{ "summary": { "total_with_gt": 239, "matched": 28, "accuracy": 0.11715481171548117 }, "details": [ { "id": 0, "match": false, "ground_truth": "apply HasDerivAt.sub", "model_output": "apply HasDerivAt.const_sub" }, { "id": 1, "match": false, "ground_truth": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring", "model_output": "apply HasDerivAt.const_mul c⁻¹ (hasDerivAt_id x)" }, { "id": 2, "match": false, "ground_truth": "rw [← EReal.coe_sub]", "model_output": "simp [coe_le_coe]" }, { "id": 3, "match": false, "ground_truth": "ext x", "model_output": "exact convex_indicator_empty" }, { "id": 4, "match": true, "ground_truth": "exact ah", "model_output": "exact ah" }, { "id": 5, "match": false, "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp", "model_output": "simp [ha1, ha2, hb1, hb2]" }, { "id": 6, "match": false, "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩", "model_output": "have : a + (b - b) = a := by\n rw [EReal.sub_self hb2, EReal.add_top]" }, { "id": 7, "match": false, "ground_truth": "apply hasDerivAt_mul_const c⁻¹", "model_output": "apply HasDerivAt.const_mul' (hasDerivAt_id' x) (c⁻¹)" }, { "id": 8, "match": false, "ground_truth": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono (A := A) (x := x) H, α_subseq_converge (Aφ_sub H)⟩", "model_output": "rw [← H]" }, { "id": 9, "match": false, "ground_truth": "· rw [ha1];simp", "model_output": "· rw[ha1];simp" }, { "id": 10, "match": false, "ground_truth": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩", "model_output": "have : (⨆ m ∈ s, f m) + a = ⨆ m ∈ s, (f m + a) := by\n have : (⨆ m ∈ s, f m) = ⨆ m ∈ s, (g' (f m)) := by\n rw [g']; simp\n rw [this]; exact biSup_congr fun m => by simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp [g']; simp" }, { "id": 11, "match": false, "ground_truth": "ext i j", "model_output": "simp [g, h]" }, { "id": 12, "match": false, "ground_truth": "apply glt", "model_output": "simp at hg" }, { "id": 13, "match": false, "ground_truth": "apply add_le_add_right a", "model_output": "intro a b\n exact EReal.add_le_add_iff_right a b a" }, { "id": 14, "match": false, "ground_truth": "left", "model_output": "left; exact hdomsf" }, { "id": 15, "match": false, "ground_truth": "ext j", "model_output": "simp [Matrix.mulVec]" }, { "id": 16, "match": false, "ground_truth": "intro i", "model_output": "intro i j" }, { "id": 17, "match": false, "ground_truth": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2", "model_output": "· intro h\n by_contra h'\n push_neg at h'\n rw [convex_indicator, h] at h'\n exact h'" }, { "id": 18, "match": false, "ground_truth": "constructor", "model_output": "constructor <;> intro h <;> intro x hx <;> simp at h hx ⊢ <;> exact h x hx.1 hx.2" }, { "id": 19, "match": false, "ground_truth": "by_cases hA : A = 0", "model_output": "intro x" }, { "id": 20, "match": false, "ground_truth": "by norm_num", "model_output": "have : a = 1 / 2 := by linarith\n rw [this]; norm_num" }, { "id": 21, "match": false, "ground_truth": "by\n obtain hcon := subdifferential_subset f x₀\n apply hcon; exact first_order_optimality_condition f x₀ hx", "model_output": "rw [subdifferential, mem_setOf, mem_closure_iff_seq_limit]" }, { "id": 22, "match": true, "ground_truth": "exact h", "model_output": "exact h" }, { "id": 23, "match": false, "ground_truth": "by\n have : (fun x ↦ (inner (ℝ) x a : ℝ)) = fun x ↦ (inner (ℝ) a x : ℝ) := by\n ext y; exact real_inner_comm a y\n rw [this]; apply gradient_of_inner_const", "model_output": "rw [hasGradientAt_iff_hasFDerivAt, ← equiv_lemma_inner_right]" }, { "id": 24, "match": false, "ground_truth": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)\n refine prod_erase_mul univ (fun «x» ↦ A «x» «x») ?_\n exact mem_univ j", "model_output": "rw [← Finset.prod_erase_mul (s := Finset.univ) (A := A) (h := h)]" }, { "id": 25, "match": true, "ground_truth": "intro x y hy", "model_output": "intro x y hy" }, { "id": 26, "match": false, "ground_truth": "simp [LowerSemicontinuousHull]", "model_output": "ext p" }, { "id": 27, "match": true, "ground_truth": "simp at hfy", "model_output": "simp at hfy" }, { "id": 28, "match": false, "ground_truth": "rw [Fin.sum_univ_succ]", "model_output": "have : ∀ i, (fun i ↦ f i.succ) i ≠ ⊥ := by\n intro i\n exact p i.succ" }, { "id": 29, "match": false, "ground_truth": "by_cases hx2 : f x = ⊥", "model_output": "have hx2 : f x ≠ ⊥ := by\n by_contra h\n rw[h] at h\n simp at h\n exact not_top_of_ne_top (convex_conjugate_ne_top univ f x) h" }, { "id": 30, "match": false, "ground_truth": "rw [@mem_iInter]", "model_output": "rw [intrinsicClosure_iInter] at hx" }, { "id": 31, "match": false, "ground_truth": "rcases h with ⟨δ, dpos, h⟩", "model_output": "rcases h with ⟨ε', epos', h⟩\n use ε'\n constructor\n · linarith [epos']\n intro x' h'\n rw [Metric.mem_ball] at h'\n exact h h'" }, { "id": 32, "match": false, "ground_truth": "exact half_lt_self dpos", "model_output": "linarith" }, { "id": 33, "match": false, "ground_truth": "apply pin", "model_output": "exact pin" }, { "id": 34, "match": false, "ground_truth": "by_cases hf_pinf : f = ⊤", "model_output": "rw [convex_conjugate]" }, { "id": 35, "match": false, "ground_truth": "by\n apply intrinsicInterior_subset.antisymm\n nth_rw 1 [intrinsicInterior]\n rw [intrinsicInterior, image_subset_iff]\n rw [affineSpan_intrinsicInterior hsc]\n rw [Function.Injective.preimage_image Subtype.val_injective]\n simp [intrinsicInterior]", "model_output": "have hsc' : Convex ℝ (intrinsicInterior ℝ s) := by\n apply Convex.intrinsicInterior\n exact hsc\n exact intrinsicInterior_intrinsicInterior hsc'" }, { "id": 36, "match": false, "ground_truth": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]", "model_output": "rw [← norm_add_sq_real a (v - x)]" }, { "id": 37, "match": false, "ground_truth": "rw [EReal.coe_le_coe_iff] at hccleq", "model_output": "simp at hccleq ⊢" }, { "id": 38, "match": false, "ground_truth": "intro z", "model_output": "have : Convex ℝ (intrinsicClosure ℝ s) := by\n apply Convex.intrinsicClosure\n exact h\n apply intrinsicInterior_mono\n exact subset_intrinsicClosure" }, { "id": 39, "match": false, "ground_truth": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]", "model_output": "have : Orthonormal 𝕜 v := hv" }, { "id": 40, "match": false, "ground_truth": "rw [h2]", "model_output": "rw [h2] at h1 ⊢" }, { "id": 41, "match": false, "ground_truth": "apply banach_steinhaus", "model_output": "rcases hy with ⟨hy1, hy2⟩\n use 1\n intro x\n have : ‖(innerSL ℝ) x‖ ≤ 1 := by\n rw [norm_innerSL]\n apply le_of_lt (hy1 x)\n exact this" }, { "id": 42, "match": true, "ground_truth": "intro h\n apply HasFDeriv_Convergence\n exact h", "model_output": "intro h\n apply HasFDeriv_Convergence\n exact h" }, { "id": 43, "match": false, "ground_truth": "· apply Convergence_HasFDeriv", "model_output": "intro h\n apply HasFDerivAt.mk\n intro ε εpos\n rcases h ε εpos with ⟨δ, δpos, hε⟩\n use δ\n constructor\n · exact δpos\n intro x' hx'\n rw [← norm_neg (x - x'), neg_sub] at hx'\n apply hε\n rw [neg_sub, norm_neg]\n exact hx'" }, { "id": 44, "match": false, "ground_truth": "by\n rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]", "model_output": "have h1 : M ≤ affineSpan ℝ C := by\n rw [AffineSubspace.le_def]\n intro x hx\n rw [AffineSubspace.mem_coe, AffineSubspace.mem_affineSpan]\n exact subset_affineSpan ℝ (M ∩ C) ⟨hx.1, hx.2.1⟩\n have h2 : M ≤ closure (M ∩ C) := by\n rw [AffineSubspace.le_def]\n intro x hx\n rw [AffineSubspace.mem_coe, AffineSubspace.mem_affineSpan]\n exact subset" }, { "id": 45, "match": false, "ground_truth": "apply alg.ha 0", "model_output": "apply alg.ha k" }, { "id": 46, "match": true, "ground_truth": "rw [h2]", "model_output": "rw [h2]" }, { "id": 47, "match": false, "ground_truth": "rcases this with ⟨xn, hxn1, hxn2⟩", "model_output": "rcases this with ⟨xn, ⟨n, hn1, hn2⟩, hxn⟩" }, { "id": 48, "match": false, "ground_truth": "have h2 := tendsto_add (A:=A) (B:=B)", "model_output": "have h2 := tendsto_add (A := A) (B := B) hAa hBa" }, { "id": 49, "match": false, "ground_truth": "have : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [mul_pow, WithLp.prod_norm_sq_eq_of_L2, WithLp.prod_norm_sq_eq_of_L2]\n simp only [WithLp.smul_fst, WithLp.smul_snd]\n rw [norm_smul, norm_smul, mul_add, mul_pow, mul_pow]", "model_output": "rw [WithLp.prod_norm_eq_of_L2]" }, { "id": 50, "match": false, "ground_truth": "by_cases ht : i ∈ σ", "model_output": "by_cases hi : i ∈ σ <;> simp [hi] <;> linarith [cpos i hi]" }, { "id": 51, "match": false, "ground_truth": "simp", "model_output": "simp at hst hdti h ⊢" }, { "id": 52, "match": true, "ground_truth": "by rw [h y ys, hf]; exact hg y ys", "model_output": "rw [h y ys, hf]" }, { "id": 53, "match": false, "ground_truth": "exact in_of_le_sinf_of_b_top hx", "model_output": "rw [hbtop] at hab" }, { "id": 54, "match": false, "ground_truth": "intro hmin", "model_output": "intro hmin\n have hsub : SubgradientAt f f' xm := by\n rw [subgradientAt_iff_hasGradientAt_of_convexOn hcon (mem_univ xm) hfc]\n exact hf xm\n exact subgradientAt_eq_zero hsub hmin" }, { "id": 55, "match": false, "ground_truth": "simp [hx2, hw.2]", "model_output": "simp [hw.2]" }, { "id": 56, "match": false, "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", "model_output": "rw [smul_sub, smul_sub, ← sub_add, ← sub_add, absum1, sub_self, add_zero]" }, { "id": 57, "match": false, "ground_truth": "simp [ConvexCone.addPoint] at hx", "model_output": "rw [Convex.toCone] at hx\n obtain ⟨c, hc, y, hy, hxy⟩ := hx\n use c, hc.1\n use y, hy.1\n rw [hxy]" }, { "id": 58, "match": false, "ground_truth": "intro x", "model_output": "intro x xs y ys\n apply Convex.exists_inner_prod_eq_sub' hs hf x xs y ys" }, { "id": 59, "match": false, "ground_truth": "simp", "model_output": "simp [LT.lt.ne_top] at hx" }, { "id": 60, "match": false, "ground_truth": "by\n simp only [mem_setOf_eq]\n intro _ _ _ _ hp1 hp2 hp3\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]", "model_output": "intro c p₁ p₂ p₃ hp₁ hp₂ hp₃\n rw [Set.mem_setOf, map_vsub, smul_sub, vsub_eq_sub, map_sub, ← smul_sub, hp₁, hp₂, hp₃]\n simp [smul_sub, smul_add, smul_sub, smul_smul]" }, { "id": 61, "match": false, "ground_truth": "linarith", "model_output": "linarith [ht]" }, { "id": 62, "match": false, "ground_truth": "simp [h]", "model_output": "rw [LinearIsometryEquiv.symm_apply_apply]" }, { "id": 63, "match": true, "ground_truth": "simp [g]", "model_output": "simp [g]" }, { "id": 64, "match": false, "ground_truth": "rw [Prod.tendsto_iff] at xntend", "model_output": "have : ∀ n, f (xn n).1 ≤ (xn n).2 := by exact xncond" }, { "id": 65, "match": false, "ground_truth": "by_cases ha1 : a = 0", "model_output": "rw [add_top_of_ne_bot (LT.lt.ne_top (hsf.uninfinity y hb))]" }, { "id": 66, "match": false, "ground_truth": "by_cases hb1 : b = 0", "model_output": "apply le_trans (convex_epi_le_of_convexOn hf (by simp) (by simp) ha hb hab) ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?" }, { "id": 67, "match": false, "ground_truth": "congr", "model_output": "congr! 2 with a" }, { "id": 68, "match": false, "ground_truth": "intro z", "model_output": "intro y hy\n rw [gradient_eq_fderiv]" }, { "id": 69, "match": false, "ground_truth": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl", "model_output": "simp" }, { "id": 70, "match": false, "ground_truth": "intro y", "model_output": "intro x'\n rw [p.h]\n rw [p.h]\n apply p.h_sub_le_of_norm_sub_le\n apply p.h_sub_le_of_norm_sub_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le\n apply norm_sub_norm_le" }, { "id": 71, "match": false, "ground_truth": "have hb : b = 1 := by linarith", "model_output": "rw [ha] at absum" }, { "id": 72, "match": false, "ground_truth": "intro x y r", "model_output": "simp at h" }, { "id": 73, "match": false, "ground_truth": "rw [hab]", "model_output": "rw [hab]; simp [gradient_add_const, gradient_inner_const]" }, { "id": 74, "match": false, "ground_truth": "obtain h := ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff\n rw [slope_def_field, le_div_iff₀] at h\n repeat linarith", "model_output": "apply ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff" }, { "id": 75, "match": false, "ground_truth": "have ze : z ≠ 0 := by\n by_contra hz; simp [hz] at zin; simp [r] at zin", "model_output": "by_cases h : z = 0" }, { "id": 76, "match": false, "ground_truth": "rw [← hEq]", "model_output": "exact h x y r" }, { "id": 77, "match": false, "ground_truth": "have h1 : M -ᵥ M ⊆ Submodule.comap (LinearMap.inl R α β) v := by\n rintro p ⟨c, hc, d, hd, rfl⟩\n exact Submodule.subset_span ⟨⟨c, n0⟩, ⟨hc, hn0⟩, ⟨d, n0⟩, ⟨hd, hn0⟩, by simp⟩", "model_output": "have : (m, n) = (m, n0) + (m0, n) - (m0, n0) := by simp [Prod.mk_sub_mk]" }, { "id": 78, "match": false, "ground_truth": "have h_nonempty : S.Nonempty := by\n obtain ⟨a, ha⟩ := @NormedSpace.sphere_nonempty_rclike 𝕜 _ V _ _ _ 1 zero_le_one\n use a", "model_output": "have h_nonempty : S.Nonempty := by\n obtain ⟨v, hv⟩ := exists_ne (0 : V)\n use v\n simp [S] at hv\n exact ⟨hv.1, hv.2⟩" }, { "id": 79, "match": false, "ground_truth": "linarith", "model_output": "linarith [hy.2]" }, { "id": 80, "match": false, "ground_truth": "apply DifferentiableAt.hasGradientAt", "model_output": "apply HasGradientAt.const_add z.1 (hasGradientAt_fst h z.2) (z.2)" }, { "id": 81, "match": false, "ground_truth": "rcases lbdf with ⟨L, Lbound⟩", "model_output": "have : S.Nonempty := by\n use x; simp [S]\n rw [eq]; use g x; simp [g]" }, { "id": 82, "match": false, "ground_truth": "simp", "model_output": "simp [μpos]" }, { "id": 83, "match": false, "ground_truth": "norm_num", "model_output": "linarith" }, { "id": 84, "match": false, "ground_truth": "intro x hx", "model_output": "intro x hx\n have : x ∈ Icc 0 1 := by simp at hx; constructor <;> linarith\n exact (h1 x this)" }, { "id": 85, "match": true, "ground_truth": "intro x _", "model_output": "intro x _" }, { "id": 86, "match": false, "ground_truth": "rw [mem_setOf]", "model_output": "rw [f_subdiff_characterization]" }, { "id": 87, "match": false, "ground_truth": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n rw[← inequ₂''];\n exact inequ₂' y nonempty lscf x_converge g_converge", "model_output": "apply le_lim_inf_add_real_liminf_nonempty_nonempty lscf x_converge g_converge nonempty" }, { "id": 88, "match": false, "ground_truth": "refine norm_ne_zero_iff.mpr ?_", "model_output": "apply norm_ne_zero_iff.mpr\n simp\n apply b.ne_zero i" }, { "id": 89, "match": false, "ground_truth": "rw [← hT.span_range_v_eq_orthogonal_ker,\n mem_span_range_iff_exists_fun] at hx₂", "model_output": "have : x₂ ∈ (ker T) := by\n rw [ker, mem_setOf, LinearMap.mem_ker, map_add, hx₁, zero_add]\n exact hx₂" }, { "id": 90, "match": false, "ground_truth": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]", "model_output": "· rcases hx with ⟨hx1, hx2⟩\n use fun n => (x.1, (f x.1).toReal + 1/n)\n constructor\n · intro n\n constructor\n · exact mem_of_mem_nhds (mem_closure_iff_seq_limit.1 hx1)\n simp\n rw [Prod.tendsto_iff]\n constructor\n · exact hx1\n simp [hx2]" }, { "id": 91, "match": false, "ground_truth": "apply Finset.sum_eq_zero", "model_output": "rw [Finset.sum_eq_zero]\n intro i hi\n rw [hx.1.2 i hi]\n simp" }, { "id": 92, "match": false, "ground_truth": "mul_inv_cancel₀ (by linarith),", "model_output": "rw [mul_inv_cancel₀ (by linarith), mul_inv_cancel₀ (by linarith), mul_div_assoc]" }, { "id": 93, "match": false, "ground_truth": "by rw [one_smul]; rfl", "model_output": "rw [one_smul, vadd_eq_add, add_comm]" }, { "id": 94, "match": false, "ground_truth": "intro b", "model_output": "intro b hb" }, { "id": 95, "match": false, "ground_truth": "by linarith", "model_output": "rw [← right] at hc\n exact mul_pos hc (by linarith)" }, { "id": 96, "match": false, "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", "model_output": "rw [smul_sub, smul_sub, ← sub_add, absum1, sub_add_comm, sub_add_comm, sub_add_comm]" }, { "id": 97, "match": true, "ground_truth": "· rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]; exact mk_mem_prod (by simp) hx", "model_output": "rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]" }, { "id": 98, "match": false, "ground_truth": "rw [alg.γeq k, alg.teq k]", "model_output": "rw [alg.teq k, alg.teq k, alg.teq k]" }, { "id": 99, "match": true, "ground_truth": "intro i _", "model_output": "intro i _" }, { "id": 100, "match": false, "ground_truth": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩", "model_output": "rcases vt with ⟨c, d, ⟨⟨a, ha⟩, ⟨cinf, cinf'⟩⟩⟩" }, { "id": 101, "match": false, "ground_truth": "exact hu.2.2 (mem_inter hu.2.1 hx)", "model_output": "have : u ∩ s = s := by\n ext y\n constructor\n · intro hy\n exact ⟨hu.2.1 hy, hy.2⟩\n intro hy\n exact ⟨hu.2.1 hy, hy.2⟩\n exact this" }, { "id": 102, "match": false, "ground_truth": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf", "model_output": "rw [add_comm, add_assoc, add_comm (A x j), add_assoc, add_comm (A x j)]" }, { "id": 103, "match": true, "ground_truth": "intro x", "model_output": "intro x" }, { "id": 104, "match": false, "ground_truth": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a", "model_output": "simp [Module.dualProdDualEquivDual_apply_apply]" }, { "id": 105, "match": false, "ground_truth": "rw[Metric.isOpen_iff] at isopen", "model_output": "rcases ht with ⟨ht1, ht2⟩\n have : ConvexOn ℝ (t ∩ s) f := by\n apply ConvexOn.inter hf (convex_of_convexOn_convex_subset hf ht2.1)\n apply lipschitzOnWith_of_lipschitzOnWith_of_subset\n · apply lipschitzOnWith_of_lipschitzOnWith_of_subset\n · apply lipschitzOnWith_of_lipschitzOnWith_of_subset\n · apply lipschitzOnWith_of_lipschitzOnWith_of_subset\n · apply lipsch" }, { "id": 106, "match": false, "ground_truth": "rw [deriv_of_const_mul_func (f u - f x)]", "model_output": "have h1 : deriv φ (f u - f x) > 0 := by\n rw [deriv_sub_const]\n apply deriv_pos_of_deriv_pos_of_hasDerivAt\n · apply HasDerivAt.const_sub\n · apply hasDerivAt_inv\n · simp\n · apply HasDerivAt.const_sub\n · apply hasDerivAt_id'\n · simp" }, { "id": 107, "match": false, "ground_truth": "rcases exists_seq_tendsto_sInf hs hs' with ⟨fx, _, cfx, fxs⟩", "model_output": "rcases hs with ⟨z, hz⟩\n use z\n intro x _\n exact le_csInf hs' hz x" }, { "id": 108, "match": false, "ground_truth": "induction n with", "model_output": "have h₁ : Φ n ≤ C := Φ_le_C n\n have h₂ : Φ n ≥ 0 := Φ_nonneg n\n linarith [h₁, h₂]" }, { "id": 109, "match": false, "ground_truth": "simp at ht", "model_output": "simp at ht [Icc]" }, { "id": 110, "match": false, "ground_truth": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]", "model_output": "· intro i\n simp [c1]\n apply cpos i i.2" }, { "id": 111, "match": false, "ground_truth": "rw [subdiff_gradient g g' hg gradcon]", "model_output": "rw [HasGradientAt_iff_Subdiff]" }, { "id": 112, "match": false, "ground_truth": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity), mul_comm] at hd", "model_output": "rw [abs_of_nonneg (by positivity)] at hd\n rw [mul_div_assoc, div_mul_cancel₀ _ hne] at hd\n apply le_of_mul_le_mul_of_pos hd (by positivity) (by positivity) (by positivity)" }, { "id": 113, "match": false, "ground_truth": "simp [phi_add] at this", "model_output": "rw [phi_add] at this" }, { "id": 114, "match": false, "ground_truth": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]", "model_output": "simp at hu_eq" }, { "id": 115, "match": false, "ground_truth": "lift t to ℝ using ⟨LT.lt.ne_top fx_le_top, LT.lt.ne_bot fx_ge_bot⟩", "model_output": "rw [← EReal.coe_toReal fx_ge_bot fx_le_top]" }, { "id": 116, "match": false, "ground_truth": "rcases zin with ⟨u,hux,hufx,hv⟩", "model_output": "rcases zin with ⟨u, ⟨uconv, uconv2, uconv3⟩⟩" }, { "id": 117, "match": false, "ground_truth": "by linarith", "model_output": "linarith [h.1]" }, { "id": 118, "match": false, "ground_truth": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex", "model_output": "apply convexHull_min ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?_ ?" }, { "id": 119, "match": false, "ground_truth": "have hΦ : ∃ r_Φ, range Φ ⊆ Metric.ball 0 r_Φ := by apply Φ_isBounded'", "model_output": "rcases admm_kkt with ⟨_, h₁, h₂⟩\n use max (‖A₁‖ + ‖A₂‖) 1\n intro x\n rw [range_subset_iff]\n intro x\n rw [Function.comp_apply, Function.comp_apply]\n apply add_mem_ball_zero\n apply add_mem_ball_zero\n · apply h₁\n · apply h₂" }, { "id": 120, "match": true, "ground_truth": "· simp", "model_output": "simp" }, { "id": 121, "match": false, "ground_truth": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this", "model_output": "have h₁ : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖) atTop (𝓝 ‖A₁ (e₁) + A₂ (e₂)‖) := by\n apply Continuous.tendsto; apply Continuous.norm; apply Continuous.add\n · apply ContinuousLinearMap.continuous\n · apply ContinuousLinearMap.continuous\n have h₂ : ‖A₁ (e₁) + A₂ (e₂)‖ = 0 := by\n rw [e₁_converge_zero, e" }, { "id": 122, "match": false, "ground_truth": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]", "model_output": "rw [← EReal.coe_toReal (hsf.ne_bot_of_convex hf hfcl hs x hx) hfx]" }, { "id": 123, "match": false, "ground_truth": "by_cases u₁_eq_0 : u₁ = 0", "model_output": "have : u₁ ∈ (span 𝕜 (Set.range hT.v))ᗮ := by\n rw [hu₁]; apply Finsupp.sum_mem_span; intro x _; apply smul_mem" }, { "id": 124, "match": false, "ground_truth": "apply mul_pos", "model_output": "linarith [kpos]" }, { "id": 125, "match": true, "ground_truth": "exact this", "model_output": "exact this" }, { "id": 126, "match": false, "ground_truth": "intro y", "model_output": "intro y hy_neq\n simp [C, hy_neq]" }, { "id": 127, "match": true, "ground_truth": "calc\n _= inner ℝ (u (n) - (- A₁† y')) (x₁ (n) - x₁') := by simp\n _≥ (0 : ℝ) := by\n apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁", "model_output": "apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁" }, { "id": 128, "match": false, "ground_truth": "simp [grad_fun_comp,grad_comp] at h", "model_output": "simp [grad_fun_comp, grad_snd] at h ⊢" }, { "id": 129, "match": true, "ground_truth": "exact hu₂", "model_output": "exact hu₂" }, { "id": 130, "match": false, "ground_truth": "apply Finset.card_eq_zero.2", "model_output": "have h1 : ∀ i, ∑ j, A i j = 1 := h_row_eq\n have h2 : ∀ j, ∑ i, A i j = 1 := h_col_eq\n simp [h1, h2]" }, { "id": 131, "match": true, "ground_truth": "exact False.elim (by simp at this)", "model_output": "simp at this" }, { "id": 132, "match": false, "ground_truth": "simp", "model_output": "linarith [sq_nonneg b]" }, { "id": 133, "match": false, "ground_truth": "rw [← add_assoc, ← add_assoc]", "model_output": "rw [add_add_add_comm, add_comm (a • i.1), add_comm (b • j.1)]" }, { "id": 134, "match": false, "ground_truth": "simp", "model_output": "rw [Metric.mem_ball, dist_zero_right]" }, { "id": 135, "match": false, "ground_truth": "intro y yin z zin a b anneg bnneg absum1", "model_output": "intro x1 hx1 y hy a b ha hb hab\n have h1 := hfun (by simp) (by simp) ha hb hab\n have h2 := hfun (by simp) (by simp) ha hb hab\n have h3 := hfun (by simp) (by simp) ha hb hab\n have h4 := hfun (by simp) (by simp) ha hb hab\n have h5 := hfun (by simp) (by simp) ha hb hab\n have h6 := hfun (by simp) (by simp) ha hb hab" }, { "id": 136, "match": false, "ground_truth": "gcongr", "model_output": "apply mul_lt_mul_of_pos_left _ (by simp) (by positivity) (by positivity)" }, { "id": 137, "match": false, "ground_truth": "have hzd : ∀ n, d n = z n - loc := fun _ => eq_sub_of_add_eq' rfl", "model_output": "have hz : ∀ n, z n ∈ s1 := by\n intro n\n simp [s1]; apply εball\n constructor\n · simp [Metric.mem_ball]; linarith [Real.dist_eq.1 (Metric.mem_ball.1 (ha n (le_of_lt (by linarith))))]\n · simp [s1]; apply ha n (le_of_lt (by linarith))" }, { "id": 138, "match": false, "ground_truth": "rfl", "model_output": "have h1 : r1 = ‖A₂‖ := by apply norm_A₂\n have h2 : r2 = ‖A₁‖ := by apply norm_A₁\n rw[h1, h2]; exact Eq.symm (add_comm ‖A₁‖ ‖A₂‖)" }, { "id": 139, "match": false, "ground_truth": "rw [mul_one] at htp", "model_output": "linarith [mul_one b] at htp" }, { "id": 140, "match": false, "ground_truth": "apply Continuous.tendsto", "model_output": "apply Continuous.tendsto\n apply ContinuousLinearMap.continuous" }, { "id": 141, "match": false, "ground_truth": "by\n have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero", "model_output": "have : (fun n => A₂ (e₂ (φ n))) = (fun n => (A₂ ∘ e₂) (φ n)) := by rfl\n rw[this]\n apply Filter.tendsto_iff_seq_tendsto.1 (A₂.continuous.tendsto 0)\n apply e₂_subseq_converge_zero fullrank₁ fullrank₂\n apply Filter.tendsto_iff_seq_tendsto.1 (φ_subseq_converge_zero fullrank₁ fullrank₂)\n apply Filter.tendsto_iff_seq_tendsto.1 (A₂.contin" }, { "id": 142, "match": false, "ground_truth": "apply A₁e₁_converge_zero", "model_output": "have h₁ : Tendsto A₁ (𝓝 0) (𝓝 (A₁ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₁_subseq_converge_zero\n apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₁_subseq_converge_zero\n apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₁_subseq_converge_zero\n apply Filter" }, { "id": 143, "match": true, "ground_truth": "intro j", "model_output": "intro j" }, { "id": 144, "match": false, "ground_truth": "rw[this]", "model_output": "rw [this]" }, { "id": 145, "match": false, "ground_truth": "· simp; linarith [μpos]", "model_output": "apply inv_nonneg.mpr μpos.le" }, { "id": 146, "match": false, "ground_truth": "ext x", "model_output": "ext x\n rw [mul_div_assoc, div_mul_comm, mul_div_assoc, div_self, mul_one, mul_div_assoc]\n rw [mul_div_assoc, div_self, mul_one]\n ring_nf" }, { "id": 147, "match": false, "ground_truth": "have xBall_in_U : xBall ⊆ U := by\n apply l1Ball_sub_convexHull r_pos hn", "model_output": "have xBall_in_U : xBall ⊆ U := by\n apply subset_interior_of_mem_nhds\n exact mem_nhdsWithin.mpr ⟨xBall, xBall_isopen, x_in_xBall⟩" }, { "id": 148, "match": false, "ground_truth": "rw [← zero_pow]", "model_output": "have : Tendsto (fun n => ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖ ^ 2) atTop (𝓝 (‖A₁ (e₁ (φ)) + A₂ (e₂ (φ))‖ ^ 2)) := by\n apply Filter.tendsto_pow\n apply tendsto_norm_add_A₁e₁_A₂e₂_subseq_converge_zero fullrank₁ fullrank₂\n rw [this]\n apply Filter.tendsto_iff_seq_tendsto.1 (norm_subseq_converge_zero" }, { "id": 149, "match": false, "ground_truth": "apply mul_nonneg", "model_output": "apply mul_nonneg\n · apply mul_nonneg\n · apply le_of_lt h1\n · apply le_of_lt h2\n · apply sq_nonneg" }, { "id": 150, "match": false, "ground_truth": "by simp at h; simpa [h]", "model_output": "simp at h ⊢" }, { "id": 151, "match": false, "ground_truth": "rw [← mul_neg]", "model_output": "rw [← neg_inj, neg_neg, ← mul_neg, neg_inj, neg_neg, neg_inj, neg_neg]" }, { "id": 152, "match": true, "ground_truth": "exact h", "model_output": "exact h" }, { "id": 153, "match": false, "ground_truth": "by rw [z]; simp; left; rw [z]; simp", "model_output": "rw [z]; simp; left; rw [z]; simp; left; rw [z]; simp; left; rw [z]; simp; left; simp [dk k]" }, { "id": 154, "match": false, "ground_truth": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:=by\n simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos", "model_output": "apply neg_mul_le_zero.mpr" }, { "id": 155, "match": false, "ground_truth": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩", "model_output": "rcases this with ⟨z_,_,α,⟨monotoneα,converge⟩⟩" }, { "id": 156, "match": false, "ground_truth": "intro n x", "model_output": "intro n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply ADMM_iter_process₁' n x\n apply ADMM_iter_process₂' n x\n apply AD" }, { "id": 157, "match": false, "ground_truth": "simp [coef.mem_support_toFun]; rfl", "model_output": "simp [Finset.mem_filter, Ne]" }, { "id": 158, "match": false, "ground_truth": "simp only [Set.mem_union, Set.mem_iUnion, Set.mem_singleton_iff]", "model_output": "by_cases h : i = n + 1" }, { "id": 159, "match": false, "ground_truth": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le", "model_output": "rw [add_sub, add_sub_assoc, add_sub_cancel, add_comm, add_sub, add_sub_assoc, add_sub_cancel] at h1" }, { "id": 160, "match": true, "ground_truth": "apply eq4 u v", "model_output": "apply eq4 u v" }, { "id": 161, "match": false, "ground_truth": "have : IsClosed ((MM x).carrier ∩ (f.Epi univ)) := by\n rw [ht]; exact IsClosed.prod isClosed_singleton isClosed_Ici", "model_output": "have h14 : (MM x).carrier ∩ intrinsicInterior (dom univ f) ≠ ∅ := by\n rw [intrinsicInterior_epi_eq_epi_intrinsicInterior hc hx]\n exact hi'" }, { "id": 162, "match": false, "ground_truth": "simp [z]", "model_output": "rw [convex_iff_segment_subset] at hs\n apply hs x xin y yin\n simp; constructor\n · linarith\n · linarith\n · simp; linarith [absum1]" }, { "id": 163, "match": false, "ground_truth": "by\n apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2", "model_output": "apply Filter.tendsto_iff_seq_tendsto.1\n (Continuous.tendsto (fun x => ‖A₁ x₁ + A₂ x₂ - b‖) (𝓝 (A₁ x₁ + A₂ x₂ - b)) _)\n (x₁_subseq_converge x₂_subseq_converge)" }, { "id": 164, "match": false, "ground_truth": "· have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt", "model_output": "have h1 : ∑ j, C x j = ∑ j, A x j := by\n have h2 : x ≠ i := h\n have h3 : ∑ j, C x j = ∑ j, A x j := by\n apply Finset.sum_congr\n · simp\n · intro y _\n exact hC_DoublySubStochastic.1 y x h3\n exact h3\n rw [h1] at h_sum_lt\n exact h_sum_lt" }, { "id": 165, "match": false, "ground_truth": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]", "model_output": "rw [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]" }, { "id": 166, "match": false, "ground_truth": "intro n", "model_output": "intro n\n apply ADMM_iter_process₁ n" }, { "id": 167, "match": false, "ground_truth": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp", "model_output": "· apply ContinuousOn.comp hcon (continuousOn_id.add continuousOn_const) fun x _ => x₀" }, { "id": 168, "match": false, "ground_truth": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]", "model_output": "rw [smul_smul, ← mul_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc]\n simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp; field_simp; ring_nf; simp" }, { "id": 169, "match": false, "ground_truth": "suffices 0 ≤ (a1 • tx + b1 • ty) by exact this", "model_output": "intro i\n simp [tx, ty]\n apply add_nonneg\n · apply smul_nonneg\n · linarith [txcond i]\n · simp\n · apply smul_nonneg\n · linarith [bnng]\n · simp [tycond i]" }, { "id": 170, "match": false, "ground_truth": "by\n rw [sub_right_comm]", "model_output": "rw [sub_right_comm, norm_sub_rev]" }, { "id": 171, "match": false, "ground_truth": "intro i hi", "model_output": "intro x hx\n apply iSup₂_le\n intro y hy\n exact ht1 y hy" }, { "id": 172, "match": false, "ground_truth": "apply le_trans (Nat.le_add_left ax N)", "model_output": "apply le_trans (Nat.le_add_left ax (φ n)) (hax (φ n) (hmφ n))" }, { "id": 173, "match": false, "ground_truth": "rw [hdomain]; trivial", "model_output": "rw [hdomain]; simp [z]" }, { "id": 174, "match": false, "ground_truth": "rfl", "model_output": "simp [xeq]" }, { "id": 175, "match": false, "ground_truth": "exact trivial", "model_output": "simp [Finset.mem_erase] at *" }, { "id": 176, "match": false, "ground_truth": "simp", "model_output": "apply sq_nonneg" }, { "id": 177, "match": false, "ground_truth": "intro _ epos", "model_output": "intro ε εpos" }, { "id": 178, "match": true, "ground_truth": "intro n", "model_output": "intro n" }, { "id": 179, "match": false, "ground_truth": "simp", "model_output": "rw [abs_of_nonneg (by positivity), mul_pow, mul_pow, mul_assoc, mul_assoc, mul_assoc, mul_assoc]\n field_simp [hσ_zero, hu_zero]" }, { "id": 180, "match": false, "ground_truth": "· simp", "model_output": "simp [Metric.tendsto_nhds]" }, { "id": 181, "match": false, "ground_truth": "simp at hu", "model_output": "apply h_Ω1 u (hO1 hu.1) hu.2.1 hu.2.2" }, { "id": 182, "match": false, "ground_truth": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c", "model_output": "apply add_le_add supa supb" }, { "id": 183, "match": false, "ground_truth": "simp at vt1", "model_output": "have vt2 : ∀ᶠ a : ℕ in atTop, ‖1 / c a‖ ≤ ‖v‖ + ε := by\n apply Filter.Eventually.mp (tendsto_one_div_atTop_nhds_zero_nat.eventually (gt_mem_nhds εpos)) _\n simp [Metric.mem_nhds_iff]" }, { "id": 184, "match": false, "ground_truth": "rw [pow_two]", "model_output": "rw [mul_assoc, ← mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc, ← mul_div_assoc]\n simp; field_simp; linarith [alg.tpos]" }, { "id": 185, "match": false, "ground_truth": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩", "model_output": "rcases exist_open_sub_finite_cover with ⟨b', h1, h2, h3⟩" }, { "id": 186, "match": false, "ground_truth": "intro b _", "model_output": "intro b hb" }, { "id": 187, "match": false, "ground_truth": "ring", "model_output": "rw [mul_assoc,mul_assoc,mul_comm,mul_assoc,mul_comm,mul_assoc,mul_comm,mul_assoc,mul_comm,mul_assoc,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,mul_comm,m" }, { "id": 188, "match": true, "ground_truth": "exact hcf", "model_output": "exact hcf" }, { "id": 189, "match": false, "ground_truth": "ring_nf", "model_output": "rw [add_comm, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub," }, { "id": 190, "match": false, "ground_truth": "simp", "model_output": "simp [affSpan_iff]" }, { "id": 191, "match": false, "ground_truth": "simp [FeasSet, FeasPoint] at xf", "model_output": "rw [hab]" }, { "id": 192, "match": false, "ground_truth": "· simp [hx]", "model_output": "· left; right; exact hx" }, { "id": 193, "match": false, "ground_truth": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3", "model_output": "have : a • b • (y - x) = b • (y - x) := by\n rw [smul_comm, smul_comm b]\n exact smul_left_cancel₀ (by linarith) (by simp) (by simp)" }, { "id": 194, "match": false, "ground_truth": "by ring", "model_output": "rw [one_div, mul_comm, mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc]" }, { "id": 195, "match": false, "ground_truth": "by\n rw[sign_mul_abs]\n field_simp [bi_pos i]", "model_output": "rw [mul_div_assoc, div_self, mul_div_assoc, div_self, mul_div_assoc, div_self, mul_one]" }, { "id": 196, "match": false, "ground_truth": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ]", "model_output": "have h_add'' := Filter.tendsto_add h_add' tendsto_const_nhds" }, { "id": 197, "match": true, "ground_truth": "· simp [V₂]", "model_output": "· simp [V₂]" }, { "id": 198, "match": false, "ground_truth": "intro s", "model_output": "intro s g hs hsum i" }, { "id": 199, "match": false, "ground_truth": "rw[zero_add]", "model_output": "rw [zero_add]" }, { "id": 200, "match": false, "ground_truth": "linarith", "model_output": "linarith [this, kleaw]" }, { "id": 201, "match": false, "ground_truth": "repeat apply mul_nonneg", "model_output": "· apply mul_nonneg\n · apply mul_nonneg\n · linarith [inv_pos.mpr h1]\n · apply sq_nonneg\n · apply sq_nonneg" }, { "id": 202, "match": false, "ground_truth": "exact Eq.symm (Nat.add_sub_of_le kge)", "model_output": "rw [add_comm, Nat.sub_add_cancel]" }, { "id": 203, "match": true, "ground_truth": "rw [Filter.tendsto_congr' this]", "model_output": "rw [Filter.tendsto_congr' this]" }, { "id": 204, "match": false, "ground_truth": "intro c1", "model_output": "intro c1 hc1\n apply Eventually.mp (tendsto_zero_iff_norm_tendsto_zero.mp (t5)) hc1" }, { "id": 205, "match": false, "ground_truth": "exact min_le_right δ₀ δ₂", "model_output": "apply min_le_right δ₀ δ₂" }, { "id": 206, "match": false, "ground_truth": "simp", "model_output": "rw [alg.step₁ k, alg.step₁ k]" }, { "id": 207, "match": false, "ground_truth": "simp", "model_output": "simp [hσ_pos'.1]" }, { "id": 208, "match": false, "ground_truth": "rw[← mul_div]", "model_output": "ring_nf" }, { "id": 209, "match": false, "ground_truth": "simp", "model_output": "apply Nat.zero_le" }, { "id": 210, "match": false, "ground_truth": "intro c", "model_output": "intro c hc" }, { "id": 211, "match": false, "ground_truth": "intro i", "model_output": "intro b hb" }, { "id": 212, "match": false, "ground_truth": "dsimp [M]", "model_output": "rw [M]" }, { "id": 213, "match": false, "ground_truth": "intro v", "model_output": "intro v\n simp [ContinuousLinearMap.coe_toLinearMap]" }, { "id": 214, "match": false, "ground_truth": "by exact this", "model_output": "simp [u, v]" }, { "id": 215, "match": true, "ground_truth": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)", "model_output": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)" }, { "id": 216, "match": false, "ground_truth": "apply εpos", "model_output": "linarith [εpos]" }, { "id": 217, "match": false, "ground_truth": "linarith [eq1]", "model_output": "linarith [alg.γbound k]" }, { "id": 218, "match": false, "ground_truth": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp", "model_output": "apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp [alg.ha]" }, { "id": 219, "match": false, "ground_truth": "linarith [a1leab]", "model_output": "linarith [monoa (by linarith [Nat.lt_of_add_one_le a1leab])]" }, { "id": 220, "match": false, "ground_truth": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq", "model_output": "rw [← add_assoc] at ieq" }, { "id": 221, "match": false, "ground_truth": "simp at din", "model_output": "constructor <;> linarith [din.1, din.2]" }, { "id": 222, "match": false, "ground_truth": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin (alg.x (α q -1),alg.y (α q -1))\n exact mem_image_of_mem alg.z trivial", "model_output": "apply sq (alg.z (α q - 1)) _" }, { "id": 223, "match": false, "ground_truth": "by\n rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))", "model_output": "apply norm_fst_le_prod" }, { "id": 224, "match": false, "ground_truth": "intro a t hat IH w hw_pos' hw_sum' hmem'", "model_output": "intro a s _ h1 h2 h3 h4 h5\n have h1' : a ∉ s := by assumption\n have h2' : ∀ i ∈ s, 0 ≤ w i := by\n intro i hi\n apply h2\n simp\n exact hi\n have h3' : ∑ i ∈ s, w i = 1 := by\n apply h3\n simp\n have h4' : ∀ i ∈ s, i ∈ (convexHull ℝ) ↑u' := by\n intro i hi\n apply h4" }, { "id": 225, "match": false, "ground_truth": "by\n apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂", "model_output": "apply add_lt_add (ha₁ b hba₁) (ha₂ b hba₂)" }, { "id": 226, "match": false, "ground_truth": "exact inv_sub_inv l' h₁", "model_output": "rw [inv_sub_inv l' h₁]" }, { "id": 227, "match": true, "ground_truth": "apply hpos'", "model_output": "apply hpos'" }, { "id": 228, "match": false, "ground_truth": "apply Set.add_subset_add_right", "model_output": "apply add_subset_add_right\n (subset_iUnion₂_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset\n (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset\n (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset\n (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset\n (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset i₀ (subset_iUnion_of_subset" }, { "id": 229, "match": false, "ground_truth": "rw [y1, y2]", "model_output": "rw [y1, y2] at h5" }, { "id": 230, "match": true, "ground_truth": "linarith [hγ]", "model_output": "linarith [hγ]" }, { "id": 231, "match": true, "ground_truth": "apply norm_sub_le", "model_output": "apply norm_sub_le" }, { "id": 232, "match": false, "ground_truth": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 3) (by positivity)", "model_output": "apply Eventually.mp (diflte1 ε epos) (1 / (γ * l)) (by positivity)" }, { "id": 233, "match": false, "ground_truth": "intro n", "model_output": "intro n\n apply And.intro\n · exact (allh' (n + 1) (Nn n)).1\n apply Filter.tendsto_iff_seq_tendsto.2\n intro k\n apply (allh' (n + 1) (Nn n)).2.2\n apply Filter.tendsto_iff_seq_tendsto.1 (vnkt (n + 1))\n apply Filter.tendsto_iff_seq_tendsto.1 (vnkt n)\n apply Filter.tendsto_iff_seq_tendsto.1 (xnkt (n + 1" }, { "id": 234, "match": false, "ground_truth": "by\n apply zp5", "model_output": "rw [zp5]" }, { "id": 235, "match": false, "ground_truth": "by\n apply Simplifying₂\n apply h₁\n apply norm_nonneg", "model_output": "rw [mul_assoc, mul_assoc, mul_comm, mul_assoc, mul_comm, mul_assoc, mul_comm, mul_comm]" }, { "id": 236, "match": false, "ground_truth": "refine LICQ_injM z m Z Ax ?_ mlen ?_ eq2 eq1 ⟨heq1, heq2⟩", "model_output": "have : Zᵀ *ᵥ z = 0 := heq2\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this\n have : Zᵀ *ᵥ z = 0 := this" }, { "id": 237, "match": false, "ground_truth": "apply le_trans", "model_output": "apply le_trans Nge (by linarith)" }, { "id": 238, "match": false, "ground_truth": "apply mul_eq_mul_left_iff.mpr", "model_output": "rw [norm_smul, norm_div, norm_one, one_mul]" } ] }