{ "summary": { "total_with_gt": 239, "matched": 76, "accuracy": 0.3179916317991632 }, "details": [ { "id": 0, "match": true, "ground_truth": "apply HasDerivAt.sub", "model_output": "apply HasDerivAt.sub" }, { "id": 1, "match": false, "ground_truth": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring", "model_output": "apply HasDerivAt.const_mul' c⁻¹ (hasDerivAt_id' x)" }, { "id": 2, "match": true, "ground_truth": "rw [← EReal.coe_sub]", "model_output": "rw [← EReal.coe_sub]" }, { "id": 3, "match": false, "ground_truth": "ext x", "model_output": "ext x; simp\n exact convex_indicator_empty x (by simp)" }, { "id": 4, "match": true, "ground_truth": "exact ah", "model_output": "exact ah" }, { "id": 5, "match": false, "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp", "model_output": "lift a to ℝ using ⟨ha1, ha2⟩\nlift b to ℝ using ⟨hb1, hb2⟩\nrw [← EReal.coe_sub]\nsimp only [gt_iff_lt, EReal.coe_lt_coe_iff]\nexact bot_lt_iff_ne_bot.2 (sub_ne_bot.2 ⟨ha1, ha2, hb1, hb2⟩)" }, { "id": 6, "match": false, "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩", "model_output": "have h1 : b - b = 0 := EReal.sub_eq_zero_of_eq hb2 hb1\n rw [h1]\n simp\n exact le_add_of_ge ha1 ha2 hb1 hb2" }, { "id": 7, "match": true, "ground_truth": "apply hasDerivAt_mul_const c⁻¹", "model_output": "apply hasDerivAt_mul_const c⁻¹" }, { "id": 8, "match": false, "ground_truth": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono (A := A) (x := x) H, α_subseq_converge (Aφ_sub H)⟩", "model_output": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono, Aφ_tend⟩" }, { "id": 9, "match": true, "ground_truth": "· rw [ha1];simp", "model_output": "· rw [ha1];simp" }, { "id": 10, "match": false, "ground_truth": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩", "model_output": "by\n have : OrderIso g' := by exact EReal.instOrderIsoEquiv\n apply OrderIso.map_biSup s g' rfl" }, { "id": 11, "match": false, "ground_truth": "ext i j", "model_output": "simp [g, h]" }, { "id": 12, "match": false, "ground_truth": "apply glt", "model_output": "simp [real_inner_eq_dot] at hg" }, { "id": 13, "match": false, "ground_truth": "apply add_le_add_right a", "model_output": "by\n exact fun a b ↦ add_le_add_right a b a" }, { "id": 14, "match": false, "ground_truth": "left", "model_output": "left; exact hdomsf" }, { "id": 15, "match": false, "ground_truth": "ext j", "model_output": "rfl" }, { "id": 16, "match": false, "ground_truth": "intro i", "model_output": "intro i j" }, { "id": 17, "match": false, "ground_truth": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2", "model_output": "· intro h\n by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2\n exact False.elim (hs h2)" }, { "id": 18, "match": false, "ground_truth": "constructor", "model_output": "constructor\n · intro h x hx\n simp at *\n exact ⟨hx.left, le_trans (h x.1 hx.left) hx.right⟩\n intro h x hx\n have : (x, g x) ∈ {p | p.1 ∈ s ∧ g p.1 ≤ p.2} := by simpa\n have := h this\n simp at this\n apply this.2" }, { "id": 19, "match": false, "ground_truth": "by_cases hA : A = 0", "model_output": "intro x\n apply HasGradientAt.const_mul' 2\n apply HasGradientAt.dotProduct\n · apply HasGradientAt.const_mul' (Aᵀ *ᵥ A)\n apply gradient_of_inner\n · apply hasGradientAt_const" }, { "id": 20, "match": false, "ground_truth": "by norm_num", "model_output": "by norm_num [a]" }, { "id": 21, "match": false, "ground_truth": "by\n obtain hcon := subdifferential_subset f x₀\n apply hcon; exact first_order_optimality_condition f x₀ hx", "model_output": "rw [subdifferential, Set.mem_setOf]" }, { "id": 22, "match": true, "ground_truth": "exact h", "model_output": "exact h" }, { "id": 23, "match": false, "ground_truth": "by\n have : (fun x ↦ (inner (ℝ) x a : ℝ)) = fun x ↦ (inner (ℝ) a x : ℝ) := by\n ext y; exact real_inner_comm a y\n rw [this]; apply gradient_of_inner_const", "model_output": "apply InnerProductSpace.hasGradientAt_inner_right" }, { "id": 24, "match": true, "ground_truth": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)\n refine prod_erase_mul univ (fun «x» ↦ A «x» «x») ?_\n exact mem_univ j", "model_output": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)" }, { "id": 25, "match": true, "ground_truth": "intro x y hy", "model_output": "intro x y hy" }, { "id": 26, "match": false, "ground_truth": "simp [LowerSemicontinuousHull]", "model_output": "by\n simp [LowerSemicontinuousHull, iInter_setOf, iInter_and]" }, { "id": 27, "match": true, "ground_truth": "simp at hfy", "model_output": "simp at hfy" }, { "id": 28, "match": false, "ground_truth": "rw [Fin.sum_univ_succ]", "model_output": "have : ∀ (i : Fin (n + 1)), f i.succ ≠ ⊥ := fun i ↦ p i.succ" }, { "id": 29, "match": true, "ground_truth": "by_cases hx2 : f x = ⊥", "model_output": "by_cases hx2 : f x = ⊥" }, { "id": 30, "match": false, "ground_truth": "rw [@mem_iInter]", "model_output": "rw [mem_intrinsicClosure] at hx" }, { "id": 31, "match": false, "ground_truth": "rcases h with ⟨δ, dpos, h⟩", "model_output": "rcases h with ⟨δ, dpos, h⟩\n use δ; constructor\n · exact dpos\n intro x' h'\n rw[← dist_eq_norm]\n rw[← Metric.ball, Set.mem_ball] at h'\n exact h h'" }, { "id": 32, "match": false, "ground_truth": "exact half_lt_self dpos", "model_output": "by linarith" }, { "id": 33, "match": false, "ground_truth": "apply pin", "model_output": "exact pin" }, { "id": 34, "match": false, "ground_truth": "by_cases hf_pinf : f = ⊤", "model_output": "apply convex_conjugate_is_convex" }, { "id": 35, "match": false, "ground_truth": "by\n apply intrinsicInterior_subset.antisymm\n nth_rw 1 [intrinsicInterior]\n rw [intrinsicInterior, image_subset_iff]\n rw [affineSpan_intrinsicInterior hsc]\n rw [Function.Injective.preimage_image Subtype.val_injective]\n simp [intrinsicInterior]", "model_output": "by\n rw [intrinsicInterior]" }, { "id": 36, "match": false, "ground_truth": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]", "model_output": "rw[← sub_add, norm_add_sq_real, inner_sub_right, ← add_sub, add_comm]" }, { "id": 37, "match": false, "ground_truth": "rw [EReal.coe_le_coe_iff] at hccleq", "model_output": "apply EReal.coe_le_coe_iff.mpr" }, { "id": 38, "match": false, "ground_truth": "intro z", "model_output": "intro x hx\n rw [intrinsicInterior_iff (convex_intrinsicClosure ℝ h) (nonempty_of_mem (intrinsicClosure ℝ s))] at hx\n exact (intrinsicInterior_subset _ _ ) hx" }, { "id": 39, "match": false, "ground_truth": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]", "model_output": "have : FiniteDimensional 𝕜 (span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite; simp\n exact Orthonormal.exists_orthonormalBasis_span hv" }, { "id": 40, "match": false, "ground_truth": "rw [h2]", "model_output": "rw [h2] at h1 ⊢" }, { "id": 41, "match": false, "ground_truth": "apply banach_steinhaus", "model_output": "have : ∀ x : s, ‖(innerSL ℝ) x‖ = ‖x‖ := by\n intro x\n simp [innerSL_apply_norm]" }, { "id": 42, "match": false, "ground_truth": "intro h\n apply HasFDeriv_Convergence\n exact h", "model_output": "exact fun a ε ε0 ↦ HasFDeriv_Convergence a ε ε0" }, { "id": 43, "match": true, "ground_truth": "· apply Convergence_HasFDeriv", "model_output": "apply Convergence_HasFDeriv" }, { "id": 44, "match": false, "ground_truth": "by\n rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]", "model_output": "rw [←intrinsicInterior_affineSubspace_eq_self] at hn" }, { "id": 45, "match": true, "ground_truth": "apply alg.ha 0", "model_output": "apply alg.ha 0" }, { "id": 46, "match": true, "ground_truth": "rw [h2]", "model_output": "rw [h2]" }, { "id": 47, "match": true, "ground_truth": "rcases this with ⟨xn, hxn1, hxn2⟩", "model_output": "rcases this with ⟨xn, hxn1, hxn2⟩" }, { "id": 48, "match": false, "ground_truth": "have h2 := tendsto_add (A:=A) (B:=B)", "model_output": "have h2 := tendsto_atTop_ciInf (A_nonempty hAa) (B_nonempty hBa) h1" }, { "id": 49, "match": false, "ground_truth": "have : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [mul_pow, WithLp.prod_norm_sq_eq_of_L2, WithLp.prod_norm_sq_eq_of_L2]\n simp only [WithLp.smul_fst, WithLp.smul_snd]\n rw [norm_smul, norm_smul, mul_add, mul_pow, mul_pow]", "model_output": "by\n have h : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [WithLp.smul_norm_sq_eq_inner, ← mul_pow]\n apply real_inner_le_norm\n apply nonneg_le_nonneg_of_sq_le_sq (norm_nonneg _) (mul_nonneg (norm_nonneg a) (norm_nonneg b))\n rwa [← pow_two, ← pow_two]" }, { "id": 50, "match": false, "ground_truth": "by_cases ht : i ∈ σ", "model_output": "by_cases hs : i ∈ σ" }, { "id": 51, "match": false, "ground_truth": "simp", "model_output": "simp; exact ⟨hd, fun x _ y _ a b _ _ _ => by simp⟩" }, { "id": 52, "match": true, "ground_truth": "by rw [h y ys, hf]; exact hg y ys", "model_output": "rw [h y ys, hf]" }, { "id": 53, "match": true, "ground_truth": "exact in_of_le_sinf_of_b_top hx", "model_output": "exact in_of_le_sinf_of_b_top hx" }, { "id": 54, "match": false, "ground_truth": "intro hmin", "model_output": "intro hmin\n exact first_order_unconstrained hf hmin hfc" }, { "id": 55, "match": true, "ground_truth": "simp [hx2, hw.2]", "model_output": "simp [hx2, hw.2]" }, { "id": 56, "match": true, "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", "model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]" }, { "id": 57, "match": true, "ground_truth": "simp [ConvexCone.addPoint] at hx", "model_output": "simp [ConvexCone.addPoint] at hx" }, { "id": 58, "match": false, "ground_truth": "intro x", "model_output": "intro x xs y ys\n apply lagrange hs hf x xs y ys\n apply add_comm\n apply smul_sub\n apply inner_sub_left\n apply eq_sub_of_add_eq\n apply Eq.symm\n apply sub_eq_add_neg\n apply sub_eq_add_neg" }, { "id": 59, "match": false, "ground_truth": "simp", "model_output": "simp [EReal.coe_mul_bot_of_pos] at hx" }, { "id": 60, "match": false, "ground_truth": "by\n simp only [mem_setOf_eq]\n intro _ _ _ _ hp1 hp2 hp3\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]", "model_output": "intro _ _ _ _ _ hp1 hp2 hp3\n simp only [mem_setOf_eq]\n rw [A.map_vadd, A.map_vsub, vsub_eq_sub, map_smul, map_sub, hp1, hp2, hp3]\n simp only [vadd_eq_add, add_sub_cancel]" }, { "id": 61, "match": false, "ground_truth": "linarith", "model_output": "linarith [ht]" }, { "id": 62, "match": true, "ground_truth": "simp [h]", "model_output": "simp [h]" }, { "id": 63, "match": true, "ground_truth": "simp [g]", "model_output": "simp [g]" }, { "id": 64, "match": false, "ground_truth": "rw [Prod.tendsto_iff] at xntend", "model_output": "have xnunifcond : ∀ (n : ℕ), f (xn n).1 ≤ (xn n).2 := by\n exact fun n ↦ xncond n" }, { "id": 65, "match": false, "ground_truth": "by_cases ha1 : a = 0", "model_output": "by_cases hb1 : b = 0\n[ASSISTANT]\n· rw [hb1]; simp; rw [one_smul]; simp at hab; rw [hab]; simp\n[ASSISTANT]\n· rw [EReal.smul_top_of_pos (by linarith)]; simp\n rw [EReal.smul_top_of_pos (by linarith)]; simp\n rw [EReal.smul_top_of_pos (by linarith)]; simp\n apply le_top" }, { "id": 66, "match": false, "ground_truth": "by_cases hb1 : b = 0", "model_output": "simp [ConvexOn] at hf" }, { "id": 67, "match": false, "ground_truth": "congr", "model_output": "congr!" }, { "id": 68, "match": false, "ground_truth": "intro z", "model_output": "intro z hz\n have : HasFDerivAt f (f' z) z := by apply hu3; exact hz\n exact (hasGradientAt_iff_hasFDerivAt).mp this" }, { "id": 69, "match": true, "ground_truth": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl", "model_output": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl" }, { "id": 70, "match": false, "ground_truth": "intro y", "model_output": "intro y hy" }, { "id": 71, "match": false, "ground_truth": "have hb : b = 1 := by linarith", "model_output": "simp [ha] at absum ⊢\n rw [absum]\n simp\n apply convex_conjugate_geq_zero" }, { "id": 72, "match": false, "ground_truth": "intro x y r", "model_output": "have h' : A = (fun x => (1 : ℝ) • x) := by\n ext x; exact (AffineMap.map_smul A x (1 : ℝ)).symm" }, { "id": 73, "match": true, "ground_truth": "rw [hab]", "model_output": "rw [hab]" }, { "id": 74, "match": false, "ground_truth": "obtain h := ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff\n rw [slope_def_field, le_div_iff₀] at h\n repeat linarith", "model_output": "apply ConcaveOn.slope_le_deriv h1 hy' hx' xgt hdiff" }, { "id": 75, "match": false, "ground_truth": "have ze : z ≠ 0 := by\n by_contra hz; simp [hz] at zin; simp [r] at zin", "model_output": "by_cases z0 : z = 0" }, { "id": 76, "match": true, "ground_truth": "rw [← hEq]", "model_output": "rw [← hEq]" }, { "id": 77, "match": false, "ground_truth": "have h1 : M -ᵥ M ⊆ Submodule.comap (LinearMap.inl R α β) v := by\n rintro p ⟨c, hc, d, hd, rfl⟩\n exact Submodule.subset_span ⟨⟨c, n0⟩, ⟨hc, hn0⟩, ⟨d, n0⟩, ⟨hd, hn0⟩, by simp⟩", "model_output": "have : (m, n) = (m0, n0) + ((m - m0), (n - n0)) := by simp [Prod.eq_iff_fst_eq_snd_eq]" }, { "id": 78, "match": false, "ground_truth": "have h_nonempty : S.Nonempty := by\n obtain ⟨a, ha⟩ := @NormedSpace.sphere_nonempty_rclike 𝕜 _ V _ _ _ 1 zero_le_one\n use a", "model_output": "have h_nonempty : S.Nonempty := by\n exact unit_ball_nonempty 𝕜 V" }, { "id": 79, "match": false, "ground_truth": "linarith", "model_output": "linarith [hy.2, hx₂]" }, { "id": 80, "match": true, "ground_truth": "apply DifferentiableAt.hasGradientAt", "model_output": "apply DifferentiableAt.hasGradientAt" }, { "id": 81, "match": false, "ground_truth": "rcases lbdf with ⟨L, Lbound⟩", "model_output": "have bddbelowImS : BddBelow ImS := by\n rcases lbdf with ⟨L, Lbound⟩\n use L; intro gx; simp [ImS]\n rcases gx with ⟨z, _, gzeq⟩\n rw [← gzeq]; exact Lbound z" }, { "id": 82, "match": false, "ground_truth": "simp", "model_output": "simp; linarith [μpos]" }, { "id": 83, "match": false, "ground_truth": "norm_num", "model_output": "by norm_num" }, { "id": 84, "match": false, "ground_truth": "intro x hx", "model_output": "intro x hx\n have : x ∈ Icc 0 1 := by simp at hx; simp; constructor <;> linarith\n exact h1 x this" }, { "id": 85, "match": false, "ground_truth": "intro x _", "model_output": "intro x _; exact (h1 x)" }, { "id": 86, "match": true, "ground_truth": "rw [mem_setOf]", "model_output": "rw [mem_setOf]" }, { "id": 87, "match": false, "ground_truth": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n rw[← inequ₂''];\n exact inequ₂' y nonempty lscf x_converge g_converge", "model_output": "apply ge_of_liminf (f := fun n ↦ f (x n) + ⟪g n, y - x n⟫) (x := y) (by apply fx_lowerbd) (by apply fx_BddBelow) (by apply fx_BddAbove) (by apply fx_lowersemicontinuous) (by apply fx_lowersemicontinuous) (by apply fx_lowersemicontinuous) (by apply fx_lowersemicontinuous) (by apply fx_lowersemicontinuous) (by apply fx_lowersemicontinuous) (by apply fx_lowersemicontinuous) (" }, { "id": 88, "match": false, "ground_truth": "refine norm_ne_zero_iff.mpr ?_", "model_output": "apply norm_ne_zero_iff.mpr\n[· exact Module.Basis.ne_zero b i]" }, { "id": 89, "match": false, "ground_truth": "rw [← hT.span_range_v_eq_orthogonal_ker,\n mem_span_range_iff_exists_fun] at hx₂", "model_output": "have := hT.orthogonal_span_range_v_eq_orthogonal_ker" }, { "id": 90, "match": true, "ground_truth": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]", "model_output": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]" }, { "id": 91, "match": true, "ground_truth": "apply Finset.sum_eq_zero", "model_output": "apply Finset.sum_eq_zero" }, { "id": 92, "match": false, "ground_truth": "mul_inv_cancel₀ (by linarith),", "model_output": "by\n field_simp; ring_nf; simp [norm_smul, mul_pow]" }, { "id": 93, "match": true, "ground_truth": "by rw [one_smul]; rfl", "model_output": "rw [one_smul]" }, { "id": 94, "match": false, "ground_truth": "intro b", "model_output": "intro b hb" }, { "id": 95, "match": false, "ground_truth": "by linarith", "model_output": "apply mul_pos hc (by linarith)" }, { "id": 96, "match": true, "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", "model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]" }, { "id": 97, "match": true, "ground_truth": "· rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]; exact mk_mem_prod (by simp) hx", "model_output": "rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]" }, { "id": 98, "match": true, "ground_truth": "rw [alg.γeq k, alg.teq k]", "model_output": "rw [alg.γeq k, alg.teq k]" }, { "id": 99, "match": false, "ground_truth": "intro i _", "model_output": "intro i _ [h4]" }, { "id": 100, "match": true, "ground_truth": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩", "model_output": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩" }, { "id": 101, "match": false, "ground_truth": "exact hu.2.2 (mem_inter hu.2.1 hx)", "model_output": "apply hu.2.1" }, { "id": 102, "match": false, "ground_truth": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf", "model_output": "have h1 :A x j + ε + ∑ x_1 with ¬ x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf [add_comm, add_left_comm]" }, { "id": 103, "match": true, "ground_truth": "intro x", "model_output": "intro x" }, { "id": 104, "match": false, "ground_truth": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a", "model_output": "simp [φ]" }, { "id": 105, "match": false, "ground_truth": "rw[Metric.isOpen_iff] at isopen", "model_output": "rcases (mem_nhdsWithin.1 ht.1).2 with ⟨r, hr, ht1⟩\n use ‖toEuclidean (toDual ℝ α) (f := f)‖ * r\n use t ∩ s\n constructor\n · apply mem_nhdsWithin_of_mem_nhds\n apply mem_nhds_of_mem_ball\n exact ⟨r, hr, isopen, x_pos⟩\n · constructor\n · apply LipschitzOnWith.mono (convexOn_norm_toEuclidean α f) isopen.convex\n · apply LipschitzOn" }, { "id": 106, "match": false, "ground_truth": "rw [deriv_of_const_mul_func (f u - f x)]", "model_output": "have : ‖u - x‖ + ‖f u - f x‖ < c := by\n rw [← add_halves c]\n apply add_lt_add\n · apply mem_ball_iff_norm.1 hu.left\n · simp at *\n rw [abs_eq_self.2] <;> linarith [hu.right]" }, { "id": 107, "match": false, "ground_truth": "rcases exists_seq_tendsto_sInf hs hs' with ⟨fx, _, cfx, fxs⟩", "model_output": "have hs'' : ∃ x ∈ (f ⁻¹' Set.Iic y), ∀ a ∈ (f ⁻¹' Set.Iic y), f x ≤ f a := by\n rcases (sInf_eq_inf hs hs').1 with ⟨x, hx⟩\n use x; constructor\n · exact hx\n intro a ha; exact le_csInf hs' ⟨a, ha, rfl⟩" }, { "id": 108, "match": false, "ground_truth": "induction n with", "model_output": "have : Φ n ≤ C := by\n calc\n _ = ∑ i ∈ range n, Φ_i n + ∑ i ∈ range n, Ψ_i n := by rfl\n _ ≤ ∑ i ∈ range n, (φ i + ψ i) + ∑ i ∈ range n, (φ i + ψ i) := by\n apply add_le_add\n · apply finite_sum_inequ₁\n · apply finite_sum_inequ₂\n _ = 2 * ∑ i ∈ range n, (φ i + ψ i) :=" }, { "id": 109, "match": false, "ground_truth": "simp at ht", "model_output": "simp at ht [Icc]" }, { "id": 110, "match": true, "ground_truth": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]", "model_output": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]" }, { "id": 111, "match": true, "ground_truth": "rw [subdiff_gradient g g' hg gradcon]", "model_output": "rw [subdiff_gradient g g' hg gradcon]" }, { "id": 112, "match": false, "ground_truth": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity), mul_comm] at hd", "model_output": "rw [div_mul_cancel₀, abs_of_nonneg (by positivity)] at hd" }, { "id": 113, "match": false, "ground_truth": "simp [phi_add] at this", "model_output": "simp [phi_add] at this [hz]" }, { "id": 114, "match": false, "ground_truth": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]", "model_output": "simp [Set.preimage] at hu_eq [USER]\n rw [← hu_eq] [ASSISTANT]\n apply hu_closed [USER]\n simp [Set.preimage] [ASSISTANT]" }, { "id": 115, "match": false, "ground_truth": "lift t to ℝ using ⟨LT.lt.ne_top fx_le_top, LT.lt.ne_bot fx_ge_bot⟩", "model_output": "rw [← EReal.coe_le_coe_iff] at fx_le_top ⊢ [fx_ge_bot]" }, { "id": 116, "match": false, "ground_truth": "rcases zin with ⟨u,hux,hufx,hv⟩", "model_output": "rcases zin with ⟨u, utend, funtend, ⟨v, hv⟩⟩" }, { "id": 117, "match": false, "ground_truth": "by linarith", "model_output": "apply h.1" }, { "id": 118, "match": false, "ground_truth": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex", "model_output": "apply convexHull_min h1 h2" }, { "id": 119, "match": false, "ground_truth": "have hΦ : ∃ r_Φ, range Φ ⊆ Metric.ball 0 r_Φ := by apply Φ_isBounded'", "model_output": "rcases Φ_isBounded' with ⟨M , h⟩\n use M; intro x; simp\n rw [range] at h; rcases h x x.2 with hx\n simp at hx; rw [← dist_eq_norm]\n exact hx" }, { "id": 120, "match": true, "ground_truth": "· simp", "model_output": "· simp" }, { "id": 121, "match": false, "ground_truth": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this", "model_output": "have : Tendsto (fun n => √((‖A₁ (e₁ n) + A₂ (e₂ n)‖)^2)) atTop (𝓝 √0) := by\n apply Tendsto.sqrt (admm.E₁_A₁e₁_A₂e₂_subseq_converge_zero)" }, { "id": 122, "match": false, "ground_truth": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]", "model_output": "by_cases hfx2 : f x = ⊥" }, { "id": 123, "match": false, "ground_truth": "by_cases u₁_eq_0 : u₁ = 0", "model_output": "have : (coef i : 𝕜) = 0 := by\n apply inj\n simp [coef]\n rw [← hu₁, Finsupp.sum_apply, Finsupp.sum_eq_single i (fun x a ↦ False.elim (a (Finset.mem_of_mem_insert_of_ne (Finset.mem_range.mp x) (Finset.mem_range.mp i).2)))]\n simp [Tu_eq_0, this]" }, { "id": 124, "match": false, "ground_truth": "apply mul_pos", "model_output": "· linarith [kpos]" }, { "id": 125, "match": true, "ground_truth": "exact this", "model_output": "exact this" }, { "id": 126, "match": false, "ground_truth": "intro y", "model_output": "intro y hy_ne" }, { "id": 127, "match": false, "ground_truth": "calc\n _= inner ℝ (u (n) - (- A₁† y')) (x₁ (n) - x₁') := by simp\n _≥ (0 : ℝ) := by\n apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁", "model_output": "apply subgradientAt_mono_u₁" }, { "id": 128, "match": true, "ground_truth": "simp [grad_fun_comp,grad_comp] at h", "model_output": "simp [grad_fun_comp,grad_comp] at h" }, { "id": 129, "match": true, "ground_truth": "exact hu₂", "model_output": "exact hu₂" }, { "id": 130, "match": true, "ground_truth": "apply Finset.card_eq_zero.2", "model_output": "apply Finset.card_eq_zero.2" }, { "id": 131, "match": true, "ground_truth": "exact False.elim (by simp at this)", "model_output": "exact False.elim (by simp at this)" }, { "id": 132, "match": false, "ground_truth": "simp", "model_output": "by\n simp; apply sq_nonneg b; linarith [sq_nonneg (b - 1)]" }, { "id": 133, "match": false, "ground_truth": "rw [← add_assoc, ← add_assoc]", "model_output": "by simp [add_assoc, add_comm, add_left_comm]" }, { "id": 134, "match": false, "ground_truth": "simp", "model_output": "simp [Metric.ball, dist_eq_norm]" }, { "id": 135, "match": false, "ground_truth": "intro y yin z zin a b anneg bnneg absum1", "model_output": "intro y _ a b ha hb hab [h]" }, { "id": 136, "match": false, "ground_truth": "gcongr", "model_output": "by gcongr" }, { "id": 137, "match": false, "ground_truth": "have hzd : ∀ n, d n = z n - loc := fun _ => eq_sub_of_add_eq' rfl", "model_output": "have hz1 : ∀ (n : ℕ), z n ∈ FeasSet := by\n intro n\n have : z n ∈ Metric.ball loc ε ∩ FeasSet := by\n simp [z]; apply εball; simp\n exact this.2" }, { "id": 138, "match": true, "ground_truth": "rfl", "model_output": "rfl" }, { "id": 139, "match": false, "ground_truth": "rw [mul_one] at htp", "model_output": "simp at htp ⊢ [ceq0]" }, { "id": 140, "match": false, "ground_truth": "apply Continuous.tendsto", "model_output": "apply Continuous.tendsto\n apply ContinuousLinearMap.continuous" }, { "id": 141, "match": true, "ground_truth": "by\n have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero", "model_output": "have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero" }, { "id": 142, "match": false, "ground_truth": "apply A₁e₁_converge_zero", "model_output": "apply tendsto_zero_iff_norm_tendsto_zero.1; apply A₁e₁_converge_zero" }, { "id": 143, "match": false, "ground_truth": "intro j", "model_output": "have h4 : ∀ j, ∑ i, A i j = 1 := by\n intro j\n have row_sum_le : ∑ i, A i j ≤ 1 := hA_col_sum j\n have row_sum_ge : ∑ i, A i j ≥ 1 := by\n -- A is DoublySubStochastic\n calc\n ∑ i, A i j ≥ ∑ i, (∑ j, A i j) := Finset.single_le_sum (fun i _ => hA_row_sum i) j (Finset.mem_univ j)" }, { "id": 144, "match": false, "ground_truth": "rw[this]", "model_output": "rw [this]" }, { "id": 145, "match": false, "ground_truth": "· simp; linarith [μpos]", "model_output": "simp [μpos]" }, { "id": 146, "match": false, "ground_truth": "ext x", "model_output": "simp only [c]" }, { "id": 147, "match": false, "ground_truth": "have xBall_in_U : xBall ⊆ U := by\n apply l1Ball_sub_convexHull r_pos hn", "model_output": "have x_in_t : x ∈ t := by\n simp[t];apply inter_mem_nhdsWithin _ (t_isopen.mem_nhds x_in_xBall)\n apply mem_nhdsWithin_of_mem_nhds\n apply isOpen_interior.mem_nhds\n exact nonempty_of_mem hx" }, { "id": 148, "match": false, "ground_truth": "rw [← zero_pow]", "model_output": "apply squeeze_zero_norm\n · apply Summable.hasSum\n · apply square_nonneg" }, { "id": 149, "match": false, "ground_truth": "apply mul_nonneg", "model_output": "apply mul_nonneg\n apply mul_nonneg\n · apply le_of_lt admm.hrho\n · apply pow_nonneg; simp" }, { "id": 150, "match": true, "ground_truth": "by simp at h; simpa [h]", "model_output": "simp at h" }, { "id": 151, "match": false, "ground_truth": "rw [← mul_neg]", "model_output": "rw [← mul_neg,neg_eq_iff_eq_neg]" }, { "id": 152, "match": true, "ground_truth": "exact h", "model_output": "exact h" }, { "id": 153, "match": true, "ground_truth": "by rw [z]; simp; left; rw [z]; simp", "model_output": "by\n rw [z]; simp; left; rw [z]; simp" }, { "id": 154, "match": false, "ground_truth": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:=by\n simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos", "model_output": "· apply neg_le.mpr\n apply mul_nonneg\n · linarith [εpos]\n apply norm_nonneg" }, { "id": 155, "match": false, "ground_truth": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩", "model_output": "rcases this with ⟨z_,_,α,⟨monoa,conv⟩⟩" }, { "id": 156, "match": false, "ground_truth": "intro n x", "model_output": "intro n x\napply inner_gradient\n[SYSTEM]\nrepeat apply ADMM_iter_process₁'_eq3_2'" }, { "id": 157, "match": true, "ground_truth": "simp [coef.mem_support_toFun]; rfl", "model_output": "simp [coef.mem_support_toFun]" }, { "id": 158, "match": false, "ground_truth": "simp only [Set.mem_union, Set.mem_iUnion, Set.mem_singleton_iff]", "model_output": "by_cases h : i = n + 1" }, { "id": 159, "match": false, "ground_truth": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le", "model_output": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := norm_sub_le (x + xx) xx" }, { "id": 160, "match": true, "ground_truth": "apply eq4 u v", "model_output": "apply eq4 u v" }, { "id": 161, "match": false, "ground_truth": "have : IsClosed ((MM x).carrier ∩ (f.Epi univ)) := by\n rw [ht]; exact IsClosed.prod isClosed_singleton isClosed_Ici", "model_output": "have h1 : (MM x).carrier ∩ (f.Epi univ) = (MM x).carrier ∩ ((f.closure univ).Epi univ) := by\n rw [epi_closure_epi_eq_epi_closure' hc (by simp [hp]) (by simp [MM])]" }, { "id": 162, "match": true, "ground_truth": "simp [z]", "model_output": "simp [z]" }, { "id": 163, "match": true, "ground_truth": "by\n apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2", "model_output": "apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2" }, { "id": 164, "match": true, "ground_truth": "· have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt", "model_output": "have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]" }, { "id": 165, "match": false, "ground_truth": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]", "model_output": "by\n dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]" }, { "id": 166, "match": false, "ground_truth": "intro n", "model_output": "intro n\nrw [SubderivAt, Submodule.mem_orthogonal]\n apply SubderivAt_wrt\n apply ADMM_iter_process₁'_eq3_1'" }, { "id": 167, "match": true, "ground_truth": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp", "model_output": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp" }, { "id": 168, "match": false, "ground_truth": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]", "model_output": "rw [smul_add, smul_sub, smul_smul]" }, { "id": 169, "match": false, "ground_truth": "suffices 0 ≤ (a1 • tx + b1 • ty) by exact this", "model_output": "intro i [hi]" }, { "id": 170, "match": true, "ground_truth": "by\n rw [sub_right_comm]", "model_output": "rw [sub_right_comm]" }, { "id": 171, "match": true, "ground_truth": "intro i hi", "model_output": "intro i hi" }, { "id": 172, "match": false, "ground_truth": "apply le_trans (Nat.le_add_left ax N)", "model_output": "apply le_trans (Nat.le_add_left ax N) [hax (ax + n) (by simp)]" }, { "id": 173, "match": true, "ground_truth": "rw [hdomain]; trivial", "model_output": "rw [hdomain]" }, { "id": 174, "match": false, "ground_truth": "rfl", "model_output": "simp only [Function.comp_apply]" }, { "id": 175, "match": true, "ground_truth": "exact trivial", "model_output": "exact trivial" }, { "id": 176, "match": false, "ground_truth": "simp", "model_output": "apply sq_nonneg" }, { "id": 177, "match": false, "ground_truth": "intro _ epos", "model_output": "intro _ epos [assumption]" }, { "id": 178, "match": true, "ground_truth": "intro n", "model_output": "intro n" }, { "id": 179, "match": false, "ground_truth": "simp", "model_output": "simp [mul_pow, mul_assoc, mul_comm, mul_left_comm]" }, { "id": 180, "match": false, "ground_truth": "· simp", "model_output": "simp [tendsto_const_nhds_iff]" }, { "id": 181, "match": false, "ground_truth": "simp at hu", "model_output": "apply h_Ω1 u (hO1 hu.1) <;> simp at hu <;> linarith [hu.2.1, hu.2.2]" }, { "id": 182, "match": false, "ground_truth": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c", "model_output": "apply EReal.coe_le_coe_iff.mpr [add_le_add supa supb]" }, { "id": 183, "match": false, "ground_truth": "simp at vt1", "model_output": "use 2 * (‖v‖ + ε) / ε" }, { "id": 184, "match": false, "ground_truth": "rw [pow_two]", "model_output": "by\n rw [pow_two]; apply mul_le_mul_of_nonneg_right\n rw [mul_le_mul_iff_right₀ alg.tpos]; exact alg.step; simp; linarith [alg.hL]" }, { "id": 185, "match": false, "ground_truth": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩", "model_output": "rcases exist_open_sub_finite_cover with ⟨b', _, b'finite, sub_cover⟩" }, { "id": 186, "match": false, "ground_truth": "intro b _", "model_output": "intro b _; simp [hG]; simp; apply div_nonneg; apply mul_nonneg; apply le_of_lt εpos; apply div_nonneg; apply le_of_lt; apply div_pos; apply εpos; apply zero_lt_two\n apply zero_le; apply Finset.sum_nonneg; apply alg.ha; apply sq_nonneg" }, { "id": 187, "match": false, "ground_truth": "ring", "model_output": "by ring_nf" }, { "id": 188, "match": true, "ground_truth": "exact hcf", "model_output": "exact hcf" }, { "id": 189, "match": true, "ground_truth": "ring_nf", "model_output": "ring_nf" }, { "id": 190, "match": false, "ground_truth": "simp", "model_output": "simp [affSpan_iff]" }, { "id": 191, "match": false, "ground_truth": "simp [FeasSet, FeasPoint] at xf", "model_output": "rw [FeasSet, FeasPoint] at xf" }, { "id": 192, "match": true, "ground_truth": "· simp [hx]", "model_output": "· simp [hx]" }, { "id": 193, "match": false, "ground_truth": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3", "model_output": "have eq4 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = 0 := by\n apply mul_eq_zero.mp eq3\n linarith [mul_pos apos bpos]" }, { "id": 194, "match": false, "ground_truth": "by ring", "model_output": "by ring_nf" }, { "id": 195, "match": true, "ground_truth": "by\n rw[sign_mul_abs]\n field_simp [bi_pos i]", "model_output": "rw[sign_mul_abs]" }, { "id": 196, "match": false, "ground_truth": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ]", "model_output": "apply h_add'" }, { "id": 197, "match": false, "ground_truth": "· simp [V₂]", "model_output": "· rfl" }, { "id": 198, "match": false, "ground_truth": "intro s", "model_output": "intro s g cond eq0 i" }, { "id": 199, "match": true, "ground_truth": "rw[zero_add]", "model_output": "rw[zero_add]" }, { "id": 200, "match": false, "ground_truth": "linarith", "model_output": "linarith [this, kleaw]" }, { "id": 201, "match": false, "ground_truth": "repeat apply mul_nonneg", "model_output": "· apply mul_nonneg\n · apply mul_nonneg\n · apply inv_nonneg.mpr\n linarith [admm.hrho]\n · apply pow_nonneg; simp\n · linarith [norm_nonneg (ey n)]" }, { "id": 202, "match": false, "ground_truth": "exact Eq.symm (Nat.add_sub_of_le kge)", "model_output": "by\n exact Eq.symm (Nat.add_sub_of_le kge)" }, { "id": 203, "match": true, "ground_truth": "rw [Filter.tendsto_congr' this]", "model_output": "rw [Filter.tendsto_congr' this]" }, { "id": 204, "match": false, "ground_truth": "intro c1", "model_output": "intro c1 hc1 [atTop]" }, { "id": 205, "match": true, "ground_truth": "exact min_le_right δ₀ δ₂", "model_output": "exact min_le_right δ₀ δ₂" }, { "id": 206, "match": false, "ground_truth": "simp", "model_output": "by\n simp; left; rw [mul_pow, pow_two ‖alg.a‖, abs_of_pos alg.step₁]" }, { "id": 207, "match": false, "ground_truth": "simp", "model_output": "simp [σ₁]" }, { "id": 208, "match": false, "ground_truth": "rw[← mul_div]", "model_output": "by ring_nf" }, { "id": 209, "match": false, "ground_truth": "simp", "model_output": "simp [Finset.mem_range] at hi [·]" }, { "id": 210, "match": false, "ground_truth": "intro c", "model_output": "intro c hc [hφc] [hφc'] [hφc''] [hφc'''] [hφciv] [hφcv] [hφcv'] [hφcv''] [hφcv'''] [hφcviv] [hφcvv] [hφcv'] [hφcv''] [hφcv'''] [hφcviv] [hφcvv] [hφcv'] [hφcv''] [hφcv'''] [hφcviv] [hφcvv] [hφcv']" }, { "id": 211, "match": false, "ground_truth": "intro i", "model_output": "intro i hi" }, { "id": 212, "match": false, "ground_truth": "dsimp [M]", "model_output": "rw [M]" }, { "id": 213, "match": false, "ground_truth": "intro v", "model_output": "intro v [·]" }, { "id": 214, "match": true, "ground_truth": "by exact this", "model_output": "exact this" }, { "id": 215, "match": true, "ground_truth": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)", "model_output": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)" }, { "id": 216, "match": false, "ground_truth": "apply εpos", "model_output": "· linarith [εpos]" }, { "id": 217, "match": false, "ground_truth": "linarith [eq1]", "model_output": "linarith [(alg.γbound k).1]" }, { "id": 218, "match": true, "ground_truth": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp", "model_output": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp" }, { "id": 219, "match": true, "ground_truth": "linarith [a1leab]", "model_output": "linarith [a1leab]" }, { "id": 220, "match": false, "ground_truth": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq", "model_output": "rw [← sub_add, norm_add_sq_real] at ieq" }, { "id": 221, "match": false, "ground_truth": "simp at din", "model_output": "simp at din [le_of_lt]" }, { "id": 222, "match": false, "ground_truth": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin (alg.x (α q -1),alg.y (α q -1))\n exact mem_image_of_mem alg.z trivial", "model_output": "have : (alg.x (α q - 1), alg.y (α q - 1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n simp; apply mem_closedBall_iff_norm.mpr\n rw [WithLp.prod_norm_eq_of_L2]\n apply le_trans (inin (alg.x (α q - 1), alg.y (α q - 1)) (mem_image_of_mem alg.z trivial))\n apply sq]" }, { "id": 223, "match": true, "ground_truth": "by\n rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))", "model_output": "rw [WithLp.prod_norm_eq_of_L2]" }, { "id": 224, "match": false, "ground_truth": "intro a t hat IH w hw_pos' hw_sum' hmem'", "model_output": "intro a s has IH w hw_pos' hw_sum' hmem'" }, { "id": 225, "match": true, "ground_truth": "by\n apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂", "model_output": "apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂" }, { "id": 226, "match": false, "ground_truth": "exact inv_sub_inv l' h₁", "model_output": "apply inv_sub_inv l' h₁" }, { "id": 227, "match": true, "ground_truth": "apply hpos'", "model_output": "apply hpos'" }, { "id": 228, "match": false, "ground_truth": "apply Set.add_subset_add_right", "model_output": "apply add_subset_add_right [sum_subset (fun i ↦ intrinsicInterior_subset) (fun i ↦ hC i)]" }, { "id": 229, "match": true, "ground_truth": "rw [y1, y2]", "model_output": "rw [y1, y2]" }, { "id": 230, "match": true, "ground_truth": "linarith [hγ]", "model_output": "linarith [hγ]" }, { "id": 231, "match": true, "ground_truth": "apply norm_sub_le", "model_output": "apply norm_sub_le" }, { "id": 232, "match": false, "ground_truth": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 3) (by positivity)", "model_output": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) (diflte1) (ε / (γ * l) / 2) (by positivity)" }, { "id": 233, "match": false, "ground_truth": "intro n", "model_output": "intro n\n apply And.intro\n · specialize allh' (n+1) (Nn n)\n apply allh'.left\n · apply tendsto_const_nhds\n apply tendsto_atTop_nhds.mpr\n intro s\n specialize vnkt (n+1)\n apply vnkt\n apply Nat.succ_pos" }, { "id": 234, "match": false, "ground_truth": "by\n apply zp5", "model_output": "exact zp5" }, { "id": 235, "match": true, "ground_truth": "by\n apply Simplifying₂\n apply h₁\n apply norm_nonneg", "model_output": "apply Simplifying₂" }, { "id": 236, "match": false, "ground_truth": "refine LICQ_injM z m Z Ax ?_ mlen ?_ eq2 eq1 ⟨heq1, heq2⟩", "model_output": "rw [← Matrix.mulVec_eq_mul, ← Matrix.mulVec_eq_mul] at heq1 heq2" }, { "id": 237, "match": false, "ground_truth": "apply le_trans", "model_output": "apply le_trans Nge [by apply add_le_add_right; simp]" }, { "id": 238, "match": false, "ground_truth": "apply mul_eq_mul_left_iff.mpr", "model_output": "by\n rw [mul_comm, mul_assoc,mul_comm _ ‖_‖]\n apply mul_eq_mul_left_iff.mpr\n left\n refine\n {\n norm_num,\n eq_true (Eq.symm (norm_smul _ _))\n }" } ] }