truth": "apply div_pos",
"model_output": "apply div_pos zero_lt_one"
},
{
"id": 130,
"match": false,
"ground_truth": "apply mul_pos",
"model_output": "apply mul_pos (zero_lt_one.trans hγ) (NNReal.coe_pos.mpr l.property)"
},
{
"id": 131,
"match": false,
"ground_truth": "· linarith [hγ]",
"model_output": "exact zero_lt_one.trans hγ"
},
{
"id": 132,
"match": true,
"ground_truth": "linarith [hγ]",
"model_output": "linarith"
},
{
"id": 133,
"match": false,
"ground_truth": "· apply alg.lpos",
"model_output": "norm_num"
},
{
"id": 134,
"match": false,
"ground_truth": "apply alg.lpos",
"model_output": "norm_num"
},
{
"id": 135,
"match": false,
"ground_truth": "rw [mem_nhds_iff]",
"model_output": "apply Metric.ball_mem_nhds"
},
{
"id": 136,
"match": false,
"ground_truth": "simp [Function.Epi]",
"model_output": "simp [ProperFunction] at hsf"
},
{
"id": 137,
"match": false,
"ground_truth": "simp [Function.Epi]",
"model_output": "simp [ProperFunction] at hsf"
},
{
"id": 138,
"match": true,
"ground_truth": "exact isClosed_empty",
"model_output": "exact isClosed_empty"
},
{
"id": 139,
"match": false,
"ground_truth": "constructor",
"model_output": "rw [HasSubgradientAt, ← hasSubgradientAt_iff_banach_hasSubgradientAt]"
},
{
"id": 140,
"match": true,
"ground_truth": "by\n ext g; rw [h]",
"model_output": "rw [h]"
},
{
"id": 141,
"match": true,
"ground_truth": "ext g; rw [h]",
"model_output": "rw [h]"
},
{
"id": 142,
"match": false,
"ground_truth": "constructor",
"model_output": "apply And.intro"
},
{
"id": 143,
"match": false,
"ground_truth": "intro x _hx",
"model_output": "intro x hx"
},
{
"id": 144,
"match": false,
"ground_truth": "simp at this",
"model_output": "rw [this]"
},
{
"id": 145,
"match": false,
"ground_truth": "· simp [StrictMono]",
"model_output": "exact fun m n hmn => by linarith"
},
{
"id": 146,
"match": false,
"ground_truth": "simp [StrictMono]",
"model_output": "exact fun m n hmn => by linarith"
},
{
"id": 147,
"match": false,
"ground_truth": "by_cases hc2 : c = ⊤",
"model_output": "apply le_sub_iff_add_le.2 h"
},
{
"id": 148,
"match": false,
"ground_truth": "· rw [hc2]; simp",
"model_output": "simp [hc2]"
},
{
"id": 149,
"match": false,
"ground_truth": "rw [hc2]; simp",
"model_output": "simp [hc2] at h ⊢"
},
{
"id": 150,
"match": false,
"ground_truth": "by exact this",
"model_output": "norm_cast at *"
},
{
"id": 151,
"match": false,
"ground_truth": "constructor",
"model_output": "apply And.intro hs"
},
{
"id": 152,
"match": false,
"ground_truth": "rw [← this]",
"model_output": "rw [this] at hfun"
},
{
"id": 153,
"match": false,
"ground_truth": "constructor",
"model_output": "apply Iff.intro"
},
{
"id": 154,
"match": false,
"ground_truth": "simp [funext_iff]",
"model_output": "intro h"
},
{
"id": 155,
"match": false,
"ground_truth": "constructor",
"model_output": "specialize h z"
},
{
"id": 156,
"match": true,
"ground_truth": "· apply convex_univ",
"model_output": "apply convex_univ"
},
{
"id": 157,
"match": true,
"ground_truth": "apply convex_univ",
"model_output": "apply convex_univ"
},
{
"id": 158,
"match": false,
"ground_truth": "intro x _ y _",
"model_output": "simp [inner, mulVec, transpose]"
},
{
"id": 159,
"match": false,
"ground_truth": "apply sq_nonneg",
"model_output": "apply pow_two_nonneg"
},
{
"id": 160,
"match": true,
"ground_truth": "exact h_zero_eq.symm",
"model_output": "symm"
},
{
"id": 161,
"match": false,
"ground_truth": "dsimp [ConvexOn]",
"model_output": "apply ConvexOn.const"
},
{
"id": 162,
"match": false,
"ground_truth": "constructor",
"model_output": "aesop"
},
{
"id": 163,
"match": false,
"ground_truth": "dsimp[EqOn]",
"model_output": "intro x hx"
},
{
"id": 164,
"match": false,
"ground_truth": "rw [if_pos hx]",
"model_output": "aesop"
},
{
"id": 165,
"match": false,
"ground_truth": "by_contra neq",
"model_output": "apply eq_of_forall_ge_iff"
},
{
"id": 166,
"match": false,
"ground_truth": "intro u hu v hv a b ha hb hab",
"model_output": "apply convex_sInter"
},
{
"id": 167,
"match": false,
"ground_truth": "rw [has_f_subdiff_iff] at *",
"model_output": "apply convex_iff_forall_pos.mpr ?_"
},
{
"id": 168,
"match": false,
"ground_truth": "rw [finrank_span_eq_card]",
"model_output": "apply (Submodule.finrank_eq_card (finrank_submodule_span_eq_card 𝕜 _)).trans"
},
{
"id": 169,
"match": false,
"ground_truth": "rw [hx, LinearMap.map_add]",
"model_output": "have : T x₂ = 0"
},
{
"id": 170,
"match": false,
"ground_truth": "apply ContDiffOn.contDiffAt hf",
"model_output": "apply hf"
},
{
"id": 171,
"match": false,
"ground_truth": "simp [Function.closure]",
"model_output": "apply Function.closure_univ"
},
{
"id": 172,
"match": false,
"ground_truth": "simp [Function.closure, hsf]",
"model_output": "apply Function.isClosed_closure"
},
{
"id": 173,
"match": false,
"ground_truth": "by_cases hf : ∃ x ∈ s, f x = ⊥",
"model_output": "split_ifs with h"
},
{
"id": 174,
"match": false,
"ground_truth": "simp [Function.IsClosed]",
"model_output": "aesop"
},
{
"id": 175,
"match": false,
"ground_truth": "simp [Function.IsClosed]",
"model_output": "simp [Function.isClosed_iff]"
},
{
"id": 176,
"match": false,
"ground_truth": "apply StrictMono.tendsto_atTop",
"model_output": "apply tendsto_atTop_mono'"
},
{
"id": 177,
"match": false,
"ground_truth": "apply StrictMono.comp",
"model_output": "apply strictMono_nat_of_lt_succ"
},
{
"id": 178,
"match": false,
"ground_truth": "· apply hphi_StrictMono",
"model_output": "apply strictMono_nat_of_lt_succ"
},
{
"id": 179,
"match": false,
"ground_truth": "apply hphi_StrictMono",
"model_output": "rw [← this]"
},
{
"id": 180,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha2, ha1⟩",
"model_output": "apply le_sub_iff_add_le.mpr"
},
{
"id": 181,
"match": false,
"ground_truth": "lift c to ℝ using ⟨hc2, hc1⟩",
"model_output": "apply le_sub_iff_add_le'.mpr"
},
{
"id": 182,
"match": false,
"ground_truth": "intro x hx y hy a b ha hb hab",
"model_output": "intro x hx y hy a b ha hb hab\nspecialize hfun hx hy a ha b hb hab\nsimp at *\nring_nf"
},
{
"id": 183,
"match": false,
"ground_truth": "· exact fun h => (by rw [h])",
"model_output": "intro h"
},
{
"id": 184,
"match": false,
"ground_truth": "exact fun h => (by rw [h])",
"model_output": "aesop"
},
{
"id": 185,
"match": false,
"ground_truth": "simp [convex_support]",
"model_output": "apply hs"
},
{
"id": 186,
"match": false,
"ground_truth": "simp [convex_support]",
"model_output": "apply hs.exists_mem_interior"
},
{
"id": 187,
"match": false,
"ground_truth": "simp [convex_indicator]",
"model_output": "apply_rules [nonneg_convex_indicator]"
},
{
"id": 188,
"match": false,
"ground_truth": "split_ifs with hy <;> simp",
"model_output": "split_ifs <;> simp"
},
{
"id": 189,
"match": false,
"ground_truth": "rcases h1 with ⟨x, hx⟩",
"model_output": "exact ⟨_, h1⟩"
},
{
"id": 190,
"match": false,
"ground_truth": "apply convex_on_p_top",
"model_output": "apply convexOn_of_forall_le_of_forall_le convex_univ"
},
{
"id": 191,
"match": false,
"ground_truth": "rw [polyhedra_iff_cone b]",
"model_output": "apply isClosed_setOf_exists"
},
{
"id": 192,
"match": false,
"ground_truth": "exact closed_conic σ b",
"model_output": "apply IsClosed.sInter"
},
{
"id": 193,
"match": false,
"ground_truth": "intro x _ y _ a b _ _ _",
"model_output": "simp"
},
{
"id": 194,
"match": false,
"ground_truth": "dsimp [Set.convex_indicator]",
"model_output": "rw [convex_indicator_of_mem hx]"
},
{
"id": 195,
"match": false,
"ground_truth": "apply ConvexOn.congr this eq",
"model_output": "rw [convexOn_indicator_eq]"
},
{
"id": 196,
"match": false,
"ground_truth": "apply Subset.antisymm",
"model_output": "apply Eq.symm"
},
{
"id": 197,
"match": false,
"ground_truth": "apply hf' neq lta lta' eqone",
"model_output": "apply lt_of_le_of_ne"
},
{
"id": 198,
"match": false,
"ground_truth": "simp only [isMinOn_iff] at hy",
"model_output": "apply hy"
},
{
"id": 199,
"match": false,
"ground_truth": "apply not_le_of_gt h hy",
"model_output": "linarith"
},
{
"id": 200,
"match": false,
"ground_truth": "intro u",
"model_output": "apply convex_sInter"
},
{
"id": 201,
"match": false,
"ground_truth": "intro ε",
"model_output": "intro ε hε"
},
{
"id": 202,
"match": false,
"ground_truth": "intro z z'",
"model_output": "intro x y"
},
{
"id": 203,
"match": false,
"ground_truth": "intro z",
"model_output": "intro x y"
},
{
"id": 204,
"match": true,
"ground_truth": "intro k",
"model_output": "intro k"
},
{
"id": 205,
"match": false,
"ground_truth": "rw [ck]",
"model_output": "rw [ck]; positivity"
},
{
"id": 206,
"match": false,
"ground_truth": "· norm_num",
"model_output": "exact zero_lt_one"
},
{
"id": 207,
"match": true,
"ground_truth": "norm_num",
"model_output": "norm_num"
},
{
"id": 208,
"match": false,
"ground_truth": "simp [h]",
"model_output": "apply rows_linearIndependent_of_orthogonalProjection_eq_self"
},
{
"id": 209,
"match": true,
"ground_truth": "aesop",
"model_output": "aesop"
},
{
"id": 210,
"match": true,
"ground_truth": "intro h",
"model_output": "intro h"
},
{
"id": 211,
"match": false,
"ground_truth": "exfalso",
"model_output": "apply le_antisymm"
},
{
"id": 212,
"match": false,
"ground_truth": "simp at h1",
"model_output": "cases h1 with\n| inl h1 => exact absurd h1 univ_nonempty\n| inr h1 => exact lt_irrefl _ (h1.choose_spec.2.2)"
},
{
"id": 213,
"match": false,
"ground_truth": "simp [hf]",
"model_output": "aesop"
},
{
"id": 214,
"match": false,
"ground_truth": "ext ⟨x, _⟩",
"model_output": "aesop"
},
{
"id": 215,
"match": true,
"ground_truth": "rw [h1]",
"model_output": "rw [h1]"
},
{
"id": 216,
"match": false,
"ground_truth": "simp [hf]",
"model_output": "aesop"
},
{
"id": 217,
"match": false,
"ground_truth": "ext ⟨x, _⟩",
"model_output": "simp [ProperFunction] at hsf"
},
{
"id": 218,
"match": true,
"ground_truth": "rw [h']",
"model_output": "rw [h']"
},
{
"id": 219,
"match": true,
"ground_truth": "intro h z",
"model_output": "intro h"
},
{
"id": 220,
"match": true,
"ground_truth": "intro h",
"model_output": "intro h"
},
{
"id": 221,
"match": false,
"ground_truth": "simp",
"model_output": "simpa using hz"
},
{
"id": 222,
"match": false,
"ground_truth": "linarith",
"model_output": "exact hz"
},
{
"id": 223,
"match": true,
"ground_truth": "intro h z",
"model_output": "intro h"
},
{
"id": 224,
"match": true,
"ground_truth": "intro h",
"model_output": "intro h"
},
{
"id": 225,
"match": false,
"ground_truth": "simp at hz",
"model_output": "simpa using hz"
},
{
"id": 226,
"match": false,
"ground_truth": "linarith",
"model_output": "apply h z"
},
{
"id": 227,
"match": false,
"ground_truth": "ext g",
"model_output": "rw [h]"
},
{
"id": 228,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 229,
"match": false,
"ground_truth": "simp",
"model_output": "apply And.intro"
},
{
"id": 230,
"match": false,
"ground_truth": "intro x hx",
"model_output": "norm_cast"
},
{
"id": 231,
"match": false,
"ground_truth": "intro x",
"model_output": "norm_cast"
},
{
"id": 232,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x hx"
},
{
"id": 233,
"match": false,
"ground_truth": "ext n",
"model_output": "aesop"
},
{
"id": 234,
"match": false,
"ground_truth": "simp",
"model_output": "apply toNat_of_nonneg"
},
{
"id": 235,
"match": true,
"ground_truth": "rw [this]",
"model_output": "rw [this]"
},
{
"id": 236,
"match": false,
"ground_truth": "rw [hc2]",
"model_output": "simp [hc2] at h ⊢"
},
{
"id": 237,
"match": false,
"ground_truth": "simp",
"model_output": "simp [hc2] at h"
},
{
"id": 238,
"match": false,
"ground_truth": "exact this",
"model_output": "norm_cast at *"
},
{
"id": 239,
"match": false,
"ground_truth": "linarith",
"model_output": "rw [← add_zero (c - a - b)]"
},
{
"id": 240,
"match": false,
"ground_truth": "· exact hs",
"model_output": "apply hs"
},
{
"id": 241,
"match": false,
"ground_truth": "exact hs",
"model_output": "apply hs"
},
{
"id": 242,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x hx y hy a b ha hb hab\nspecialize hfun hx hy a ha b hb hab\nsimp at *\nring_nf"
},
{
"id": 243,
"match": false,
"ground_truth": "dsimp",
"model_output": "simp [← sub_nonneg]"
},
{
"id": 244,
"match": true,
"ground_truth": "ring_nf",
"model_output": "ring"
},
{
"id": 245,
"match": true,
"ground_truth": "exact hfun",
"model_output": "exact hfun"
},
{
"id": 246,
"match": true,
"ground_truth": "by rw [h]",
"model_output": "rw [h]"
},
{
"id": 247,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 248,
"match": true,
"ground_truth": "intro h",
"model_output": "intro h"
},
{
"id": 249,
"match": false,
"ground_truth": "ext z",
"model_output": "have h1 := h 0"
},
{
"id": 250,
"match": true,
"ground_truth": "intro x _",
"model_output": "intro x _"
},
{
"id": 251,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _"
},
{
"id": 252,
"match": false,
"ground_truth": "right",
"model_output": "apply Or.inr"
},
{
"id": 253,
"match": false,
"ground_truth": "simp",
"model_output": "intro y"
},
{
"id": 254,
"match": true,
"ground_truth": "intro y",
"model_output": "intro y"
},
{
"id": 255,
"match": false,
"ground_truth": "simp",
"model_output": "rfl"
},
{
"id": 256,
"match": false,
"ground_truth": "simp at h1",
"model_output": "cases h1 with\n| inl h1 =>\n rw [h1]\n simp\n| inr h1 =>\n exact h1.2.1"
},
{
"id": 257,
"match": false,
"ground_truth": "simp [hx]",
"model_output": "apply dom_of_le"
},
{
"id": 258,
"match": true,
"ground_truth": "ext x",
"model_output": "ext x"
},
{
"id": 259,
"match": true,
"ground_truth": "exact h x",
"model_output": "exact h x"
},
{
"id": 260,
"match": false,
"ground_truth": "intro x",
"model_output": "simp [inner, mulVec, transpose]"
},
{
"id": 261,
"match": true,
"ground_truth": "simp [hp]",
"model_output": "simp [hp]"
},
{
"id": 262,
"match": true,
"ground_truth": "intro b",
"model_output": "intro b"
},
{
"id": 263,
"match": false,
"ground_truth": "by rfl",
"model_output": "apply IsLinear_iff'.mpr"
},
{
"id": 264,
"match": false,
"ground_truth": "rfl",
"model_output": "apply IsLinear_iff'.mpr"
},
{
"id": 265,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 266,
"match": false,
"ground_truth": "simp",
"model_output": "apply ContinuousLinearMap.adjoint_eq_self_of_self_adjoint"
},
{
"id": 267,
"match": false,
"ground_truth": "simp",
"model_output": "apply ContinuousLinearMap.adjoint_eq_of_inner_right"
},
{
"id": 268,
"match": false,
"ground_truth": "exact hs",
"model_output": "apply hs"
},
{
"id": 269,
"match": false,
"ground_truth": "intro x",
"model_output": "simp"
},
{
"id": 270,
"match": true,
"ground_truth": "simp",
"model_output": "simp"
},
{
"id": 271,
"match": true,
"ground_truth": "intro x hx",
"model_output": "intro x hx"
},
{
"id": 272,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x hx"
}
]
}