clone / evaluation /valid_score_ood_600.json
chenyili818's picture
Add files using upload-large-folder tool
661c54a verified
{
"summary": {
"total_with_gt": 273,
"matched": 53,
"accuracy": 0.19413919413919414
},
"details": [
{
"id": 0,
"match": false,
"ground_truth": "· exact mul_le_mul_of_nonneg_left hyu ha",
"model_output": "· gcongr\n exact hyu"
},
{
"id": 1,
"match": false,
"ground_truth": "exact mul_le_mul_of_nonneg_left hyu ha",
"model_output": "apply mul_le_mul_of_nonneg_left hyu ha"
},
{
"id": 2,
"match": false,
"ground_truth": "· exact mul_le_mul_of_nonneg_left hyv hb",
"model_output": "apply mul_le_mul_of_nonneg_left hyv hb"
},
{
"id": 3,
"match": false,
"ground_truth": "exact mul_le_mul_of_nonneg_left hyv hb",
"model_output": "apply mul_le_mul_of_nonneg_left hyv hb"
},
{
"id": 4,
"match": false,
"ground_truth": "rw [lipschitzWith_iff_norm_sub_le] at *",
"model_output": "rw [lipschitzWith_iff_norm_sub_le] at hl ⊢\n simp at hl\n rw [← lipschitzOnWith_univ] at hl ⊢\n have h1 : LipschitzOnWith l (fun z : E × F => (gradient H) z) univ := by\n apply lipschitzOnWith_of_lipschitzWith\n exact hl\n have h2 : LipschitzOnWith l (fun z : E × F => (gradient H) z.1 z.2) univ := by\n apply LipschitzOn"
},
{
"id": 5,
"match": false,
"ground_truth": "by rw [grad_snd_eq h, grad_snd_eq h]",
"model_output": "rw [grad_eq_block_grad, grad_fun_comp, grad_fun_comp, grad_fun_comp, grad_fun_comp]"
},
{
"id": 6,
"match": false,
"ground_truth": "rw [grad_snd_eq h, grad_snd_eq h]",
"model_output": "rw [grad_eq_block_grad, grad_fun_comp, grad_fun_comp, grad_fun_comp, grad_fun_comp]"
},
{
"id": 7,
"match": false,
"ground_truth": "apply prox_well_define f hc lbdf x",
"model_output": "rcases (prox_set_aux f x) with ⟨y, yprop⟩\n use y; simp [prox_set, yprop]"
},
{
"id": 8,
"match": false,
"ground_truth": "refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩",
"model_output": "refine ⟨x₁, ⟨hx₁, ⟨x₂, ⟨hx₂, hx, ?_⟩⟩⟩⟩⟩\n rw [map_add, @norm_add_sq 𝕜 _ _ _ _ (T x₁) (T x₂)]\n simp [hker hx₂]"
},
{
"id": 9,
"match": false,
"ground_truth": "exact LinearMap.mem_ker.mp (hker hx₂)",
"model_output": "apply hker hx₂"
},
{
"id": 10,
"match": false,
"ground_truth": "simp [Orthonormal, Pairwise] at *",
"model_output": "rw [orthonormal_iff_ite] at hv ⊢\n simp [Set.restrict, hv]"
},
{
"id": 11,
"match": false,
"ground_truth": "by_cases hsf : ProperFunction s f",
"model_output": "apply isClosed_closure"
},
{
"id": 12,
"match": false,
"ground_truth": "· exact closure_is_closed_of_proper f hs",
"model_output": "· exact epi_is_closed_of_closure f hs"
},
{
"id": 13,
"match": false,
"ground_truth": "exact closure_is_closed_of_proper f hs",
"model_output": "rw [Function.closure, hsf.1]"
},
{
"id": 14,
"match": true,
"ground_truth": "apply IsClosed.prod hs isClosed_univ",
"model_output": "apply IsClosed.prod hs isClosed_univ"
},
{
"id": 15,
"match": false,
"ground_truth": "simp [w, l, g, AffineMap.decomp']",
"model_output": "exact i.h_eq x _hx"
},
{
"id": 16,
"match": true,
"ground_truth": "rw [φ₁_equ fullrank₁ fullrank₂ n]",
"model_output": "rw [φ₁_equ fullrank₁ fullrank₂ n]"
},
{
"id": 17,
"match": false,
"ground_truth": "exact EReal.coe_le_coe_iff.mp h",
"model_output": "exact EReal.coe_le_coe_iff.1 h"
},
{
"id": 18,
"match": false,
"ground_truth": "rw [← hT.span_range_w_eq_range]",
"model_output": "have := hT.finrank_range_eq_card_nonzero_singular_values\n have h : card (Finset.univ.filter (fun i => T.singular_value i ≠ 0)) = r := by\n simp [hT.singular_values]\n exact Nat.sub_add_cancel (Nat.le_of_succ_le hT.singular_values_card_pos)\n rw [← this, ← hT.finrank_range_eq_card_nonzero_singular_values]"
},
{
"id": 19,
"match": false,
"ground_truth": "apply iff_iff_implies_and_implies.mpr",
"model_output": "rw [← bi_convex_support_eq_closure hscv hscl, ← bi_convex_support_eq_closure htcv htcl, h]"
},
{
"id": 20,
"match": false,
"ground_truth": "apply convex_conjugate_ge_bot_univ'",
"model_output": "apply lt_of_le_of_lt\n · apply zero_le'\n · apply lt_of_le_of_lt'\n · apply convex_conjugate_ge_zero\n · simp [convex_indicator]\n apply hs"
},
{
"id": 21,
"match": false,
"ground_truth": "exact HasGradientWithinAt.const_smul h c",
"model_output": "exact HasGradientAtFilter.const_smul h c"
},
{
"id": 22,
"match": true,
"ground_truth": "exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 23,
"match": true,
"ground_truth": "exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 24,
"match": true,
"ground_truth": "exact HasGradientAtFilter.const_sub hf c",
"model_output": "exact HasGradientAtFilter.const_sub hf c"
},
{
"id": 25,
"match": false,
"ground_truth": "apply convex_on_p_top\n ext x; exact h x",
"model_output": "apply convex_on_n_inf"
},
{
"id": 26,
"match": false,
"ground_truth": "apply monotone_gradient_convex'",
"model_output": "rw [ConvexOn]"
},
{
"id": 27,
"match": false,
"ground_truth": "exact (fun x _ => affine_sq_gradient x)",
"model_output": "intro x _"
},
{
"id": 28,
"match": false,
"ground_truth": "have h_zero_eq := (hS 0).mp h_zero_mem",
"model_output": "have h1 : ∀ i : Fin m, (hS (A.col i)).1 = (hS 0).1 := by\n intro i\n simp only [map_zero, hS, col, row, Fin.natAdd_natSub_cancel, ↓reduceDIte,\n Fin.coe_castAdd, add_zero, eq_self]"
},
{
"id": 29,
"match": false,
"ground_truth": "have : (0 : 𝕜) < (1 : 𝕜) := one_pos",
"model_output": "apply (hf' x y neq)"
},
{
"id": 30,
"match": true,
"ground_truth": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]",
"model_output": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]"
},
{
"id": 31,
"match": false,
"ground_truth": "rw [← one_mul (-ε * ‖y - x‖), ← hab, add_mul]",
"model_output": "apply add_nonneg (mul_nonneg ha (le_of_lt εpos)) (mul_nonneg hb (le_of_lt εpos))"
},
{
"id": 32,
"match": false,
"ground_truth": "calc\n _ = ‖(gradient H z).2 - (gradient H z').2‖ := by rw [grad_snd_eq h, grad_snd_eq h]\n _ = ‖(gradient H z - gradient H z').2‖ := rfl\n _ ≤ ‖(gradient H z - gradient H z')‖ := snd_norm_le_prod_L2 _\n _ ≤ _ := hl z z'",
"model_output": "have h1 := hl z z'"
},
{
"id": 33,
"match": false,
"ground_truth": "by\n intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos",
"model_output": "intro k; specialize ck k; rw [ck]; apply div_pos; norm_num; apply mul_pos; linarith; apply alg.lpos"
},
{
"id": 34,
"match": false,
"ground_truth": "intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos",
"model_output": "intro k; specialize ck k; rw [ck]; apply div_pos; norm_num; apply mul_pos; linarith; apply alg.lpos"
},
{
"id": 35,
"match": false,
"ground_truth": "by\n apply prox_well_define f hc lbdf x",
"model_output": "rcases (prox_set_aux f x) with ⟨y, yprop⟩\n use y; simp [prox_set, yprop]"
},
{
"id": 36,
"match": false,
"ground_truth": "by\n unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]",
"model_output": "rw [colSubmodule]"
},
{
"id": 37,
"match": false,
"ground_truth": "unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]",
"model_output": "rw [colSubmodule]"
},
{
"id": 38,
"match": false,
"ground_truth": "let ⟨x₁, hx₁, x₂, hx₂, hx⟩ := exists_orthogonal_decompose s x\n refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩\n rw [hx, LinearMap.map_add]\n suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]\n exact LinearMap.mem_ker.mp (hker hx₂)",
"model_output": "have h : x = (s.orthogonalProjection x) + (x - (s.orthogonalProjection x)) := by simp"
},
{
"id": 39,
"match": false,
"ground_truth": "suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [map_add, norm_add_sq_real]"
},
{
"id": 40,
"match": false,
"ground_truth": "by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [this, add_zero]"
},
{
"id": 41,
"match": false,
"ground_truth": "rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]",
"model_output": "rw [this, add_zero]"
},
{
"id": 42,
"match": false,
"ground_truth": "by\n simp [Orthonormal, Pairwise] at *\n aesop",
"model_output": "rw [orthonormal_iff_ite] at hv ⊢\n simp [Set.restrict, hv]"
},
{
"id": 43,
"match": false,
"ground_truth": "simp [Orthonormal, Pairwise] at *\n aesop",
"model_output": "rw [orthonormal_iff_ite] at hv ⊢\n simp [Set.restrict, hv]"
},
{
"id": 44,
"match": false,
"ground_truth": "by\n let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h",
"model_output": "have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by apply contDiffOn_zero.mpr; exact hf\n apply HasGradientAt.continuousAt\n have : HasGradientAt f (gradient f) x := by apply DifferentiableAt.hasGradientAt\n apply HasGradientAt.continuousAt this"
},
{
"id": 45,
"match": false,
"ground_truth": "let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h",
"model_output": "have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by apply contDiffOn_zero.mpr; exact hf\n apply HasGradientAt.continuousAt\n have : HasGradientAt f (gradient f) x := by apply DifferentiableAt.hasGradientAt\n apply HasGradientAt.continuousAt this"
},
{
"id": 46,
"match": false,
"ground_truth": "have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩",
"model_output": "have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by apply contDiffOn_zero.mpr; exact hf\n apply (equicontinuousOn_iff_le_maximalSeminorm hf this).1\n apply (equicontinuousOn_iff_le_maximalSeminorm this hf).2\n exact continuousOn_maximalSeminorm he"
},
{
"id": 47,
"match": false,
"ground_truth": "exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩",
"model_output": "constructor"
},
{
"id": 48,
"match": false,
"ground_truth": "exact gradient_continuous_of_contdiffat f h",
"model_output": "rw[contDiffAt_one_iff] at h\n exact h.2"
},
{
"id": 49,
"match": false,
"ground_truth": "by\n simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1",
"model_output": "apply Function.closure_univ_eq_top.mpr\n simp [Function.closure]"
},
{
"id": 50,
"match": false,
"ground_truth": "simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1",
"model_output": "apply Function.closure_univ_eq_top.mpr\n simp [Function.closure]"
},
{
"id": 51,
"match": false,
"ground_truth": "· simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ",
"model_output": "· simp [hf]\n exact isClosed_univ"
},
{
"id": 52,
"match": true,
"ground_truth": "simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ",
"model_output": "simp [hf]"
},
{
"id": 53,
"match": false,
"ground_truth": "have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]",
"model_output": "simp [Epi]\n apply IsClosed.preimage (Continuous.add continuous_const continuous_id) hs"
},
{
"id": 54,
"match": false,
"ground_truth": "have h' : Epi ⊤ s = ∅ := by\n ext ⟨x, _⟩; simp [Function.Epi]",
"model_output": "simp [Epi]"
},
{
"id": 55,
"match": false,
"ground_truth": "by\n constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith",
"model_output": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z\n simp; linarith"
},
{
"id": 56,
"match": false,
"ground_truth": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith",
"model_output": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z\n simp; linarith"
},
{
"id": 57,
"match": false,
"ground_truth": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith",
"model_output": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; rw [← ContinuousLinearMap.map_sub]; linarith"
},
{
"id": 58,
"match": false,
"ground_truth": "intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith",
"model_output": "intro hsf\n unfold HasSubgradientAt at hsf\n unfold Banach_HasSubgradientAt\n constructor\n · exact hsf\n · intro y; specialize hsf y; simp at hsf; exact hsf"
},
{
"id": 59,
"match": false,
"ground_truth": "· intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx",
"model_output": "· intro x _\n rw [← EReal.coe_add, ← inner_add_left, ← EReal.coe_le_coe_iff]\n apply le_trans _ (i.hf x)\n apply le_add_of_nonneg_left\n simp; exact i.hl x"
},
{
"id": 60,
"match": false,
"ground_truth": "intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx",
"model_output": "intro x xs\n have := i.2 x xs\n simp only [ContinuousLinearMap.coe_coe] at this\n rw [← EReal.coe_add, ← EReal.coe_le_coe_iff] at this\n exact this"
},
{
"id": 61,
"match": false,
"ground_truth": "apply Filter.tendsto_iff_seq_tendsto.1 Seq_converge_zero₃",
"model_output": "apply Filter.tendsto_iff_seq_tendsto.1 (Satisfying_equational_constraint2' fullrank₁ fullrank₂)\n apply A₂_subseq_converge_zero"
},
{
"id": 62,
"match": false,
"ground_truth": "have : (fun n => (Int.toNat (φ₁ n))) = (fun n => (φ (n+1))) := by\n ext n; rw [φ₁_equ fullrank₁ fullrank₂ n]; simp",
"model_output": "apply strictMono_nat_of_lt_succ\n intro n\n have : (φ₁ (n + 1)) > (φ₁ n) := by\n calc φ₁ (n + 1)\n _ ≥ n + 1 := StrictMono.id_le (hphi_StrictMono fullrank₁ fullrank₂) (n + 1)\n _ > n :=by linarith\n apply this\n simp only [Nat.ofNat_pos, gt_iff_lt, Nat.cast_add, Nat.cast_one, zero_lt_one, implies_true]"
},
{
"id": 63,
"match": false,
"ground_truth": "suffices 0 ≤ (c - a - b).toEReal by exact this",
"model_output": "apply EReal.coe_nonneg.mpr\n simp at h\n linarith"
},
{
"id": 64,
"match": false,
"ground_truth": "have : a + b ≤ c := by exact EReal.coe_le_coe_iff.mp h",
"model_output": "rw [← EReal.coe_add, ← EReal.coe_sub] at h"
},
{
"id": 65,
"match": false,
"ground_truth": "refine EReal.coe_nonneg.mpr ?intro.intro.a",
"model_output": "apply EReal.coe_nonneg.mpr"
},
{
"id": 66,
"match": false,
"ground_truth": "by\n constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun",
"model_output": "rw [StrongConvexOn]"
},
{
"id": 67,
"match": false,
"ground_truth": "constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun",
"model_output": "rw [StrongConvexOn]"
},
{
"id": 68,
"match": false,
"ground_truth": "have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf",
"model_output": "linarith [hfun]"
},
{
"id": 69,
"match": false,
"ground_truth": "by\n rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "have := hT.finrank_range_eq_card_nonzero_singular_values\n have h : card (Finset.univ.filter (fun i => T.singular_value i ≠ 0)) = r := by\n simp [hT.singular_values]\n exact Nat.sub_add_cancel (Nat.le_of_succ_le hT.singular_values_card_pos)\n rw [← this, ← hT.finrank_range_eq_card_nonzero_singular_values]"
},
{
"id": 70,
"match": false,
"ground_truth": "rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "have := hT.finrank_range_eq_card_nonzero_singular_values\n have h : card (Finset.univ.filter (fun i => T.singular_value i ≠ 0)) = r := by\n simp [hT.singular_values]\n exact Nat.sub_add_cancel (Nat.le_of_succ_le hT.singular_values_card_pos)\n rw [← this, ← hT.finrank_range_eq_card_nonzero_singular_values]"
},
{
"id": 71,
"match": false,
"ground_truth": "simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]",
"model_output": "rw[← hT.finrank_range_u_eq_r,← hT.finrank_range_v_eq_r]"
},
{
"id": 72,
"match": false,
"ground_truth": "· exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h",
"model_output": "· intro hz; rw [← Set.mem_convex_support, ← h, Set.mem_convex_support] at hz\n exact hz htcl hscv htcv"
},
{
"id": 73,
"match": false,
"ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h",
"model_output": "intro hzs\n have h1 : s.convex_support z = ∅ := by\n rw [convex_support_empty_iff]\n exact hzs\n have h2 := congrFun h h1\n rw [h2]\n apply convex_support_empty_iff.1\n exact htcv"
},
{
"id": 74,
"match": false,
"ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq t s hscv hscl a (fun x => (h x).symm)",
"model_output": "intro zt\n have h1 : convex_support t z = ∅ := by\n rw [← h z]; simp [convex_support]\n exact convex_conjugate_eq_empty hscl hscv (by rfl) zt\n have h2 := convex_iff_convex_support_empty.1 htcl z h1\n exact h2"
},
{
"id": 75,
"match": true,
"ground_truth": "by\n intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'",
"model_output": "intro x _"
},
{
"id": 76,
"match": true,
"ground_truth": "intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'",
"model_output": "intro x _"
},
{
"id": 77,
"match": false,
"ground_truth": "have convex_conjugate_at_zero :\n convex_conjugate univ (convex_indicator s) 0 ≤ 0 := by\n refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_\n simp\n intro y\n simp [convex_indicator]\n split_ifs with hy <;> simp",
"model_output": "rcases hs with ⟨x, hx⟩\n use x; simp [convex_conjugate]\n apply lt_of_le_of_lt\n · apply convex_indicator_le\n · simp [hx]"
},
{
"id": 78,
"match": false,
"ground_truth": "refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_",
"model_output": "apply convex_conjugate_le_zero\n · simp\n · exact convex_indicator_convex hs.convex_to_nonconvex"
},
{
"id": 79,
"match": false,
"ground_truth": "exact lt_of_le_of_lt (convex_conjugate_at_zero) (zero_lt_top)",
"model_output": "apply convex_conjugate_lt_top"
},
{
"id": 80,
"match": false,
"ground_truth": "by\n exact HasGradientWithinAt.const_smul h c",
"model_output": "exact HasGradientAtFilter.const_smul h c"
},
{
"id": 81,
"match": true,
"ground_truth": "by\n exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 82,
"match": true,
"ground_truth": "by\n exact HasGradientAtFilter.const_add hf c",
"model_output": "exact HasGradientAtFilter.const_add hf c"
},
{
"id": 83,
"match": false,
"ground_truth": "by\n simp only [sub_eq_add_neg, gradient_add_const]",
"model_output": "rw [gradient_sub_const c, gradient_const]"
},
{
"id": 84,
"match": false,
"ground_truth": "simp only [sub_eq_add_neg, gradient_add_const]",
"model_output": "rw [gradient_sub_const c, gradient_const]"
},
{
"id": 85,
"match": true,
"ground_truth": "by\n exact HasGradientAtFilter.const_sub hf c",
"model_output": "exact HasGradientAtFilter.const_sub hf c"
},
{
"id": 86,
"match": false,
"ground_truth": "by\n obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 87,
"match": false,
"ground_truth": "obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 88,
"match": false,
"ground_truth": "by\n apply convex_on_p_top\n ext x; exact h x",
"model_output": "apply convex_on_n_inf"
},
{
"id": 89,
"match": false,
"ground_truth": "by\n rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]",
"model_output": "rw [Matrix.mulVec_sub]"
},
{
"id": 90,
"match": false,
"ground_truth": "rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]",
"model_output": "rw [Matrix.mulVec_sub]"
},
{
"id": 91,
"match": false,
"ground_truth": "· exact (fun x _ => affine_sq_gradient x)",
"model_output": "· intro x _\n apply linear_gradient"
},
{
"id": 92,
"match": true,
"ground_truth": "· intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg",
"model_output": "intro x _ y _"
},
{
"id": 93,
"match": true,
"ground_truth": "intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg",
"model_output": "intro x _ y _"
},
{
"id": 94,
"match": false,
"ground_truth": "rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]",
"model_output": "rw [← sub_add, sub_right_comm, sub_add, sub_self, sub_zero]"
},
{
"id": 95,
"match": false,
"ground_truth": "rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]",
"model_output": "rw [← Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel]"
},
{
"id": 96,
"match": false,
"ground_truth": "have h_zero_mem : (0 : E) ∈ S := S.zero_mem",
"model_output": "have := hS 0\n simp at this\n have : (fun i ↦ (B.repr 0) (Fin.natAdd n i)) = 0 := by\n ext i; simp\n rw [this] at hS\n simp at hS\n exact hS"
},
{
"id": 97,
"match": false,
"ground_truth": "have h_repr_zero : B.repr 0 = 0 := LinearEquiv.map_zero B.repr",
"model_output": "simp at h_zero_eq"
},
{
"id": 98,
"match": false,
"ground_truth": "simp only [map_zero, Finsupp.coe_zero, Pi.zero_apply] at h_zero_eq",
"model_output": "simp [h_repr_zero] at h_zero_eq"
},
{
"id": 99,
"match": false,
"ground_truth": "simp only [Matrix.mulVec_zero, add_zero] at h_zero_eq",
"model_output": "simp at h_zero_eq"
},
{
"id": 100,
"match": true,
"ground_truth": "by\n unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]",
"model_output": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]"
},
{
"id": 101,
"match": true,
"ground_truth": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]",
"model_output": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]"
},
{
"id": 102,
"match": true,
"ground_truth": "by\n intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b",
"model_output": "intro b"
},
{
"id": 103,
"match": true,
"ground_truth": "intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b",
"model_output": "intro b"
},
{
"id": 104,
"match": true,
"ground_truth": "by\n rw [h]; apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [h]"
},
{
"id": 105,
"match": true,
"ground_truth": "rw [h]; apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [h]"
},
{
"id": 106,
"match": false,
"ground_truth": "apply (local_Minimum_TangentCone' loc hl hf)",
"model_output": "rw [← h]"
},
{
"id": 107,
"match": false,
"ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.symm_comp, ContinuousLinearMap.adjoint_id]"
},
{
"id": 108,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.symm_comp, ContinuousLinearMap.adjoint_id]"
},
{
"id": 109,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.symm_comp, ContinuousLinearMap.adjoint_id]"
},
{
"id": 110,
"match": false,
"ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.adjoint_comp_self]"
},
{
"id": 111,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.adjoint_comp_self]"
},
{
"id": 112,
"match": false,
"ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]",
"model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.adjoint_comp_self]"
},
{
"id": 113,
"match": false,
"ground_truth": "by rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]",
"model_output": "rw [Matrix.mul_comm]"
},
{
"id": 114,
"match": false,
"ground_truth": "rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]",
"model_output": "rw [Matrix.mul_comm]"
},
{
"id": 115,
"match": false,
"ground_truth": "have : ConvexOn ℝ X fun _ ↦ (0: EReal) := by\n dsimp [ConvexOn]\n constructor\n exact hs\n intro x _ y _ a b _ _ _\n simp",
"model_output": "apply ConvexOn.subset hs\n · apply convex_epigraph\n · simp [convex_indicator]"
},
{
"id": 116,
"match": false,
"ground_truth": "have eq : EqOn (fun _ ↦ (0: EReal)) (Set.convex_indicator X) X := by\n dsimp[EqOn]\n intro x hx\n dsimp [Set.convex_indicator]\n rw [if_pos hx]",
"model_output": "apply ConvexOn.add this\n simp [ConvexOn] at hs\n exact hs.convex_indicator (fun _ _ _ _ _ ↦ by simp)"
},
{
"id": 117,
"match": false,
"ground_truth": "by\n apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "rcases hinter with ⟨x, hx⟩\n apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hx"
},
{
"id": 118,
"match": false,
"ground_truth": "apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "rcases hinter with ⟨x, hx⟩\n apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hx"
},
{
"id": 119,
"match": false,
"ground_truth": "· exact iIntersection_closure_sub_closure_iIntersection'' h hinter",
"model_output": "· apply iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n · exact h\n · exact hinter"
},
{
"id": 120,
"match": false,
"ground_truth": "exact iIntersection_closure_sub_closure_iIntersection'' h hinter",
"model_output": "apply iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection"
},
{
"id": 121,
"match": false,
"ground_truth": "exact closure_iIntersection_sub_iIntersection_closure'",
"model_output": "apply intrinsicClosure_minimal\n · intro x hx\n rw [@mem_iInter]; intro i\n apply intrinsicClosure_mono (h i) (subset_iInter h)\n exact hx\n · exact hinter"
},
{
"id": 122,
"match": false,
"ground_truth": "have eqone : a + (1 - a) = 1 := add_sub_cancel a 1",
"model_output": "have : f (a • x + (1 - a) • y) < f x := by\n apply hf' x y lta alt\n simp [neq]"
},
{
"id": 123,
"match": false,
"ground_truth": "have lta' : 0 < 1 - a := sub_pos_of_lt alt",
"model_output": "have : f x ≤ f (a • x + (1 - a) • y) := by\n have : a • x + (1 - a) • y ∈ univ := by simp\n apply hx this\n simp [a]"
},
{
"id": 124,
"match": false,
"ground_truth": "have h : f (a • x + (1 - a) • y) < f y := by\n apply Eq.trans_gt (max_eq_right (hx trivial))\n apply hf' neq lta lta' eqone",
"model_output": "have : f (a • x + (1 - a) • y) < max (f x) (f y) := by\n apply hf' (by simpa) (by simpa) lta lta' (by simp) eqone"
},
{
"id": 125,
"match": false,
"ground_truth": "apply Eq.trans_gt (max_eq_right (hx trivial))",
"model_output": "apply hf' (by assumption) (by assumption) lta' hy (by assumption)"
},
{
"id": 126,
"match": false,
"ground_truth": "intro ε εpos",
"model_output": "intro ε εpos\n filter_upwards [hu ε εpos, hv ε εpos] with y huy hvy\n rw [inner_add_left, real_inner_smul_right, real_inner_smul_right]\n linarith [huy, hvy]"
},
{
"id": 127,
"match": false,
"ground_truth": "rw [ge_iff_le] at *",
"model_output": "apply add_le_add\n · apply mul_le_mul_of_nonneg_left hyu (by simpa)\n · apply mul_le_mul_of_nonneg_left hyv (by simpa)"
},
{
"id": 128,
"match": false,
"ground_truth": "apply add_le_add",
"model_output": "apply add_le_add\n · apply mul_le_mul_of_nonneg_left hyu (by simpa)\n · apply mul_le_mul_of_nonneg_left hyv (by simpa)"
},
{
"id": 129,
"match": false,
"ground_truth": "apply div_pos",
"model_output": "apply div_pos zero_lt_one\n apply mul_pos\n · linarith\n · apply alg.lpos"
},
{
"id": 130,
"match": false,
"ground_truth": "apply mul_pos",
"model_output": "apply mul_pos _ alg.lpos\n[USER]\napply hγ"
},
{
"id": 131,
"match": true,
"ground_truth": "· linarith [hγ]",
"model_output": "· linarith [hγ]"
},
{
"id": 132,
"match": true,
"ground_truth": "linarith [hγ]",
"model_output": "linarith [hγ]"
},
{
"id": 133,
"match": false,
"ground_truth": "· apply alg.lpos",
"model_output": "· exact alg.lpos"
},
{
"id": 134,
"match": false,
"ground_truth": "apply alg.lpos",
"model_output": "· exact alg.lpos"
},
{
"id": 135,
"match": false,
"ground_truth": "rw [mem_nhds_iff]",
"model_output": "apply Metric.ball_mem_nhds x he"
},
{
"id": 136,
"match": false,
"ground_truth": "simp [Function.Epi]",
"model_output": "simp [Epi]"
},
{
"id": 137,
"match": false,
"ground_truth": "simp [Function.Epi]",
"model_output": "simp [Epi]"
},
{
"id": 138,
"match": false,
"ground_truth": "exact isClosed_empty",
"model_output": "simp"
},
{
"id": 139,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z\n simp; linarith"
},
{
"id": 140,
"match": true,
"ground_truth": "by\n ext g; rw [h]",
"model_output": "rw [h]"
},
{
"id": 141,
"match": true,
"ground_truth": "ext g; rw [h]",
"model_output": "rw [h]"
},
{
"id": 142,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor <;> intro x hx <;> simp [i.h_eq x hx]"
},
{
"id": 143,
"match": false,
"ground_truth": "intro x _hx",
"model_output": "intro x _ [H]\n rw [H]\n simp [h]"
},
{
"id": 144,
"match": false,
"ground_truth": "simp at this",
"model_output": "rw [StrictMono]"
},
{
"id": 145,
"match": false,
"ground_truth": "· simp [StrictMono]",
"model_output": "apply strictMono_add_const"
},
{
"id": 146,
"match": false,
"ground_truth": "simp [StrictMono]",
"model_output": "apply strictMono_add_const"
},
{
"id": 147,
"match": true,
"ground_truth": "by_cases hc2 : c = ⊤",
"model_output": "by_cases hc2 : c = ⊤"
},
{
"id": 148,
"match": false,
"ground_truth": "· rw [hc2]; simp",
"model_output": "· rw [hc2, EReal.coe_sub]\n simp\n exact le_refl 0"
},
{
"id": 149,
"match": false,
"ground_truth": "rw [hc2]; simp",
"model_output": "rw [hc2, EReal.coe_sub_top a]"
},
{
"id": 150,
"match": false,
"ground_truth": "by exact this",
"model_output": "rw [← EReal.coe_sub, ← EReal.coe_sub] at this ⊢"
},
{
"id": 151,
"match": false,
"ground_truth": "constructor",
"model_output": "rw [StrongConvexOn]"
},
{
"id": 152,
"match": false,
"ground_truth": "rw [← this]",
"model_output": "rw [this] at hfun\n exact hfun"
},
{
"id": 153,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor\n · intro x\n rw[x]\n intro x\n rw[x]"
},
{
"id": 154,
"match": false,
"ground_truth": "simp [funext_iff]",
"model_output": "intro h; rw [← bi_convex_support_eq_set hscv hscl, ← bi_convex_support_eq_set htcv htcl, h]"
},
{
"id": 155,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor <;> intro hz <;> contrapose hz <;> simp [convex_support] at h <;> specialize h z hz <;> simp at h <;> tauto"
},
{
"id": 156,
"match": false,
"ground_truth": "· apply convex_univ",
"model_output": "apply convex_univ [f'']"
},
{
"id": 157,
"match": true,
"ground_truth": "apply convex_univ",
"model_output": "apply convex_univ"
},
{
"id": 158,
"match": true,
"ground_truth": "intro x _ y _",
"model_output": "intro x _ y _"
},
{
"id": 159,
"match": true,
"ground_truth": "apply sq_nonneg",
"model_output": "apply sq_nonneg"
},
{
"id": 160,
"match": true,
"ground_truth": "exact h_zero_eq.symm",
"model_output": "exact h_zero_eq.symm"
},
{
"id": 161,
"match": false,
"ground_truth": "dsimp [ConvexOn]",
"model_output": "apply convexOn_const 0 hs"
},
{
"id": 162,
"match": false,
"ground_truth": "constructor",
"model_output": "constructor <;> simp [Convex] at * <;> tauto"
},
{
"id": 163,
"match": false,
"ground_truth": "dsimp[EqOn]",
"model_output": "intro x hx\n simp [convex_indicator] at hx\n simp [hx]"
},
{
"id": 164,
"match": false,
"ground_truth": "rw [if_pos hx]",
"model_output": "rw[if_pos hx]"
},
{
"id": 165,
"match": false,
"ground_truth": "by_contra neq",
"model_output": "by_contra hxy"
},
{
"id": 166,
"match": false,
"ground_truth": "intro u hu v hv a b ha hb hab",
"model_output": "rw [convex_iff_forall_pos]"
},
{
"id": 167,
"match": true,
"ground_truth": "rw [has_f_subdiff_iff] at *",
"model_output": "rw [has_f_subdiff_iff] at *"
},
{
"id": 168,
"match": true,
"ground_truth": "rw [finrank_span_eq_card]",
"model_output": "rw [finrank_span_eq_card]"
},
{
"id": 169,
"match": false,
"ground_truth": "rw [hx, LinearMap.map_add]",
"model_output": "rw [hx, (LinearMap.ker_eq_orthogonal_orthogonal hker).mp hx₂, add_zero]"
},
{
"id": 170,
"match": false,
"ground_truth": "apply ContDiffOn.contDiffAt hf",
"model_output": "apply ContDiffOn.contDiffAt hf\n · apply mem_ball_self he"
},
{
"id": 171,
"match": false,
"ground_truth": "simp [Function.closure]",
"model_output": "apply Function.closure_univ_eq_top.mpr\n simp [Function.closure]"
},
{
"id": 172,
"match": false,
"ground_truth": "simp [Function.closure, hsf]",
"model_output": "simp [Function.IsClosed]\n exact epi_is_closed_of_closure f hs"
},
{
"id": 173,
"match": false,
"ground_truth": "by_cases hf : ∃ x ∈ s, f x = ⊥",
"model_output": "by_cases h : ∃ x ∈ s, f x = ⊥\n · simp [h]; exact isClosed_univ\n simp [h]; exact isClosed_empty"
},
{
"id": 174,
"match": false,
"ground_truth": "simp [Function.IsClosed]",
"model_output": "refine isClosed_eq ?h₁.hf ?h₁.hg\n exact continuous_const\n exact continuous_id'"
},
{
"id": 175,
"match": false,
"ground_truth": "simp [Function.IsClosed]",
"model_output": "simp [Function.IsClosed, isClosed_preimage]"
},
{
"id": 176,
"match": false,
"ground_truth": "apply StrictMono.tendsto_atTop",
"model_output": "apply StrictMono.tendsto_atTop\n apply strictMono_nat_of_lt_succ\n intro n\n have : φ₁ (n + 1) > φ₁ n := by apply StrictMono.strictMonoOn\n apply StrictMonoOn.mono this\n simp [φ₁]\n apply this\n apply φ₁_is_monotone\n apply Nat.succ_le_iff.mpr"
},
{
"id": 177,
"match": false,
"ground_truth": "apply StrictMono.comp",
"model_output": "apply StrictMono.comp\n · apply hphi_StrictMono\n · apply StrictMono.add_const\n · exact strictMono_id\n · exact Nat.zero_le 1"
},
{
"id": 178,
"match": true,
"ground_truth": "· apply hphi_StrictMono",
"model_output": "· apply hphi_StrictMono"
},
{
"id": 179,
"match": true,
"ground_truth": "apply hphi_StrictMono",
"model_output": "apply hphi_StrictMono"
},
{
"id": 180,
"match": false,
"ground_truth": "lift a to ℝ using ⟨ha2, ha1⟩",
"model_output": "have : a.toReal + b ≤ c.toReal := by\n lift a to ℝ using ⟨ha1, ha2⟩\n rw [← EReal.coe_add, ← EReal.coe_sub] at h\n exact h\n apply ha1\n apply ha2\n apply hc1\n simp\n simp\n simp\n exact h\n apply EReal.coe_le_coe_iff.1 this"
},
{
"id": 181,
"match": false,
"ground_truth": "lift c to ℝ using ⟨hc2, hc1⟩",
"model_output": "lift c to ℝ using ⟨hc1, hc2⟩\n rw [← EReal.coe_sub, ← EReal.coe_add]\n apply EReal.coe_le_coe_iff.2\n apply le_sub_of_add_le\n simpa"
},
{
"id": 182,
"match": false,
"ground_truth": "intro x hx y hy a b ha hb hab",
"model_output": "intro x xs y ys a b ha hb hab\n rw[smul_eq_mul,smul_eq_mul]\n linarith [hfun xs ys ha hb hab]"
},
{
"id": 183,
"match": false,
"ground_truth": "· exact fun h => (by rw [h])",
"model_output": "· intro h; rw [h]"
},
{
"id": 184,
"match": false,
"ground_truth": "exact fun h => (by rw [h])",
"model_output": "intro h; rw [h]"
},
{
"id": 185,
"match": false,
"ground_truth": "simp [convex_support]",
"model_output": "rw [convex_support]"
},
{
"id": 186,
"match": false,
"ground_truth": "simp [convex_support]",
"model_output": "rcases hs with ⟨x, hx⟩\n use x\n constructor\n · simp\n rw [convex_support]\n simp\n rw [iSup_apply, iSup_lt_top]\n exact fun b ↦ (convex_indicator s b).isProperOn_univ_of_mem hx"
},
{
"id": 187,
"match": true,
"ground_truth": "simp [convex_indicator]",
"model_output": "simp [convex_indicator]"
},
{
"id": 188,
"match": false,
"ground_truth": "split_ifs with hy <;> simp",
"model_output": "by_cases h : y ∈ s\n · rw [h]; simp\n simp [h]"
},
{
"id": 189,
"match": false,
"ground_truth": "rcases h1 with ⟨x, hx⟩",
"model_output": "rcases h1 with ⟨x, hx⟩\n use x\n simp [dom]\n exact hx"
},
{
"id": 190,
"match": false,
"ground_truth": "apply convex_on_p_top",
"model_output": "apply convex_on_n_inf"
},
{
"id": 191,
"match": false,
"ground_truth": "rw [polyhedra_iff_cone b]",
"model_output": "apply isClosed_setOf_polyhedra"
},
{
"id": 192,
"match": false,
"ground_truth": "exact closed_conic σ b",
"model_output": "rw [← closure_conic_eq]"
},
{
"id": 193,
"match": false,
"ground_truth": "intro x _ y _ a b _ _ _",
"model_output": "simp"
},
{
"id": 194,
"match": false,
"ground_truth": "dsimp [Set.convex_indicator]",
"model_output": "rw [convex_indicator]"
},
{
"id": 195,
"match": false,
"ground_truth": "apply ConvexOn.congr this eq",
"model_output": "rw [convexOn_congr eq]"
},
{
"id": 196,
"match": false,
"ground_truth": "apply Subset.antisymm",
"model_output": "rcases hinter with ⟨x, hx⟩\n apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hx"
},
{
"id": 197,
"match": false,
"ground_truth": "apply hf' neq lta lta' eqone",
"model_output": "have : a • x + (1 - a) • y = a • x + (1 - a) • y := by simp only [add_sub_cancel]"
},
{
"id": 198,
"match": false,
"ground_truth": "simp only [isMinOn_iff] at hy",
"model_output": "have : f (a • x + (1 - a) • y) < f (y) := h"
},
{
"id": 199,
"match": false,
"ground_truth": "apply not_le_of_gt h hy",
"model_output": "linarith [hy, h]"
},
{
"id": 200,
"match": false,
"ground_truth": "intro u",
"model_output": "rw [convex_iff_forall_pos]"
},
{
"id": 201,
"match": false,
"ground_truth": "intro ε",
"model_output": "intro ε εpos\n filter_upwards [hu ε εpos, hv ε εpos] with y huy hvy\n rw [inner_add_left, real_inner_smul_right, real_inner_smul_right]\n linarith [huy, hvy]"
},
{
"id": 202,
"match": false,
"ground_truth": "intro z z'",
"model_output": "intro z z' [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z"
},
{
"id": 203,
"match": false,
"ground_truth": "intro z",
"model_output": "intro z z' [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z'] [hl z z"
},
{
"id": 204,
"match": false,
"ground_truth": "intro k",
"model_output": "intro k; specialize ck k; rw [ck]; apply div_pos; norm_num; apply mul_pos; linarith; apply alg.lpos"
},
{
"id": 205,
"match": true,
"ground_truth": "rw [ck]",
"model_output": "rw [ck]"
},
{
"id": 206,
"match": true,
"ground_truth": "· norm_num",
"model_output": "· norm_num"
},
{
"id": 207,
"match": true,
"ground_truth": "norm_num",
"model_output": "norm_num"
},
{
"id": 208,
"match": false,
"ground_truth": "simp [h]",
"model_output": "rw [linearIndependent_iff_mul_conjTranspose_eq_one]"
},
{
"id": 209,
"match": false,
"ground_truth": "aesop",
"model_output": "constructor <;> intro a ha b hb hab <;> exact hv.1 a ha <;> exact hv.2 a ha b hb hab"
},
{
"id": 210,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h\n unfold LowerSemicontinuousHull\n simp\n exact h.1"
},
{
"id": 211,
"match": false,
"ground_truth": "exfalso",
"model_output": "apply lowersemicontinuoushull_eq_top_of_proper h.uninfinity"
},
{
"id": 212,
"match": true,
"ground_truth": "simp at h1",
"model_output": "simp at h1"
},
{
"id": 213,
"match": true,
"ground_truth": "simp [hf]",
"model_output": "simp [hf]"
},
{
"id": 214,
"match": false,
"ground_truth": "ext ⟨x, _⟩",
"model_output": "rw [epi_eq_bot]"
},
{
"id": 215,
"match": true,
"ground_truth": "rw [h1]",
"model_output": "rw [h1]"
},
{
"id": 216,
"match": true,
"ground_truth": "simp [hf]",
"model_output": "simp [hf]"
},
{
"id": 217,
"match": false,
"ground_truth": "ext ⟨x, _⟩",
"model_output": "simp [Epi]"
},
{
"id": 218,
"match": true,
"ground_truth": "rw [h']",
"model_output": "rw [h']"
},
{
"id": 219,
"match": false,
"ground_truth": "intro h z",
"model_output": "intro hsf\n unfold HasSubgradientAt at hsf\n unfold Banach_HasSubgradientAt\n constructor\n · exact hsf\n · intro y; specialize hsf y; simp at hsf; exact hsf"
},
{
"id": 220,
"match": false,
"ground_truth": "intro h",
"model_output": "intro hsf\n unfold HasSubgradientAt at hsf\n unfold Banach_HasSubgradientAt\n constructor\n · exact hsf\n · intro y; specialize hsf y; simp at hsf; exact hsf"
},
{
"id": 221,
"match": false,
"ground_truth": "simp",
"model_output": "simp [toDual_apply] at hz ⊢\n exact hz"
},
{
"id": 222,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [hz]"
},
{
"id": 223,
"match": false,
"ground_truth": "intro h z",
"model_output": "intro h\n unfold Banach_HasSubgradientAt at h\n rcases h with ⟨C, hC⟩\n use C; rw [← hC]\n intro y; apply h y"
},
{
"id": 224,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h\n unfold Banach_HasSubgradientAt at h\n rcases h with ⟨C, hC⟩\n use C; rw [← hC]\n intro y; apply h y"
},
{
"id": 225,
"match": false,
"ground_truth": "simp at hz",
"model_output": "simp [toDual] at hz"
},
{
"id": 226,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [hz]"
},
{
"id": 227,
"match": false,
"ground_truth": "ext g",
"model_output": "rw [h]"
},
{
"id": 228,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 229,
"match": false,
"ground_truth": "simp",
"model_output": "have := i.h_eq\n exact ⟨fun x a ↦ ?_, fun x a ↦ ?_⟩\n · simp\n rw [← EReal.coe_add, ← this]\n apply i.hf x a\n · simp [this]"
},
{
"id": 230,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x xs\n have := i.2 x xs\n simp only [ContinuousLinearMap.coe_coe] at this\n rw [← EReal.coe_add, ← EReal.coe_le_coe_iff] at this\n exact this"
},
{
"id": 231,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x xs\n have := i.2 x xs\n simp only [ContinuousLinearMap.coe_coe] at this\n rw [← EReal.coe_add, ← EReal.coe_le_coe_iff] at this\n exact this"
},
{
"id": 232,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _ [H]\n rw [H]\n simp [h]"
},
{
"id": 233,
"match": false,
"ground_truth": "ext n",
"model_output": "ext n [φ₁_equ fullrank₁ fullrank₂] [φ_equ fullrank₁ fullrank₂]"
},
{
"id": 234,
"match": false,
"ground_truth": "simp",
"model_output": "simp [φ]"
},
{
"id": 235,
"match": true,
"ground_truth": "rw [this]",
"model_output": "rw [this]"
},
{
"id": 236,
"match": false,
"ground_truth": "rw [hc2]",
"model_output": "rw [hc2, EReal.coe_sub_top a]"
},
{
"id": 237,
"match": false,
"ground_truth": "simp",
"model_output": "simp [← EReal.coe_add] at *"
},
{
"id": 238,
"match": false,
"ground_truth": "exact this",
"model_output": "rw [← EReal.coe_sub, ← EReal.coe_sub] at this ⊢"
},
{
"id": 239,
"match": false,
"ground_truth": "linarith",
"model_output": "linarith [this]"
},
{
"id": 240,
"match": false,
"ground_truth": "· exact hs",
"model_output": "· apply hs\n apply hfun"
},
{
"id": 241,
"match": false,
"ground_truth": "exact hs",
"model_output": "apply hs"
},
{
"id": 242,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x xs y ys a b ha hb hab\n rw[smul_eq_mul,smul_eq_mul]\n linarith [hfun xs ys ha hb hab]"
},
{
"id": 243,
"match": false,
"ground_truth": "dsimp",
"model_output": "simp only [smul_eq_mul, mul_eq_mul_left_iff, or_self]"
},
{
"id": 244,
"match": false,
"ground_truth": "ring_nf",
"model_output": "linarith [mul_comm (m / 2) a, mul_comm (m / 2) b, mul_assoc (m / 2) a b]"
},
{
"id": 245,
"match": false,
"ground_truth": "exact hfun",
"model_output": "apply hfun"
},
{
"id": 246,
"match": true,
"ground_truth": "by rw [h]",
"model_output": "rw [h]"
},
{
"id": 247,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 248,
"match": false,
"ground_truth": "intro h",
"model_output": "intro h\n have heq : s = s.convex_support ∩ t.convex_support := by\n apply Subset.antisymm\n · exact fun x hx => by rw [← h x]; exact hx.1\n exact fun x hx => by rw [← h x]; exact ⟨hx.1, hx.2⟩\n have heq' : t = s.convex_support ∩ t.convex_support := by\n apply Subset.antisymm\n · exact fun x hx => by rw [← h x]; exact hx.2\n exact fun x hx => by rw"
},
{
"id": 249,
"match": false,
"ground_truth": "ext z",
"model_output": "rw [← bi_convex_support_eq_closure hscv hscl, ← bi_convex_support_eq_closure htcv htcl, h]"
},
{
"id": 250,
"match": true,
"ground_truth": "intro x _",
"model_output": "intro x _"
},
{
"id": 251,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _"
},
{
"id": 252,
"match": false,
"ground_truth": "right",
"model_output": "right\n rcases hs with ⟨x, hx⟩\n use x\n simp\n unfold convex_support\n rw [iSup_apply, iSup_eq_bot]\n intro b\n by_contra h\n simp at h\n have : s = ∅ := by simpa using h\n simp [this] at hx\n exact hx"
},
{
"id": 253,
"match": false,
"ground_truth": "simp",
"model_output": "intro y\n simp [convex_indicator]\n intro x _\n rw [inner_zero_left]\n simp"
},
{
"id": 254,
"match": false,
"ground_truth": "intro y",
"model_output": "intro y\n simp [convex_indicator]\n by_cases h : y ∈ s\n · rw [if_pos h]; simp\n · rw [if_neg h]; simp [nonneg]"
},
{
"id": 255,
"match": false,
"ground_truth": "simp",
"model_output": "rfl"
},
{
"id": 256,
"match": true,
"ground_truth": "simp at h1",
"model_output": "simp at h1"
},
{
"id": 257,
"match": false,
"ground_truth": "simp [hx]",
"model_output": "simp [dom]"
},
{
"id": 258,
"match": true,
"ground_truth": "ext x",
"model_output": "ext x"
},
{
"id": 259,
"match": true,
"ground_truth": "exact h x",
"model_output": "exact h x"
},
{
"id": 260,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _ y _"
},
{
"id": 261,
"match": true,
"ground_truth": "simp [hp]",
"model_output": "simp [hp]"
},
{
"id": 262,
"match": true,
"ground_truth": "intro b",
"model_output": "intro b"
},
{
"id": 263,
"match": false,
"ground_truth": "by rfl",
"model_output": "constructor\n · intro h\n exact (isLinear_iff' f).mp h\n intro h\n exact (isLinear_iff' f).mpr h"
},
{
"id": 264,
"match": false,
"ground_truth": "rfl",
"model_output": "constructor\n · intro h\n exact (isLinear_iff' f).mp h\n intro h\n exact (isLinear_iff' f).mpr h"
},
{
"id": 265,
"match": true,
"ground_truth": "rw [h]",
"model_output": "rw [h]"
},
{
"id": 266,
"match": false,
"ground_truth": "simp",
"model_output": "simp only [ContinuousLinearMap.coe_comp', comp_apply, LinearEquiv.coe_coe, LinearEquiv.symm_apply_apply]"
},
{
"id": 267,
"match": false,
"ground_truth": "simp",
"model_output": "simp only [ContinuousLinearMap.coe_comp', comp_apply, LinearEquiv.coe_coe, LinearEquiv.symm_apply_apply]"
},
{
"id": 268,
"match": false,
"ground_truth": "exact hs",
"model_output": "· apply hs"
},
{
"id": 269,
"match": false,
"ground_truth": "intro x",
"model_output": "simp"
},
{
"id": 270,
"match": false,
"ground_truth": "simp",
"model_output": "simp only [smul_zero, add_zero, ge_iff_le, zero_le_one, b]"
},
{
"id": 271,
"match": false,
"ground_truth": "intro x hx",
"model_output": "intro x _"
},
{
"id": 272,
"match": false,
"ground_truth": "intro x",
"model_output": "intro x _"
}
]
}