{ "summary": { "total_with_gt": 98, "matched": 85, "accuracy": 0.8673469387755102 }, "details": [ { "id": 0, "match": true, "ground_truth": "have ha : a > 0 := by\n simp at ha'\n exact lt_of_le_of_ne ha' fun a_1 ↦ ha <| id (Eq.symm a_1)", "model_output": "have" }, { "id": 1, "match": true, "ground_truth": "refine bot_lt_iff_ne_bot.mp ?_", "model_output": "refine bot_lt_iff_ne_bot.mp ?_" }, { "id": 2, "match": true, "ground_truth": "simp [botline]", "model_output": "simp [botline]" }, { "id": 3, "match": true, "ground_truth": "by\n by_cases ha1 : a = 0\n · rw [ha1]; simp\n rwa [mul_lt_top_iff_lt_top (positivity)]", "model_output": "by_cases ha1 : a = 0" }, { "id": 4, "match": true, "ground_truth": "have h := α_inequ' (A:=A) (B:=B)", "model_output": "have h := α_inequ' (A:=A) (B:=B)" }, { "id": 5, "match": true, "ground_truth": "intro h", "model_output": "intro h" }, { "id": 6, "match": true, "ground_truth": "refine lowerSemicontinuous_iff_le_liminf.mpr ?_", "model_output": "refine lowerSemicontinuous_iff_le_liminf.mpr ?_" }, { "id": 7, "match": true, "ground_truth": "simp only [le_top]", "model_output": "simp only [le_top]" }, { "id": 8, "match": true, "ground_truth": "intro n", "model_output": "intro n" }, { "id": 9, "match": false, "ground_truth": "apply top_of_ne_bot_of_ne_proper hsf hf hx", "model_output": "exact top_of_ne_bot_of_ne_proper hsf hf hx" }, { "id": 10, "match": true, "ground_truth": "intro h", "model_output": "intro h" }, { "id": 11, "match": false, "ground_truth": "PiLp.norm_eq_of_nat 1 (norm_num)", "model_output": "by\n simp only [PiLp.norm_eq_of_nat 1 (by norm_num)]\n rfl" }, { "id": 12, "match": true, "ground_truth": "simp [intrinsicInterior]", "model_output": "simp [intrinsicInterior]" }, { "id": 13, "match": true, "ground_truth": "lift d to ℝ using ⟨hd1, hd2⟩", "model_output": "lift d to ℝ using ⟨hd1, hd2⟩" }, { "id": 14, "match": true, "ground_truth": "simp only [Subtype.preimage_coe_eq_preimage_coe_iff]", "model_output": "simp only [Subtype.preimage_coe_eq_preimage_coe_iff]" }, { "id": 15, "match": true, "ground_truth": "intro x", "model_output": "intro x" }, { "id": 16, "match": true, "ground_truth": "· exact general_polyhedra_is_polyhedra_empty τ σ trivial", "model_output": "exact general_polyhedra_is_polyhedra_empty τ σ trivial" }, { "id": 17, "match": true, "ground_truth": "rw [← eq]", "model_output": "rw [← eq]" }, { "id": 18, "match": false, "ground_truth": "exact sub_range 𝕜 hs", "model_output": "intro x hx" }, { "id": 19, "match": true, "ground_truth": "have cont_φ := ContDiffOn.continuousOn h₃", "model_output": "have cont_φ := ContDiffOn.continuousOn h₃" }, { "id": 20, "match": false, "ground_truth": "have", "model_output": "have h1 : f x ≤ g1 ∧ f y ≤ g2 := by /- wyj -/\n exact ⟨le_coe_toReal (LT.lt.ne_top hx.2), le_coe_toReal (LT.lt.ne_top hy.2)⟩" }, { "id": 21, "match": true, "ground_truth": "· rw [hctop]\n have ha : (ENNReal.ofReal a) * ⊤ = ⊤ := by\n refine ENNReal.mul_top ?h\n simpa\n rw [ha]\n simp", "model_output": "· rw [hctop]\n have ha : (ENNReal.ofReal a) * ⊤ = ⊤ := by\n refine ENNReal.mul_top ?h\n simpa\n rw [ha]\n simp" }, { "id": 22, "match": true, "ground_truth": "linarith", "model_output": "linarith" }, { "id": 23, "match": false, "ground_truth": "dsimp", "model_output": "by dsimp; linarith" }, { "id": 24, "match": true, "ground_truth": "constructor", "model_output": "constructor" }, { "id": 25, "match": false, "ground_truth": "have eq_r : r - r / 2 = r / 2 := linarith", "model_output": "have eq_r : r - r / 2 = r / 2 := by linarith" }, { "id": 26, "match": true, "ground_truth": "rw [mem_closure_iff_seq_limit]", "model_output": "rw [mem_closure_iff_seq_limit]" }, { "id": 27, "match": true, "ground_truth": "rw [hasGradientAt_iff_hasFDerivAt] at h", "model_output": "rw [hasGradientAt_iff_hasFDerivAt] at h" }, { "id": 28, "match": true, "ground_truth": "intro h", "model_output": "intro h" }, { "id": 29, "match": true, "ground_truth": "field_simp at cond", "model_output": "field_simp at cond" }, { "id": 30, "match": true, "ground_truth": "field_simp", "model_output": "field_simp" }, { "id": 31, "match": true, "ground_truth": "constructor", "model_output": "constructor" }, { "id": 32, "match": false, "ground_truth": "intro x", "model_output": "intro x hx y hy" }, { "id": 33, "match": true, "ground_truth": "rw [← smul_eq_mul, ← smul_eq_mul]", "model_output": "rw [← smul_eq_mul, ← smul_eq_mul]" }, { "id": 34, "match": false, "ground_truth": "have", "model_output": "have hx1 : x.1 ∈ closure s := by\n rw [mem_closure_iff_seq_limit]\n use Prod.fst ∘ w\n simpa using ⟨fun n ↦ (hw n).1, Tendsto.fst_nhds h⟩" }, { "id": 35, "match": true, "ground_truth": "exact this", "model_output": "exact this" }, { "id": 36, "match": true, "ground_truth": "rw [IsLocalMinOn, IsMinFilter, eventually_iff_exists_mem] at hl", "model_output": "rw [IsLocalMinOn, IsMinFilter, eventually_iff_exists_mem] at hl" }, { "id": 37, "match": true, "ground_truth": "constructor", "model_output": "constructor" }, { "id": 38, "match": true, "ground_truth": "· apply convex_univ", "model_output": "· apply convex_univ" }, { "id": 39, "match": true, "ground_truth": "right\n simpa [topline] using ⟨hx1, hx2⟩", "model_output": "right" }, { "id": 40, "match": true, "ground_truth": "apply (hxn (n + N)).1", "model_output": "apply (hxn (n + N)).1" }, { "id": 41, "match": true, "ground_truth": "exact this", "model_output": "exact this" }, { "id": 42, "match": true, "ground_truth": "rcases cn with ⟨lam, mu, ⟨cn1, cn2⟩⟩", "model_output": "rcases cn with ⟨lam, mu, ⟨cn1, cn2⟩⟩" }, { "id": 43, "match": true, "ground_truth": "simp [mul_comm, mul_left_comm]", "model_output": "simp [mul_comm, mul_left_comm]" }, { "id": 44, "match": true, "ground_truth": "simp at hx", "model_output": "simp at hx" }, { "id": 45, "match": true, "ground_truth": "apply Set.Subset.antisymm", "model_output": "apply Set.Subset.antisymm" }, { "id": 46, "match": true, "ground_truth": "· exact hfx", "model_output": "· exact hfx" }, { "id": 47, "match": false, "ground_truth": "· exact fun a ↦ Real_epi_closed_of_EReal_epi_closed a", "model_output": "· exact fun a ↦ EReal_epi_closed_of_Real_epi_closed a hs" }, { "id": 48, "match": true, "ground_truth": "linarith", "model_output": "linarith" }, { "id": 49, "match": true, "ground_truth": "apply Filter.Eventually.of_forall", "model_output": "apply Filter.Eventually.of_forall" }, { "id": 50, "match": true, "ground_truth": "rfl", "model_output": "rfl" }, { "id": 51, "match": true, "ground_truth": "simp at hab", "model_output": "simp at hab" }, { "id": 52, "match": true, "ground_truth": "exact h_deriv t₀", "model_output": "exact h_deriv t₀" }, { "id": 53, "match": true, "ground_truth": "apply div_pos", "model_output": "apply div_pos" }, { "id": 54, "match": true, "ground_truth": "intro y yf\n rw [FeasSet] at yf xf\n rw [inezero]\n apply yf.2.2 i is", "model_output": "intro y yf" }, { "id": 55, "match": true, "ground_truth": "have h1 : ‖z.1 - x‖ ≤ ‖z - z'‖ := fst_norm_le_prod_L2 (z - z')", "model_output": "have h1 : ‖z.1 - x‖ ≤ ‖z - z'‖ := fst_norm_le_prod_L2 (z - z')" }, { "id": 56, "match": true, "ground_truth": "simp only [abs_abs]", "model_output": "simp only [abs_abs]" }, { "id": 57, "match": true, "ground_truth": "repeat rw [z]; simp; apply norm_prod_left_zero", "model_output": "rw [z]; simp; apply norm_prod_left_zero" }, { "id": 58, "match": true, "ground_truth": "have", "model_output": "have" }, { "id": 59, "match": true, "ground_truth": "have : Inseparable uy vx := Metric.inseparable_iff.mpr this", "model_output": "have : Inseparable uy vx := Metric.inseparable_iff.mpr this" }, { "id": 60, "match": true, "ground_truth": "have", "model_output": "have" }, { "id": 61, "match": true, "ground_truth": "apply Tendsto.const_mul C this", "model_output": "apply Tendsto.const_mul C this" }, { "id": 62, "match": true, "ground_truth": "linarith", "model_output": "linarith" }, { "id": 63, "match": true, "ground_truth": "rw [mul_assoc]", "model_output": "rw [mul_assoc]" }, { "id": 64, "match": true, "ground_truth": "apply hcs.subseq_of_frequently_in (Filter.Frequently.of_forall even)", "model_output": "apply hcs.subseq_of_frequently_in (Filter.Frequently.of_forall even)" }, { "id": 65, "match": true, "ground_truth": "rfl", "model_output": "rfl" }, { "id": 66, "match": true, "ground_truth": "by\n rw [sub_self ((1 - τ) * ρ * (inner ℝ A₂_x_diff r_n)), zero_add]", "model_output": "by\n rw [sub_self ((1 - τ) * ρ * (inner ℝ A₂_x_diff r_n)), zero_add]" }, { "id": 67, "match": true, "ground_truth": "linarith", "model_output": "linarith" }, { "id": 68, "match": true, "ground_truth": "have h1: τ ≥ 0 := rcases admm.htau with ⟨h₁, _⟩; apply le_of_lt h₁", "model_output": "have" }, { "id": 69, "match": true, "ground_truth": "norm_num", "model_output": "norm_num" }, { "id": 70, "match": true, "ground_truth": "by\n intro n\n rfl", "model_output": "intro n" }, { "id": 71, "match": true, "ground_truth": "rw [pow_two]; simp", "model_output": "rw [pow_two]; simp" }, { "id": 72, "match": true, "ground_truth": "apply div_pos\n · simp[hx₁]\n · simp", "model_output": "apply div_pos" }, { "id": 73, "match": true, "ground_truth": "exact Metric.isOpen_ball", "model_output": "exact Metric.isOpen_ball" }, { "id": 74, "match": true, "ground_truth": "have", "model_output": "have" }, { "id": 75, "match": true, "ground_truth": "apply (mul_lt_mul_iff_of_pos_left zero_lt_two).mp\n rw [mul_div_cancel₀, mul_div_cancel₀]\n simp [hx₁]; simp; simp", "model_output": "apply (mul_lt_mul_iff_of_pos_left zero_lt_two).mp" }, { "id": 76, "match": true, "ground_truth": "have : φ_sum = (fun c => ∑ x ∈ ht2.toFinset, φ x c) := ext c; simp [φ_sum]", "model_output": "have" }, { "id": 77, "match": false, "ground_truth": "have", "model_output": "simp [active_set] at hj1" }, { "id": 78, "match": true, "ground_truth": "rw[h2]", "model_output": "rw[h2]" }, { "id": 79, "match": true, "ground_truth": "intro c1 hc1", "model_output": "intro c1 hc1" }, { "id": 80, "match": true, "ground_truth": "exact ieq1 b n1leb", "model_output": "exact ieq1 b n1leb" }, { "id": 81, "match": false, "ground_truth": "have", "model_output": "have h3a': Φ k ∈ range Φ := by use k" }, { "id": 82, "match": true, "ground_truth": "simp only [add_le_add_iff_right, ge_iff_le]", "model_output": "simp only [add_le_add_iff_right, ge_iff_le]" }, { "id": 83, "match": false, "ground_truth": "have", "model_output": "have mem2 : alg.y k ∈ univ := by simp" }, { "id": 84, "match": true, "ground_truth": "rw [norm_sub_rev]; exact ieq1 b n1leb", "model_output": "rw [norm_sub_rev]" }, { "id": 85, "match": true, "ground_truth": "apply norm_nonneg", "model_output": "apply norm_nonneg" }, { "id": 86, "match": true, "ground_truth": "apply Nat.ne_zero_iff_zero_lt.mpr npos", "model_output": "apply Nat.ne_zero_iff_zero_lt.mpr npos" }, { "id": 87, "match": true, "ground_truth": "linarith", "model_output": "linarith" }, { "id": 88, "match": true, "ground_truth": "apply add_pos_of_nonneg_of_pos (Nat.cast_nonneg k) zero_lt_one", "model_output": "apply add_pos_of_nonneg_of_pos (Nat.cast_nonneg k) zero_lt_one" }, { "id": 89, "match": true, "ground_truth": "by\n apply reduction", "model_output": "apply reduction" }, { "id": 90, "match": true, "ground_truth": "have m1le : m1 ≤ 1 + max (max m1 m2) m3:= by\n linarith [(le_max_left m1 m2).trans (le_max_left _ m3)]", "model_output": "have" }, { "id": 91, "match": true, "ground_truth": "by\n apply mul_div_cancel_left₀\n linarith", "model_output": "apply mul_div_cancel_left₀" }, { "id": 92, "match": false, "ground_truth": "rw [rw_rn_1]", "model_output": "by rw [rw_rn_1]" }, { "id": 93, "match": true, "ground_truth": "have", "model_output": "have" }, { "id": 94, "match": true, "ground_truth": "left", "model_output": "left" }, { "id": 95, "match": true, "ground_truth": "rw[← sub_zero (A₁ (e₁ n) + A₂ (e₂ n))] at h_n'", "model_output": "rw[← sub_zero (A₁ (e₁ n) + A₂ (e₂ n))] at h_n'" }, { "id": 96, "match": true, "ground_truth": "simp; apply mul_nonneg; linarith [alg.tpos]; apply sq_nonneg", "model_output": "simp" }, { "id": 97, "match": true, "ground_truth": "rw [← sub_mul, sub_sub_cancel, sub_sub]", "model_output": "rw [← sub_mul, sub_sub_cancel, sub_sub]" } ] }