clone / evaluation /valid_score_ood_300.json
chenyili818's picture
Add files using upload-large-folder tool
661c54a verified
{
"summary": {
"total_with_gt": 273,
"matched": 55,
"accuracy": 0.20146520146520147
},
"details": [
{
"id": 0,
"match": false,
"ground_truth": "· exact mul_le_mul_of_nonneg_left hyu ha",
"model_output": "· apply mul_le_mul_of_nonneg_left hyu ha"
},
{
"id": 1,
"match": false,
"ground_truth": "exact mul_le_mul_of_nonneg_left hyu ha",
"model_output": "apply mul_le_mul_of_nonneg_left hyu (le_of_lt ha)"
},
{
"id": 2,
"match": false,
"ground_truth": "· exact mul_le_mul_of_nonneg_left hyv hb",
"model_output": "apply mul_le_mul_of_nonneg_left hyv hb"
},
{
"id": 3,
"match": false,
"ground_truth": "exact mul_le_mul_of_nonneg_left hyv hb",
"model_output": "apply mul_le_mul_of_nonneg_left hyv hb"
},
{
"id": 4,
"match": false,
"ground_truth": "rw [lipschitzWith_iff_norm_sub_le] at *",
"model_output": "apply lipschitz_of_norm_gradient_le\n rw [lipschitzWith_iff_norm_sub_le]\n intro z₁ z₂\n rw [← Prod.fst_sub, ← Prod.snd_sub, ← Prod.fst_sub, ← Prod.snd_sub]\n apply LipschitzWith.prodMk (lipschitzWith_iff_norm_grad_le.mpr hl) hl\n apply lipschitz_of_norm_gradient_le\n rw [lipschitzWith_iff_norm_grad_le]\n intro z₁ z₂\n apply LipschitzWith.prodMk (lipschitzWith_iff_norm"
},
{
"id": 5,
"match": false,
"ground_truth": "by rw [grad_snd_eq h, grad_snd_eq h]",
"model_output": "rw [grad_eq_block_grad, grad_eq_block_grad]"
},
{
"id": 6,
"match": false,
"ground_truth": "rw [grad_snd_eq h, grad_snd_eq h]",
"model_output": "rw [grad_eq_block_grad, grad_eq_block_grad]"
},
{
"id": 7,
"match": true,
"ground_truth": "apply prox_well_define f hc lbdf x",
"model_output": "apply prox_well_define f hc lbdf x"
},
{
"id": 8,
"match": false,
"ground_truth": "refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩",
"model_output": "refine ⟨x₁, ⟨hx₁, ⟨x₂, ⟨hx₂, ⟨hx, ?_⟩⟩⟩⟩⟩⟩\n rw [map_add, norm_add_sq_real, ← mul_two, ← sq, ← mul_two, ← sq]\n simp [hker hx₂]"
},
{
"id": 9,
"match": false,
"ground_truth": "exact LinearMap.mem_ker.mp (hker hx₂)",
"model_output": "apply hker hx₂"
},
{
"id": 10,
"match": false,
"ground_truth": "simp [Orthonormal, Pairwise] at *",
"model_output": "apply Orthonormal.mk\n · intro i hi j hj hij\n simp [restrict_apply, hi, hj, hij]\n exact hv.1 i j hij\n · intro i hi\n simp [restrict_apply, hi]\n exact hv.2 i hi"
},
{
"id": 11,
"match": false,
"ground_truth": "by_cases hsf : ProperFunction s f",
"model_output": "apply closure_isClosed"
},
{
"id": 12,
"match": false,
"ground_truth": "· exact closure_is_closed_of_proper f hs",
"model_output": "· apply closure_is_closed\n exact hs"
},
{
"id": 13,
"match": false,
"ground_truth": "exact closure_is_closed_of_proper f hs",
"model_output": "apply closure_isClosed_of_closed\n exact hs"
},
{
"id": 14,
"match": true,
"ground_truth": "apply IsClosed.prod hs isClosed_univ",
"model_output": "apply IsClosed.prod hs isClosed_univ"
},
{
"id": 15,
"match": false,
"ground_truth": "simp [w, l, g, AffineMap.decomp']",
"model_output": "exact i.hx x _hx"
},
{
"id": 16,
"match": true,
"ground_truth": "rw [φ₁_equ fullrank₁ fullrank₂ n]",
"model_output": "rw [φ₁_equ fullrank₁ fullrank₂ n]"
},
{
"id": 17,
"match": false,
"ground_truth": "exact EReal.coe_le_coe_iff.mp h",
"model_output": "exact EReal.coe_le_coe_iff.1 h"
},
{
"id": 18,
"match": false,
"ground_truth": "rw [← hT.span_range_w_eq_range]",
"model_output": "have h := hT.finrank_range_add_finrank_ker\n have : finrank 𝕜 (LinearMap.ker T) = 0 := by\n rw [← ker_eq_bot_of_range_eq_top hT.range_eq_top]\n exact finrank_bot 𝕜 V\n simp [this] at h\n exact h"
},
{
"id": 19,
"match": false,
"ground_truth": "apply iff_iff_implies_and_implies.mpr",
"model_output": "rw [← closure_convex_support_eq hscl hscv, ← closure_convex_support_eq htcl htcv, h]"
},
{
"id": 20,
"match": false,
"ground_truth": "apply convex_conjugate_ge_bot_univ'",
"model_output": "apply convex_conjugate_ge_bot_univ s.convex_indicator x"
},
{
"id": 21,
"match": false,
"ground_truth": "exact HasGradientWithinAt.const_smul h c",
"model_output": "exact HasGradientAtFilter.const_smul h c"
},
{
"id": 22,
"match": true,
"ground_truth": "exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 23,
"match": true,
"ground_truth": "exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 24,
"match": true,
"ground_truth": "exact HasGradientAtFilter.const_sub hf c",
"model_output": "exact HasGradientAtFilter.const_sub hf c"
},
{
"id": 25,
"match": false,
"ground_truth": "apply convex_on_p_top\n ext x; exact h x",
"model_output": "apply convex_on_n_inf"
},
{
"id": 26,
"match": false,
"ground_truth": "apply monotone_gradient_convex'",
"model_output": "apply LinearProgram_convex"
},
{
"id": 27,
"match": false,
"ground_truth": "exact (fun x _ => affine_sq_gradient x)",
"model_output": "intro x _"
},
{
"id": 28,
"match": false,
"ground_truth": "have h_zero_eq := (hS 0).mp h_zero_mem",
"model_output": "have h1 : (0 : E) ∈ S := h_zero_mem\n have h2 := hS (0 : E)\n simp at h2\n exact h2.1"
},
{
"id": 29,
"match": false,
"ground_truth": "have : (0 : 𝕜) < (1 : 𝕜) := one_pos",
"model_output": "apply (neq_iff_lt_or_gt).mp neq"
},
{
"id": 30,
"match": false,
"ground_truth": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]",
"model_output": "rw [inner_add_left, ← sub_sub, sub_le_iff_le_add]"
},
{
"id": 31,
"match": false,
"ground_truth": "rw [← one_mul (-ε * ‖y - x‖), ← hab, add_mul]",
"model_output": "apply add_nonneg (mul_nonneg ha (neg_mul_le_iff_mul_le_neg.mpr hyu))\n (mul_nonneg hb (neg_mul_le_iff_mul_le_neg.mpr hyv))"
},
{
"id": 32,
"match": false,
"ground_truth": "calc\n _ = ‖(gradient H z).2 - (gradient H z').2‖ := by rw [grad_snd_eq h, grad_snd_eq h]\n _ = ‖(gradient H z - gradient H z').2‖ := rfl\n _ ≤ ‖(gradient H z - gradient H z')‖ := snd_norm_le_prod_L2 _\n _ ≤ _ := hl z z'",
"model_output": "have h1 := hl z z'"
},
{
"id": 33,
"match": false,
"ground_truth": "by\n intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos",
"model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]"
},
{
"id": 34,
"match": false,
"ground_truth": "intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos",
"model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]"
},
{
"id": 35,
"match": true,
"ground_truth": "by\n apply prox_well_define f hc lbdf x",
"model_output": "apply prox_well_define f hc lbdf x"
},
{
"id": 36,
"match": false,
"ground_truth": "by\n unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]",
"model_output": "apply finrank_colSubmodule_eq_card"
},
{
"id": 37,
"match": false,
"ground_truth": "unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]",
"model_output": "apply finrank_colSubmodule_eq_card"
},
{
"id": 38,
"match": false,
"ground_truth": "let ⟨x₁, hx₁, x₂, hx₂, hx⟩ := exists_orthogonal_decompose s x\n refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩\n rw [hx, LinearMap.map_add]\n suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]\n exact LinearMap.mem_ker.mp (hker hx₂)",
"model_output": "have : x = (s.orthogonalProjection x) + (x - (s.orthogonalProjection x)) := by simp"
},
{
"id": 39,
"match": false,
"ground_truth": "suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [mem_orthogonal'] at hx₂\n[ASSISTANT]\nhave : T x₂ = 0 := hker hx₂\n[ASSISTANT]\nrw [this, add_zero]"
},
{
"id": 40,
"match": false,
"ground_truth": "by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [this, add_zero]"
},
{
"id": 41,
"match": false,
"ground_truth": "rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [this, add_zero]"
},
{
"id": 42,
"match": false,
"ground_truth": "by\n simp [Orthonormal, Pairwise] at *\n aesop",
"model_output": "apply Orthonormal.mk\n · intro i hi j hj hij\n simp [restrict_apply, hi, hj, hij]\n exact hv.1 i j hij\n · intro i hi\n simp [restrict_apply, hi]\n exact hv.2 i hi"
},
{
"id": 43,
"match": false,
"ground_truth": "simp [Orthonormal, Pairwise] at *\n aesop",
"model_output": "apply Orthonormal.mk\n · intro i hi j hj hij\n simp [restrict_apply, hi, hj, hij]\n exact hv.1 i j hij\n · intro i hi\n simp [restrict_apply, hi]\n exact hv.2 i hi"
},
{
"id": 44,
"match": false,
"ground_truth": "by\n let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h",
"model_output": "apply HasGradientAt.continuousAt\n apply HasGradientAt_of_HasFDerivAt\n apply HasFDerivAt_of_C1\n apply ContDiffOn.contDiffWithinAt\n apply hf\n apply he\n apply ball_mem_nhds x\n apply mem_ball_self he"
},
{
"id": 45,
"match": false,
"ground_truth": "let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h",
"model_output": "apply HasGradientAt.continuousAt\n apply HasGradientAt_of_HasFDerivAt\n apply HasFDerivAt_of_C1\n apply ContDiffOn.contDiffWithinAt\n apply hf\n apply he\n apply ball_mem_nhds x\n apply mem_ball_self he"
},
{
"id": 46,
"match": false,
"ground_truth": "have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩",
"model_output": "apply HasGradientAt.continuousAt\n apply HasGradientAt.continuousAt\n apply ContDiffOn.continuousOn\n apply hf\n apply he\n apply s"
},
{
"id": 47,
"match": false,
"ground_truth": "exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩",
"model_output": "constructor"
},
{
"id": 48,
"match": false,
"ground_truth": "exact gradient_continuous_of_contdiffat f h",
"model_output": "apply HasGradientAt.continuousAt h"
},
{
"id": 49,
"match": false,
"ground_truth": "by\n simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1",
"model_output": "apply closure_univ_eq_top"
},
{
"id": 50,
"match": false,
"ground_truth": "simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1",
"model_output": "apply closure_univ_eq_top"
},
{
"id": 51,
"match": false,
"ground_truth": "· simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ",
"model_output": "· rw [if_pos hf]\n exact isClosed_univ_iff.mpr trivial"
},
{
"id": 52,
"match": true,
"ground_truth": "simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ",
"model_output": "simp [hf]"
},
{
"id": 53,
"match": false,
"ground_truth": "have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]",
"model_output": "apply isClosed_epi_bot_of_isClosed hs"
},
{
"id": 54,
"match": false,
"ground_truth": "have h' : Epi ⊤ s = ∅ := by\n ext ⟨x, _⟩; simp [Function.Epi]",
"model_output": "apply isClosed_epi_of_closed_of_exist_top hs (not_proper_of_bot_not_in_image f hs hf)"
},
{
"id": 55,
"match": false,
"ground_truth": "by\n constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith",
"model_output": "constructor\n · intro h z\n unfold Banach_HasSubgradientAt HasSubgradientAt\n specialize h z\n rw[← inner_apply_apply (toDual ℝ E g) z]\n exact le_of_eq (congrArg EReal.toEReal h)\n · apply Banach_HasSubgradientAt_to_HasSubgradientAt"
},
{
"id": 56,
"match": false,
"ground_truth": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith",
"model_output": "constructor\n · intro h z\n unfold Banach_HasSubgradientAt HasSubgradientAt\n specialize h z\n rw[← inner_apply_apply (toDual ℝ E g) z]\n exact le_of_eq (congrArg EReal.toEReal h)\n · apply Banach_HasSubgradientAt_to_HasSubgradientAt"
},
{
"id": 57,
"match": false,
"ground_truth": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith",
"model_output": "· intro h z\n unfold Banach_HasSubgradientAt\n rw[hasSubgradientAt_iff_isLittleO] at h\n apply Asymptotics.isLittleO_iff.mpr\n intro ε εpos\n specialize h (ε / 2) (half_pos εpos)\n rcases h with ⟨δ, δpos, hδ⟩\n use δ\n constructor\n · linarith\n · intro y hy\n rw[← sub_add, sub_self, sub_zero] at hy\n rw[← sub_add, sub_self, sub_zero]\n apply"
},
{
"id": 58,
"match": false,
"ground_truth": "intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith",
"model_output": "intro h z\n rw [hasSubgradientAt_iff_le] at h\n apply h z\n simp\n rw [← ContinuousLinearMap.map_sub]; simp\n apply real_inner_le_norm"
},
{
"id": 59,
"match": false,
"ground_truth": "· intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx",
"model_output": "· exact i.hg"
},
{
"id": 60,
"match": false,
"ground_truth": "intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx",
"model_output": "intro x xs\n rw[← EReal.coe_add, ← inner_add_left, ← inner_add_left, ← inner_add_left]\n apply le_trans\n · apply i.1\n · apply i.2 x xs"
},
{
"id": 61,
"match": false,
"ground_truth": "apply Filter.tendsto_iff_seq_tendsto.1 Seq_converge_zero₃",
"model_output": "apply tendsto_zero_iff_norm_tendsto_zero.2\n apply tendsto_zero_iff_norm_tendsto_zero.2\n apply A₂_subseq_converge_zero"
},
{
"id": 62,
"match": false,
"ground_truth": "have : (fun n => (Int.toNat (φ₁ n))) = (fun n => (φ (n+1))) := by\n ext n; rw [φ₁_equ fullrank₁ fullrank₂ n]; simp",
"model_output": "apply strictMono_nat_of_lt_succ\n intro n\n have : (φ₁ (n + 1)) > (φ₁ n) := by\n calc\n (φ₁ (n + 1)) ≥ n + 1 := StrictMono.id_le (hphi_StrictMono fullrank₁ fullrank₂) (n + 1)\n _ > n := by linarith\n apply this\n apply Nat.cast_lt.mpr\n apply this\n apply nplusone_le_phi"
},
{
"id": 63,
"match": false,
"ground_truth": "suffices 0 ≤ (c - a - b).toEReal by exact this",
"model_output": "rw [← EReal.coe_add, ← EReal.coe_sub] at h"
},
{
"id": 64,
"match": false,
"ground_truth": "have : a + b ≤ c := by exact EReal.coe_le_coe_iff.mp h",
"model_output": "apply EReal.coe_nonneg.mpr"
},
{
"id": 65,
"match": false,
"ground_truth": "refine EReal.coe_nonneg.mpr ?intro.intro.a",
"model_output": "apply EReal.coe_nonneg.mpr"
},
{
"id": 66,
"match": false,
"ground_truth": "by\n constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun",
"model_output": "apply StrongConvexOn_of_ConvexOn hs\n intro x xs y ys a b ha hb hab\n specialize hfun xs ys ha hb hab\n rw [← sub_le_sub_iff, sub_add, sub_add_cancel, sub_le_sub_iff] at hfun\n linarith [hfun]"
},
{
"id": 67,
"match": false,
"ground_truth": "constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun",
"model_output": "apply StrongConvexOn_of_ConvexOn hs\n intro x xs y ys a b ha hb hab\n specialize hfun xs ys ha hb hab\n rw [← sub_le_sub_iff, sub_add, sub_add_cancel, sub_le_sub_iff] at hfun\n linarith [hfun]"
},
{
"id": 68,
"match": false,
"ground_truth": "have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf",
"model_output": "linarith [hfun]"
},
{
"id": 69,
"match": false,
"ground_truth": "by\n rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "have h := hT.finrank_range_add_finrank_ker\n have : finrank 𝕜 (LinearMap.ker T) = 0 := by\n rw [← ker_eq_bot_of_range_eq_top hT.range_eq_top]\n exact finrank_bot 𝕜 V\n simp [this] at h\n exact h"
},
{
"id": 70,
"match": false,
"ground_truth": "rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "have h := hT.finrank_range_add_finrank_ker\n have : finrank 𝕜 (LinearMap.ker T) = 0 := by\n rw [← ker_eq_bot_of_range_eq_top hT.range_eq_top]\n exact finrank_bot 𝕜 V\n simp [this] at h\n exact h"
},
{
"id": 71,
"match": false,
"ground_truth": "simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "rw [finrank_span_eq_card]"
},
{
"id": 72,
"match": false,
"ground_truth": "· exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h",
"model_output": "· intro zin\n have : s.convex_support z = 0 := by\n rw [← h z]; exact convex_support_of_mem zin\n have : t.convex_support z = 0 := by rw [← h]; exact this\n apply convex_support_eq_zero htcl hscv htcv; exact this\n apply convex_conjugate_of_zero_support\n apply convex_convex_support htcl hscv\n exact zin"
},
{
"id": 73,
"match": false,
"ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h",
"model_output": "intro hzs\n have h1 : s.convex_support z = ∅ := by\n rw [convex_support_eq_empty_iff]; exact hzs\n have h2 := congrFun h hzs\n rw [h1] at h2\n exact (Set.convex_indicator_empty t).convex_support_eq_closure h2 htcl\n apply subset_closure\n trivial"
},
{
"id": 74,
"match": false,
"ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq t s hscv hscl a (fun x => (h x).symm)",
"model_output": "intro zt\n rw [← h z]\n apply convex_support_subset hscl htcl zt"
},
{
"id": 75,
"match": true,
"ground_truth": "by\n intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'",
"model_output": "intro x _"
},
{
"id": 76,
"match": true,
"ground_truth": "intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'",
"model_output": "intro x _"
},
{
"id": 77,
"match": false,
"ground_truth": "have convex_conjugate_at_zero :\n convex_conjugate univ (convex_indicator s) 0 ≤ 0 := by\n refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_\n simp\n intro y\n simp [convex_indicator]\n split_ifs with hy <;> simp",
"model_output": "rcases hs with ⟨x, hx⟩\n use 0\n simp [convex_conjugate]\n rw[Set.mem_setOf_eq]\n exact ⟨hx, by simp⟩"
},
{
"id": 78,
"match": false,
"ground_truth": "refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_",
"model_output": "apply convex_conjugate_le_zero\n · simp\n · apply hs.convex_indicator_nonempty\n · simp"
},
{
"id": 79,
"match": false,
"ground_truth": "exact lt_of_le_of_lt (convex_conjugate_at_zero) (zero_lt_top)",
"model_output": "apply convex_conjugate_lt_top_of_nonempty_convex hs convex_indicator_convex\n apply convex_univ\n apply convex_indicator_convex_convex_conjugate_nonempty hs convex_univ\n apply convex_univ"
},
{
"id": 80,
"match": false,
"ground_truth": "by\n exact HasGradientWithinAt.const_smul h c",
"model_output": "exact HasGradientAtFilter.const_smul h c"
},
{
"id": 81,
"match": true,
"ground_truth": "by\n exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 82,
"match": true,
"ground_truth": "by\n exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 83,
"match": false,
"ground_truth": "by\n simp only [sub_eq_add_neg, gradient_add_const]",
"model_output": "rw [gradient_sub_const c]"
},
{
"id": 84,
"match": false,
"ground_truth": "simp only [sub_eq_add_neg, gradient_add_const]",
"model_output": "rw [gradient_sub_const c]"
},
{
"id": 85,
"match": true,
"ground_truth": "by\n exact HasGradientAtFilter.const_sub hf c",
"model_output": "exact HasGradientAtFilter.const_sub hf c"
},
{
"id": 86,
"match": false,
"ground_truth": "by\n obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 87,
"match": false,
"ground_truth": "obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 88,
"match": false,
"ground_truth": "by\n apply convex_on_p_top\n ext x; exact h x",
"model_output": "apply convex_on_n_inf"
},
{
"id": 89,
"match": false,
"ground_truth": "by\n rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]",
"model_output": "rw [Matrix.mulVec_sub]"
},
{
"id": 90,
"match": false,
"ground_truth": "rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]",
"model_output": "rw [Matrix.mulVec_sub]"
},
{
"id": 91,
"match": false,
"ground_truth": "· exact (fun x _ => affine_sq_gradient x)",
"model_output": "apply linear_gradient"
},
{
"id": 92,
"match": true,
"ground_truth": "· intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg",
"model_output": "intro x _ y _"
},
{
"id": 93,
"match": true,
"ground_truth": "intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg",
"model_output": "intro x _ y _"
},
{
"id": 94,
"match": false,
"ground_truth": "rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]",
"model_output": "rw [← sub_add, sub_mulVec, sub_mulVec, sub_add, sub_add, sub_add, sub_add, sub_add]"
},
{
"id": 95,
"match": false,
"ground_truth": "rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]",
"model_output": "rw [← Matrix.mulVec_sub, ← sub_mulVec, ← sub_mulVec, ← sub_mulVec, ← sub_mulVec]"
},
{
"id": 96,
"match": false,
"ground_truth": "have h_zero_mem : (0 : E) ∈ S := S.zero_mem",
"model_output": "have h1 : ∀ i, (hS (B (Fin.natAdd n i))).1 = (hS (B (Fin.natAdd n i))).2 := by\n intro i\n simp [hS]"
},
{
"id": 97,
"match": false,
"ground_truth": "have h_repr_zero : B.repr 0 = 0 := LinearEquiv.map_zero B.repr",
"model_output": "simp at h_zero_eq"
},
{
"id": 98,
"match": false,
"ground_truth": "simp only [map_zero, Finsupp.coe_zero, Pi.zero_apply] at h_zero_eq",
"model_output": "simp [h_repr_zero] at h_zero_eq"
},
{
"id": 99,
"match": false,
"ground_truth": "simp only [Matrix.mulVec_zero, add_zero] at h_zero_eq",
"model_output": "simp [Matrix.mulVec_zero] at h_zero_eq"
},
{
"id": 100,
"match": false,
"ground_truth": "by\n unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]",
"model_output": "unfold sup_value\n simp [hp]"
},
{
"id": 101,
"match": false,
"ground_truth": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]",
"model_output": "unfold sup_value\n simp [hp]"
},
{
"id": 102,
"match": true,
"ground_truth": "by\n intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b",
"model_output": "intro b"
},
{
"id": 103,
"match": true,
"ground_truth": "intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b",
"model_output": "intro b"
},
{
"id": 104,
"match": true,
"ground_truth": "by\n rw [h]; apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [h]"
},
{
"id": 105,
"match": true,
"ground_truth": "rw [h]; apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [h]"
},
{
"id": 106,
"match": false,
"ground_truth": "apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [← h]"
},
{
"id": 107,
"match": false,
"ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, ← ContinuousLinearMap.adjoint_comp_apply]"
},
{
"id": 108,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, ← ContinuousLinearMap.adjoint_comp_apply]"
},
{
"id": 109,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, ← ContinuousLinearMap.adjoint_comp_apply]"
},
{
"id": 110,
"match": false,
"ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, ← ContinuousLinearMap.adjoint_comp_apply]"
},
{
"id": 111,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, ← ContinuousLinearMap.adjoint_comp_apply]"
},
{
"id": 112,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, ← ContinuousLinearMap.adjoint_comp_apply]"
},
{
"id": 113,
"match": false,
"ground_truth": "by rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]",
"model_output": "rw [Matrix.mul_comm, Matrix.trace_mul_comm]"
},
{
"id": 114,
"match": false,
"ground_truth": "rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]",
"model_output": "rw [Matrix.mul_comm, Matrix.trace_mul_comm]"
},
{
"id": 115,
"match": false,
"ground_truth": "have : ConvexOn ℝ X fun _ ↦ (0: EReal) := by\n dsimp [ConvexOn]\n constructor\n exact hs\n intro x _ y _ a b _ _ _\n simp",
"model_output": "apply convex_indicator_convex hs"
},
{
"id": 116,
"match": false,
"ground_truth": "have eq : EqOn (fun _ ↦ (0: EReal)) (Set.convex_indicator X) X := by\n dsimp[EqOn]\n intro x hx\n dsimp [Set.convex_indicator]\n rw [if_pos hx]",
"model_output": "apply ConvexOn.subset this (fun x a ↦ a)"
},
{
"id": 117,
"match": false,
"ground_truth": "by\n apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hinter"
},
{
"id": 118,
"match": false,
"ground_truth": "apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hinter"
},
{
"id": 119,
"match": false,
"ground_truth": "· exact iIntersection_closure_sub_closure_iIntersection'' h hinter",
"model_output": "· apply iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n · apply h\n · exact hinter"
},
{
"id": 120,
"match": false,
"ground_truth": "exact iIntersection_closure_sub_closure_iIntersection'' h hinter",
"model_output": "apply iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection"
},
{
"id": 121,
"match": false,
"ground_truth": "exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "apply intrinsicClosure_minimal\n · intro x hx\n rw[mem_iInter] at hx\n exact fun i ↦ intrinsicClosure_mono (hx i)\n · exact convex_iInter h\n · exact hinter"
},
{
"id": 122,
"match": false,
"ground_truth": "have eqone : a + (1 - a) = 1 := add_sub_cancel a 1",
"model_output": "have : a * (f x - f y) < 0 := mul_neg_of_pos_of_neg lta (sub_neg_of_lt hy (hx trivial))"
},
{
"id": 123,
"match": false,
"ground_truth": "have lta' : 0 < 1 - a := sub_pos_of_lt alt",
"model_output": "have : f (a • x + (1 - a) • y) < f x := by\n apply hf' (hx trivial) (hy trivial) neq lta (sub_pos_of_lt alt) eqone\n apply lt_of_le_of_lt (le_of_lt lta) (le_of_lt alt)"
},
{
"id": 124,
"match": false,
"ground_truth": "have h : f (a • x + (1 - a) • y) < f y := by\n apply Eq.trans_gt (max_eq_right (hx trivial))\n apply hf' neq lta lta' eqone",
"model_output": "have : a + (1 - a) > 0 := by linarith"
},
{
"id": 125,
"match": false,
"ground_truth": "apply Eq.trans_gt (max_eq_right (hx trivial))",
"model_output": "apply hf' (x := x) (y := y) neq lta lta' eqone"
},
{
"id": 126,
"match": false,
"ground_truth": "intro ε εpos",
"model_output": "intro ε εpos\n filter_upwards [hu ε εpos, hv ε εpos] with y huy hvy\n rw [eventually_and]\n rw [eventually_nhds_iff_ball] at huy hvy\n intro y hy\n specialize huy y hy\n specialize hvy y hy\n rw [inner_add_left, ← sub_sub, sub_le_sub_iff, ← sub_sub, sub_le_sub_iff] at huy hvy\n rw [← sub_sub, sub_le_sub_iff, ← sub_sub, sub_le_sub_iff]\n rw [← sub_sub,"
},
{
"id": 127,
"match": false,
"ground_truth": "rw [ge_iff_le] at *",
"model_output": "apply add_le_add (mul_le_mul_of_nonneg_left hyu (le_of_lt ha))\n (mul_le_mul_of_nonneg_left hyv (le_of_lt hb))"
},
{
"id": 128,
"match": false,
"ground_truth": "apply add_le_add",
"model_output": "apply add_le_add (mul_le_mul_of_nonneg_left hyu ha) (mul_le_mul_of_nonneg_left hyv hb)"
},
{
"id": 129,
"match": false,
"ground_truth": "apply div_pos",
"model_output": "apply div_pos zero_lt_one (mul_pos _ alg.lpos)\n[· linarith]"
},
{
"id": 130,
"match": false,
"ground_truth": "apply mul_pos",
"model_output": "apply mul_pos _ alg.lpos\n[apply hγ]"
},
{
"id": 131,
"match": true,
"ground_truth": "· linarith [hγ]",
"model_output": "· linarith [hγ]"
},
{
"id": 132,
"match": true,
"ground_truth": "linarith [hγ]",
"model_output": "linarith [hγ]"
},
{
"id": 133,
"match": true,
"ground_truth": "· apply alg.lpos",
"model_output": "apply alg.lpos"
},
{
"id": 134,
"match": true,
"ground_truth": "apply alg.lpos",
"model_output": "apply alg.lpos"
},
{
"id": 135,
"match": false,
"ground_truth": "rw [mem_nhds_iff]",
"model_output": "apply Metric.ball_mem_nhds\n exact he"
},
{
"id": 136,
"match": false,
"ground_truth": "simp [Function.Epi]",
"model_output": "simp [Epi]"
},
{
"id": 137,
"match": true,
"ground_truth": "simp [Function.Epi]",
"model_output": "simp [Function.Epi]"
},
{
"id": 138,
"match": true,
"ground_truth": "exact isClosed_empty",
"model_output": "exact isClosed_empty"
},
{
"id": 139,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor\n · intro h z\n unfold Banach_HasSubgradientAt HasSubgradientAt\n specialize h z\n rw[← inner_apply_apply (toDual ℝ E g) z]\n exact le_of_eq (congrArg EReal.toEReal h)\n · apply Banach_HasSubgradientAt_to_HasSubgradientAt"
},
{
"id": 140,
"match": true,
"ground_truth": "by\n ext g; rw [h]",
"model_output": "rw [h]"
},
{
"id": 141,
"match": true,
"ground_truth": "ext g; rw [h]",
"model_output": "rw [h]"
},
{
"id": 142,
"match": true,
"ground_truth": "constructor",
"model_output": "constructor"
},
{
"id": 143,
"match": false,
"ground_truth": "intro x _hx",
"model_output": "intro x _ [H]\n rw [← H]\n rfl"
},
{
"id": 144,
"match": false,
"ground_truth": "simp at this",
"model_output": "rw [← this]"
},
{
"id": 145,
"match": false,
"ground_truth": "· simp [StrictMono]",
"model_output": "apply strictMono_add_const"
},
{
"id": 146,
"match": false,
"ground_truth": "simp [StrictMono]",
"model_output": "apply strictMono_add_const"
},
{
"id": 147,
"match": true,
"ground_truth": "by_cases hc2 : c = ⊤",
"model_output": "by_cases hc2 : c = ⊤"
},
{
"id": 148,
"match": false,
"ground_truth": "· rw [hc2]; simp",
"model_output": "· rw [hc2, EReal.top_sub_coe, EReal.top_sub_coe]"
},
{
"id": 149,
"match": false,
"ground_truth": "rw [hc2]; simp",
"model_output": "rw [hc2, EReal.top_sub_coe, EReal.coe_sub_top]"
},
{
"id": 150,
"match": false,
"ground_truth": "by exact this",
"model_output": "exact EReal.coe_le_coe_iff.2 this"
},
{
"id": 151,
"match": false,
"ground_truth": "constructor",
"model_output": "apply StrongConvexOn_of_ConvexOn hs\n intro x xs y ys a b ha hb hab\n specialize hfun xs ys ha hb hab\n rw [← sub_le_sub_iff, sub_add, sub_add_cancel, sub_le_sub_iff] at hfun\n linarith [hfun]"
},
{
"id": 152,
"match": false,
"ground_truth": "rw [← this]",
"model_output": "rw [this] at hfun\n exact hfun"
},
{
"id": 153,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor\n · intro x\n rw[x]\n · intro x\n rw[x]"
},
{
"id": 154,
"match": false,
"ground_truth": "simp [funext_iff]",
"model_output": "intro h"
},
{
"id": 155,
"match": true,
"ground_truth": "constructor",
"model_output": "constructor"
},
{
"id": 156,
"match": false,
"ground_truth": "· apply convex_univ",
"model_output": "apply convex_univ [f'']"
},
{
"id": 157,
"match": true,
"ground_truth": "apply convex_univ",
"model_output": "apply convex_univ"
},
{
"id": 158,
"match": true,
"ground_truth": "intro x _ y _",
"model_output": "intro x _ y _"
},
{
"id": 159,
"match": true,
"ground_truth": "apply sq_nonneg",
"model_output": "apply sq_nonneg"
},
{
"id": 160,
"match": true,
"ground_truth": "exact h_zero_eq.symm",
"model_output": "exact h_zero_eq.symm"
},
{
"id": 161,
"match": false,
"ground_truth": "dsimp [ConvexOn]",
"model_output": "apply convexOn_const hs 0"
},
{
"id": 162,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor <;> simp [Convex] <;> tauto"
},
{
"id": 163,
"match": false,
"ground_truth": "dsimp[EqOn]",
"model_output": "intro x hx\n rw[← convex_indicator_eq_zero hs] at hx\n rw[← hx]\n simp only [Pi.zero_apply, zero_eq_iff]"
},
{
"id": 164,
"match": false,
"ground_truth": "rw [if_pos hx]",
"model_output": "rw[if_pos hx]"
},
{
"id": 165,
"match": false,
"ground_truth": "by_contra neq",
"model_output": "by_contra hxy"
},
{
"id": 166,
"match": false,
"ground_truth": "intro u hu v hv a b ha hb hab",
"model_output": "apply convex_set_of_norm_le_one"
},
{
"id": 167,
"match": true,
"ground_truth": "rw [has_f_subdiff_iff] at *",
"model_output": "rw [has_f_subdiff_iff] at *"
},
{
"id": 168,
"match": true,
"ground_truth": "rw [finrank_span_eq_card]",
"model_output": "rw [finrank_span_eq_card]"
},
{
"id": 169,
"match": false,
"ground_truth": "rw [hx, LinearMap.map_add]",
"model_output": "rw [hx, map_add, norm_add_sq_real]"
},
{
"id": 170,
"match": false,
"ground_truth": "apply ContDiffOn.contDiffAt hf",
"model_output": "apply ContDiffOn.contDiffAt hf (Metric.ball x ε) (Metric.mem_ball_self he)"
},
{
"id": 171,
"match": false,
"ground_truth": "simp [Function.closure]",
"model_output": "apply closure_univ_eq_top"
},
{
"id": 172,
"match": false,
"ground_truth": "simp [Function.closure, hsf]",
"model_output": "simp [Function.IsClosed, hsf]"
},
{
"id": 173,
"match": false,
"ground_truth": "by_cases hf : ∃ x ∈ s, f x = ⊥",
"model_output": "by_cases h : ∃ x ∈ s, f x = ⊥\n · simp [h]\n push_neg at hsf\n simp [h]\n exact isClosed_univ"
},
{
"id": 174,
"match": false,
"ground_truth": "simp [Function.IsClosed]",
"model_output": "apply isClosed_of_subset_closure\n · exact fun x hx ↦ by simp\n rcases hf with ⟨x, hx, hfx⟩\n exact hfx ▸ hx"
},
{
"id": 175,
"match": false,
"ground_truth": "simp [Function.IsClosed]",
"model_output": "simp [Function.IsClosed, hs]"
},
{
"id": 176,
"match": false,
"ground_truth": "apply StrictMono.tendsto_atTop",
"model_output": "apply StrictMono.tendsto_atTop\n apply strictMono_nat_of_lt_succ\n intro n\n have : φ₁ (n + 1) > φ₁ n := by\n apply StrictMono.strictMonoOn\n apply hphi_StrictMono fullrank₁ fullrank₂\n apply lt_add_one\n apply this\n apply Nat.cast_lt.mpr\n apply this\n apply nlinarith\n apply Nat.le_add_left\n apply le_add_of_le_add_left\n apply le_add_of_le_add_right\n apply le_add_of_le_add_left\n apply le_add"
},
{
"id": 177,
"match": false,
"ground_truth": "apply StrictMono.comp",
"model_output": "apply StrictMono.comp\n · apply hphi_StrictMono\n · apply StrictMono.add\n · apply strictMono_id\n · apply strictMono_nat_of_lt_succ\n intro n\n simp only [Nat.one_add, Nat.add_one, Nat.lt_succ_self]"
},
{
"id": 178,
"match": true,
"ground_truth": "· apply hphi_StrictMono",
"model_output": "· apply hphi_StrictMono"
},
{
"id": 179,
"match": true,
"ground_truth": "apply hphi_StrictMono",
"model_output": "apply hphi_StrictMono"
},
{
"id": 180,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha2, ha1⟩",
"model_output": "have : a < ⊤ := LT.lt.ne_top ha2"
},
{
"id": 181,
"match": false,
"ground_truth": "lift c to ℝ using ⟨hc2, hc1⟩",
"model_output": "lift c to ℝ using ⟨hc2, LT.lt.ne_bot hc1⟩\n rw [← EReal.coe_add, ← EReal.coe_sub, EReal.coe_le_coe_iff]\n rw [← EReal.coe_sub, EReal.coe_sub_le_coe_sub_iff]\n exact h"
},
{
"id": 182,
"match": false,
"ground_truth": "intro x hx y hy a b ha hb hab",
"model_output": "intro x xs y ys a b ha hb hab\n specialize hfun xs ys a ha b hb hab\n simp at hfun\n exact hfun"
},
{
"id": 183,
"match": false,
"ground_truth": "· exact fun h => (by rw [h])",
"model_output": "· intro eq; rw [eq]"
},
{
"id": 184,
"match": false,
"ground_truth": "exact fun h => (by rw [h])",
"model_output": "intro hst\n rw [hst]"
},
{
"id": 185,
"match": false,
"ground_truth": "simp [convex_support]",
"model_output": "apply convex_support_nonempty hs x trivial"
},
{
"id": 186,
"match": false,
"ground_truth": "simp [convex_support]",
"model_output": "rcases hs with ⟨x, hx⟩\n use x, trivial\n rw [convex_support]\n simp\n exact hx.2"
},
{
"id": 187,
"match": false,
"ground_truth": "simp [convex_indicator]",
"model_output": "by_cases hy : y ∈ s\n · rw [convex_indicator_of_mem hy]; simp\n simp [convex_indicator, hy]"
},
{
"id": 188,
"match": false,
"ground_truth": "split_ifs with hy <;> simp",
"model_output": "by_cases h : y ∈ s\n · simp [h]\n simp [h]"
},
{
"id": 189,
"match": false,
"ground_truth": "rcases h1 with ⟨x, hx⟩",
"model_output": "rcases h1 with ⟨x, hx⟩\n use x\n simp [dom]\n exact hx.1"
},
{
"id": 190,
"match": false,
"ground_truth": "apply convex_on_p_top",
"model_output": "apply convex_on_n_inf"
},
{
"id": 191,
"match": false,
"ground_truth": "rw [polyhedra_iff_cone b]",
"model_output": "apply isClosed_setOf_sum"
},
{
"id": 192,
"match": false,
"ground_truth": "exact closed_conic σ b",
"model_output": "apply cone_is_closed"
},
{
"id": 193,
"match": false,
"ground_truth": "intro x _ y _ a b _ _ _",
"model_output": "simp"
},
{
"id": 194,
"match": false,
"ground_truth": "dsimp [Set.convex_indicator]",
"model_output": "rw[convex_indicator_of_mem hx]"
},
{
"id": 195,
"match": false,
"ground_truth": "apply ConvexOn.congr this eq",
"model_output": "apply EqOn.convexOn eq this"
},
{
"id": 196,
"match": false,
"ground_truth": "apply Subset.antisymm",
"model_output": "apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hinter"
},
{
"id": 197,
"match": false,
"ground_truth": "apply hf' neq lta lta' eqone",
"model_output": "apply lt_max_iff.2"
},
{
"id": 198,
"match": false,
"ground_truth": "simp only [isMinOn_iff] at hy",
"model_output": "have : f (a • x + (1 - a) • y) < f x := by\n apply lt_of_lt_of_le h (hy (mem_univ (a • x + (1 - a) • y)))"
},
{
"id": 199,
"match": false,
"ground_truth": "apply not_le_of_gt h hy",
"model_output": "linarith [h, hy]"
},
{
"id": 200,
"match": false,
"ground_truth": "intro u",
"model_output": "apply convex_set_of_norm_le_one"
},
{
"id": 201,
"match": false,
"ground_truth": "intro ε",
"model_output": "intro ε εpos\n filter_upwards [hu ε εpos, hv ε εpos] with y huy hvy\n rw [eventually_and]\n rw [eventually_nhds_iff_ball] at huy hvy\n intro y hy\n specialize huy y hy\n specialize hvy y hy\n rw [inner_add_left, ← sub_sub, sub_le_sub_iff, ← sub_sub, sub_le_sub_iff] at huy hvy\n rw [← sub_sub, sub_le_sub_iff, ← sub_sub, sub_le_sub_iff]\n rw [← sub_sub,"
},
{
"id": 202,
"match": false,
"ground_truth": "intro z z'",
"model_output": "intro x y\n have h1 := hl x y\n rw [← Prod.fst_sub, ← Prod.snd_sub, ← Prod.fst_sub, ← Prod.snd_sub] at h1\n apply le_trans (fst_norm_le_prod_L2 _) at h1\n apply le_trans (snd_norm_le_prod_L2 _) at h1\n apply le_trans (fst_norm_le_prod_L2 _) at h1\n apply le_trans (snd_norm_le_prod_L2 _) at h1\n apply le_trans (fst_norm_le_prod_L2 _) at h1\n apply le_trans"
},
{
"id": 203,
"match": false,
"ground_truth": "intro z",
"model_output": "intro x y\n have h1 := hl x y\n rw [← Prod.fst_sub, ← Prod.snd_sub, ← Prod.fst_sub, ← Prod.snd_sub] at h1\n apply le_trans (fst_norm_le_prod_L2 _) at h1\n apply le_trans (snd_norm_le_prod_L2 _) at h1\n apply le_trans (fst_norm_le_prod_L2 _) at h1\n apply le_trans (snd_norm_le_prod_L2 _) at h1\n apply le_trans (fst_norm_le_prod_L2 _) at h1\n apply le_trans"
},
{
"id": 204,
"match": false,
"ground_truth": "intro k",
"model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]"
},
{
"id": 205,
"match": true,
"ground_truth": "rw [ck]",
"model_output": "rw [ck]"
},
{
"id": 206,
"match": false,
"ground_truth": "· norm_num",
"model_output": "· linarith\n apply mul_pos\n · linarith\n · simp; linarith [alg.lpos]"
},
{
"id": 207,
"match": false,
"ground_truth": "norm_num",
"model_output": "linarith"
},
{
"id": 208,
"match": false,
"ground_truth": "simp [h]",
"model_output": "apply linearIndependent_iff.mpr\n intro x a\n simp [colVec, Matrix.mulVec, dotProduct]\n rw [← Matrix.mulVec, ← Matrix.mulVec, h] at a\n exact a.1"
},
{
"id": 209,
"match": false,
"ground_truth": "aesop",
"model_output": "constructor <;> intro a ha b hb hab <;> exact hv.1 a (ha hb) <;> exact hv.2 a b hab"
},
{
"id": 210,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h\n exact univ_lowersemicontinoushull_top_eq_top h"
},
{
"id": 211,
"match": false,
"ground_truth": "exfalso",
"model_output": "apply le_antisymm_iff.mpr\n constructor\n · exact lowerSemicontinuousHull_le_top\n exact fun a ↦ by\n rw [← closure_eq_top_iff, ← closure_epi_eq_top_iff_lowerSemicontinuousHull_eq_top]\n apply closure_epi_eq_top_of_properFunction h"
},
{
"id": 212,
"match": true,
"ground_truth": "simp at h1",
"model_output": "simp at h1"
},
{
"id": 213,
"match": true,
"ground_truth": "simp [hf]",
"model_output": "simp [hf]"
},
{
"id": 214,
"match": false,
"ground_truth": "ext ⟨x, _⟩",
"model_output": "simp [Function.Epi]"
},
{
"id": 215,
"match": true,
"ground_truth": "rw [h1]",
"model_output": "rw [h1]"
},
{
"id": 216,
"match": true,
"ground_truth": "simp [hf]",
"model_output": "simp [hf]"
},
{
"id": 217,
"match": false,
"ground_truth": "ext ⟨x, _⟩",
"model_output": "simp [ProperFunction] at hsf"
},
{
"id": 218,
"match": true,
"ground_truth": "rw [h']",
"model_output": "rw [h']"
},
{
"id": 219,
"match": false,
"ground_truth": "intro h z",
"model_output": "intro h z\n rw [hasSubgradientAt_iff_le] at h\n apply h z\n simp\n rw [← ContinuousLinearMap.map_sub]; simp\n apply real_inner_le_norm"
},
{
"id": 220,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h z\n rw [hasSubgradientAt_iff_le] at h\n apply h z\n simp\n rw [← ContinuousLinearMap.map_sub]; simp\n apply real_inner_le_norm"
},
{
"id": 221,
"match": false,
"ground_truth": "simp",
"model_output": "simp [toDual_apply]"
},
{
"id": 222,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [hz]"
},
{
"id": 223,
"match": false,
"ground_truth": "intro h z",
"model_output": "intro h z hz\n rw [← mem_gradientSet_iff_hasSubgradientAt, ← Banach_gradientSet_iff] at h\n rcases h with ⟨_, h⟩\n exact h z hz"
},
{
"id": 224,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h z hz\n rw [← mem_gradientSet_iff_hasSubgradientAt, ← Banach_gradientSet_iff] at h\n rcases h with ⟨_, h⟩\n exact h z hz"
},
{
"id": 225,
"match": false,
"ground_truth": "simp at hz",
"model_output": "simp [toDual_apply] at hz"
},
{
"id": 226,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [hz]"
},
{
"id": 227,
"match": false,
"ground_truth": "ext g",
"model_output": "rw [h]"
},
{
"id": 228,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 229,
"match": false,
"ground_truth": "simp",
"model_output": "apply And.intro"
},
{
"id": 230,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x xs\n rw[← EReal.coe_add, ← inner_add_left, ← inner_add_left, ← inner_add_left]\n apply le_trans\n · apply i.1\n · apply i.2 x xs"
},
{
"id": 231,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x xs\n rw[← EReal.coe_add, ← inner_add_left, ← inner_add_left, ← inner_add_left]\n apply le_trans\n · apply i.1\n · apply i.2 x xs"
},
{
"id": 232,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _ [H]\n rw [← H]\n rfl"
},
{
"id": 233,
"match": false,
"ground_truth": "ext n",
"model_output": "ext n\n congr\n apply Nat.sub_one_add_one_eq_of_pos (φ_is_positive (n + 1))"
},
{
"id": 234,
"match": false,
"ground_truth": "simp",
"model_output": "simp [φ]"
},
{
"id": 235,
"match": true,
"ground_truth": "rw [this]",
"model_output": "rw [this]"
},
{
"id": 236,
"match": false,
"ground_truth": "rw [hc2]",
"model_output": "rw [hc2, EReal.top_sub_coe, EReal.coe_sub_top]"
},
{
"id": 237,
"match": false,
"ground_truth": "simp",
"model_output": "simp [← EReal.coe_add] at *"
},
{
"id": 238,
"match": false,
"ground_truth": "exact this",
"model_output": "exact EReal.coe_le_coe_iff.2 this"
},
{
"id": 239,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [this]"
},
{
"id": 240,
"match": false,
"ground_truth": "· exact hs",
"model_output": "apply hs"
},
{
"id": 241,
"match": false,
"ground_truth": "exact hs",
"model_output": "apply hs"
},
{
"id": 242,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x xs y ys a b ha hb hab\n specialize hfun xs ys a ha b hb hab\n simp at hfun\n exact hfun"
},
{
"id": 243,
"match": false,
"ground_truth": "dsimp",
"model_output": "simp [← sub_nonneg] at hfun ⊢ [← mul_nonneg] at hab ⊢ [← ha] at hab ⊢ [← hb] at hab ⊢\n rw [← hab, sub_mul, sub_le_sub_iff_left, mul_comm, mul_comm (a * b)]\n apply hfun"
},
{
"id": 244,
"match": false,
"ground_truth": "ring_nf",
"model_output": "linarith"
},
{
"id": 245,
"match": false,
"ground_truth": "exact hfun",
"model_output": "apply hfun"
},
{
"id": 246,
"match": true,
"ground_truth": "by rw [h]",
"model_output": "rw [h]"
},
{
"id": 247,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 248,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h\n have h1 := fun x a ↦ (convex_support_eq_closure h x a).1\n have h2 := fun x a ↦ (convex_support_eq_closure h x a).2\n apply Subset.antisymm\n · intro x hx\n rw [← closure_convex_support_eq hscl hscv, ← closure_convex_support_eq htcl htcv, h]\n exact h1 x hx\n · intro x hx\n rw [← closure_convex_support_eq hscl hscv, ← closure_convex_support_eq htcl htcv"
},
{
"id": 249,
"match": false,
"ground_truth": "ext z",
"model_output": "rw [← closure_convex_support_eq s hscl, ← closure_convex_support_eq t htcl, h]"
},
{
"id": 250,
"match": true,
"ground_truth": "intro x _",
"model_output": "intro x _"
},
{
"id": 251,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _"
},
{
"id": 252,
"match": false,
"ground_truth": "right",
"model_output": "right\n rcases hs with ⟨x, hx⟩\n use x, trivial\n rw [convex_support]\n simp\n exact Ne.lt_top' (id (Ne.symm hx))"
},
{
"id": 253,
"match": false,
"ground_truth": "simp",
"model_output": "intro y\n simp\n exact convex_indicator_ge_zero hs y"
},
{
"id": 254,
"match": false,
"ground_truth": "intro y",
"model_output": "intro y\n by_cases hy : y ∈ s\n · rw [convex_indicator_of_mem hy]; simp\n · simp [convex_indicator, hy]"
},
{
"id": 255,
"match": true,
"ground_truth": "simp",
"model_output": "simp"
},
{
"id": 256,
"match": true,
"ground_truth": "simp at h1",
"model_output": "simp at h1"
},
{
"id": 257,
"match": false,
"ground_truth": "simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 258,
"match": false,
"ground_truth": "ext x",
"model_output": "ext x\n exact Eq.symm (h x)"
},
{
"id": 259,
"match": true,
"ground_truth": "exact h x",
"model_output": "exact h x"
},
{
"id": 260,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _ y _"
},
{
"id": 261,
"match": true,
"ground_truth": "simp [hp]",
"model_output": "simp [hp]"
},
{
"id": 262,
"match": true,
"ground_truth": "intro b",
"model_output": "intro b"
},
{
"id": 263,
"match": false,
"ground_truth": "by rfl",
"model_output": "constructor\n · intro h\n exact (IsLinear_iff'.1 h)\n intro ⟨a, b, h⟩\n exact (IsLinear_iff'.2 (fun x y ↦ by simp [h]; exact AddMonoidHomClass.map_add _ _ _))"
},
{
"id": 264,
"match": false,
"ground_truth": "rfl",
"model_output": "constructor\n · intro h\n exact (IsLinear_iff'.1 h)\n intro ⟨a, b, h⟩\n exact (IsLinear_iff'.2 (fun x y ↦ by simp [h]; exact AddMonoidHomClass.map_add _ _ _))"
},
{
"id": 265,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 266,
"match": false,
"ground_truth": "simp",
"model_output": "simp [ContinuousLinearMap.adjoint]"
},
{
"id": 267,
"match": false,
"ground_truth": "simp",
"model_output": "simp [ContinuousLinearMap.adjoint]"
},
{
"id": 268,
"match": false,
"ground_truth": "exact hs",
"model_output": "· apply hs"
},
{
"id": 269,
"match": false,
"ground_truth": "intro x",
"model_output": "simp"
},
{
"id": 270,
"match": false,
"ground_truth": "simp",
"model_output": "simp [smul_zero, add_zero]"
},
{
"id": 271,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x hx\n rw[convex_indicator_of_mem hx]"
},
{
"id": 272,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x hx\n rw[convex_indicator_of_mem hx]"
}
]
}