{ "summary": { "total_with_gt": 239, "matched": 46, "accuracy": 0.19246861924686193 }, "details": [ { "id": 0, "match": false, "ground_truth": "apply HasDerivAt.sub", "model_output": "apply HasDerivAt.sub\n · exact hasDerivAt_const t 1\n exact hasDerivAt_id' t" }, { "id": 1, "match": false, "ground_truth": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring", "model_output": "apply HasDerivAt.const_mul' c⁻¹ (hasDerivAt_id' x)" }, { "id": 2, "match": true, "ground_truth": "rw [← EReal.coe_sub]", "model_output": "rw [← EReal.coe_sub]" }, { "id": 3, "match": false, "ground_truth": "ext x", "model_output": "exact convex_indicator_empty" }, { "id": 4, "match": true, "ground_truth": "exact ah", "model_output": "exact ah" }, { "id": 5, "match": false, "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp", "model_output": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n exact bot_lt_iff_ne_bot.2 (sub_ne_bot_of_real ha1 hb1)" }, { "id": 6, "match": false, "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩", "model_output": "have : b - b = 0 := by exact EReal.coe_sub_coe_eq_zero_iff.mpr rfl\n rw [this]; simp" }, { "id": 7, "match": true, "ground_truth": "apply hasDerivAt_mul_const c⁻¹", "model_output": "apply hasDerivAt_mul_const" }, { "id": 8, "match": false, "ground_truth": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono (A := A) (x := x) H, α_subseq_converge (Aφ_sub H)⟩", "model_output": "have := H" }, { "id": 9, "match": false, "ground_truth": "· rw [ha1];simp", "model_output": "· rw [ha1]; simp" }, { "id": 10, "match": false, "ground_truth": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩", "model_output": "have : (g' (⨆ m ∈ s, f m)) = ⨆ m ∈ s, g' (f m) := by\n apply OrderIso.map_biSup g' s f\n exact ⟨fun x => x, fun x => x, fun x y => by simp⟩\n exact ⟨fun x => x, fun x => x, fun x y => by simp⟩\n exact ⟨fun x => x, fun x => x, fun x y => by simp⟩\n exact ⟨fun x => x, fun x => x, fun x y => by simp⟩" }, { "id": 11, "match": false, "ground_truth": "ext i j", "model_output": "simp [g, h]" }, { "id": 12, "match": false, "ground_truth": "apply glt", "model_output": "have : g = 1 := by\n simp at hg\n linarith [hg]" }, { "id": 13, "match": true, "ground_truth": "apply add_le_add_right a", "model_output": "apply add_le_add_right a" }, { "id": 14, "match": false, "ground_truth": "left", "model_output": "left; exact hdomsf" }, { "id": 15, "match": false, "ground_truth": "ext j", "model_output": "simp [Matrix.mulVec]" }, { "id": 16, "match": false, "ground_truth": "intro i", "model_output": "intro i j\n simp only [one_apply_eq, mul_apply]\n split_ifs with h\n · exact (hdiag i).choose_spec\n · exact False.elim (h (A i i))" }, { "id": 17, "match": false, "ground_truth": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2", "model_output": "· intro h\n by_contra hs\n simp [convex_indicator] at h\n rw [h] at hs\n exact hs rfl" }, { "id": 18, "match": false, "ground_truth": "constructor", "model_output": "constructor\n · intro h x hx\n simp at *\n exact ⟨hx.1, le_trans (h x.1 hx.1) hx.2⟩\n intro h x hx\n specialize h ⟨hx, le_refl (g x)⟩\n simp at h\n exact h.2" }, { "id": 19, "match": false, "ground_truth": "by_cases hA : A = 0", "model_output": "intro x\n apply HasGradientAt.const_mul\n apply HasGradientAt.dotProduct\n · apply HasGradientAt.const_mul\n exact hasGradientAt_mulVec x\n · exact hasGradientAt_mulVec x" }, { "id": 20, "match": false, "ground_truth": "by norm_num", "model_output": "norm_num [a]" }, { "id": 21, "match": false, "ground_truth": "by\n obtain hcon := subdifferential_subset f x₀\n apply hcon; exact first_order_optimality_condition f x₀ hx", "model_output": "apply first_order_optimality_condition f x₀ hx" }, { "id": 22, "match": true, "ground_truth": "exact h", "model_output": "exact h" }, { "id": 23, "match": false, "ground_truth": "by\n have : (fun x ↦ (inner (ℝ) x a : ℝ)) = fun x ↦ (inner (ℝ) a x : ℝ) := by\n ext y; exact real_inner_comm a y\n rw [this]; apply gradient_of_inner_const", "model_output": "apply HasGradient_iff_Convergence_Point.mpr\n intro ε εpos\n use a\n intro y\n have : ⟪y, a⟫_ℝ - ⟪x, a⟫_ℝ = ⟪y - x, a⟫_ℝ := by rw [inner_sub_left]\n rw [this]\n apply real_inner_le_norm\n apply le_of_lt εpos" }, { "id": 24, "match": false, "ground_truth": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)\n refine prod_erase_mul univ (fun «x» ↦ A «x» «x») ?_\n exact mem_univ j", "model_output": "refine (prod_erase_mul univ (fun i => A i i) (by exact mem_univ j)).symm" }, { "id": 25, "match": false, "ground_truth": "intro x y hy", "model_output": "intro x y hy\n by_cases hx : x ∈ C\n · simp [hx] at hy; simp [hx]; exact eventually_of_forall (fun x' => hy.trans_le (if_le_right (by simp [hx])) )\n simp [hx] at hy; simp [hx]; exact eventually_of_forall (fun x' => hy.trans_le (if_le_right (by simp [hx])) )" }, { "id": 26, "match": true, "ground_truth": "simp [LowerSemicontinuousHull]", "model_output": "simp [LowerSemicontinuousHull]" }, { "id": 27, "match": false, "ground_truth": "simp at hfy", "model_output": "have : f y = ⊤ := by\n by_contra hfy'\n exact (lt_of_le_of_ne hfy hfy').ne rfl" }, { "id": 28, "match": false, "ground_truth": "rw [Fin.sum_univ_succ]", "model_output": "have : ∀ i, f i.succ ≠ ⊥ := fun i ↦ p i.succ" }, { "id": 29, "match": true, "ground_truth": "by_cases hx2 : f x = ⊥", "model_output": "by_cases hx2 : f x = ⊥" }, { "id": 30, "match": false, "ground_truth": "rw [@mem_iInter]", "model_output": "rw [mem_iInter] at hx ⊢\n intro i\n apply intrinsicClosure_mono (fun x a ↦ a i) hx" }, { "id": 31, "match": false, "ground_truth": "rcases h with ⟨δ, dpos, h⟩", "model_output": "rcases h with ⟨δ, ⟨dpos, h⟩⟩\n use δ; constructor\n · exact dpos\n intro x'; simp at h\n rw [← dist_eq_norm]\n apply h; simp; exact le_of_eq rfl" }, { "id": 32, "match": false, "ground_truth": "exact half_lt_self dpos", "model_output": "linarith [dpos]" }, { "id": 33, "match": true, "ground_truth": "apply pin", "model_output": "apply pin" }, { "id": 34, "match": false, "ground_truth": "by_cases hf_pinf : f = ⊤", "model_output": "apply convex_conjugate_is_convex" }, { "id": 35, "match": false, "ground_truth": "by\n apply intrinsicInterior_subset.antisymm\n nth_rw 1 [intrinsicInterior]\n rw [intrinsicInterior, image_subset_iff]\n rw [affineSpan_intrinsicInterior hsc]\n rw [Function.Injective.preimage_image Subtype.val_injective]\n simp [intrinsicInterior]", "model_output": "have : intrinsicInterior ℝ (intrinsicInterior ℝ s) = intrinsicInterior ℝ (interior ℝ s) := by\n rw [intrinsicInterior_equiv s]" }, { "id": 36, "match": false, "ground_truth": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]", "model_output": "rw [← add_sub, norm_add_sq_real, inner_sub_right, real_inner_comm, inner_sub_right]" }, { "id": 37, "match": false, "ground_truth": "rw [EReal.coe_le_coe_iff] at hccleq", "model_output": "apply EReal.coe_le_coe_iff.mpr" }, { "id": 38, "match": false, "ground_truth": "intro z", "model_output": "apply intrinsicInterior_sub_intrinsicClosure_intrinsicInterior ℝ h hn" }, { "id": 39, "match": true, "ground_truth": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]", "model_output": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]" }, { "id": 40, "match": false, "ground_truth": "rw [h2]", "model_output": "rw [h2] at h1 ⊢" }, { "id": 41, "match": false, "ground_truth": "apply banach_steinhaus", "model_output": "have : ∀ x : s, ‖(innerSL ℝ) x‖ ≤ 1 := by\n intro x\n have : ‖(innerSL ℝ) x‖ ≤ ‖(innerSL ℝ)‖ * ‖x‖ := by\n apply ContinuousLinearMap.le_opNorm\n have : ‖x‖ ≤ 1 := by\n have : x.1 ∈ s.convex_support x := by\n rw [convex_support]\n exact (mem_setOf_eq (by simp)).mpr (lt_top_iff_ne_top.mp (hy x).2)\n rw [mem" }, { "id": 42, "match": false, "ground_truth": "intro h\n apply HasFDeriv_Convergence\n exact h", "model_output": "intro h\n apply h.fderiv\n intro ε εpos\n specialize h ε εpos\n exact h" }, { "id": 43, "match": false, "ground_truth": "· apply Convergence_HasFDeriv", "model_output": "intro h\n apply HasFDerivAt.mk\n intro ε εpos\n specialize h (ε / 2) (by positivity)\n rcases h with ⟨δ, ⟨δpos, h⟩⟩\n use δ; constructor\n · exact δpos\n intro x' x'eq\n specialize h x' (by rw [x'eq]; exact norm_nonneg (x - x))\n rw [mul_comm] at h; linarith [h]" }, { "id": 44, "match": false, "ground_truth": "by\n rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]", "model_output": "have : (M : Set V) ∩ intrinsicInterior ℝ C = (M ∩ C) ∩ intrinsicInterior ℝ C := by\n rw [← Set.inter_assoc, Set.inter_eq_self_of_subset_left inter_subset_left]" }, { "id": 45, "match": true, "ground_truth": "apply alg.ha 0", "model_output": "apply alg.ha 0" }, { "id": 46, "match": true, "ground_truth": "rw [h2]", "model_output": "rw [h2]" }, { "id": 47, "match": false, "ground_truth": "rcases this with ⟨xn, hxn1, hxn2⟩", "model_output": "rcases this with ⟨xn, ⟨n, ⟨hn, hxn⟩⟩, hlt⟩" }, { "id": 48, "match": false, "ground_truth": "have h2 := tendsto_add (A:=A) (B:=B)", "model_output": "have h2 := lim_inf_def B hBa" }, { "id": 49, "match": false, "ground_truth": "have : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [mul_pow, WithLp.prod_norm_sq_eq_of_L2, WithLp.prod_norm_sq_eq_of_L2]\n simp only [WithLp.smul_fst, WithLp.smul_snd]\n rw [norm_smul, norm_smul, mul_add, mul_pow, mul_pow]", "model_output": "apply norm_smul_le" }, { "id": 50, "match": false, "ground_truth": "by_cases ht : i ∈ σ", "model_output": "by_cases hi : i ∈ σ\n · rw [hi]; simp; exact cpos i hi\n · simp [hi]" }, { "id": 51, "match": false, "ground_truth": "simp", "model_output": "simp at hst" }, { "id": 52, "match": true, "ground_truth": "by rw [h y ys, hf]; exact hg y ys", "model_output": "rw [h y ys, hf]" }, { "id": 53, "match": false, "ground_truth": "exact in_of_le_sinf_of_b_top hx", "model_output": "have : (x, ⊤) ∈ closure {p | p.1 ∈ s ∧ f p.1 ≤ p.2} := by\n have : (x, b) ∈ closure {p | p.1 ∈ s ∧ f p.1 ≤ p.2} := by\n rw [hbtop]; exact ha\n rwa [hbtop] at this" }, { "id": 54, "match": false, "ground_truth": "intro hmin", "model_output": "intro hmin\n apply first_order_unconstrained hf hmin hfc\n simp [ConvexOn] at hcon\n apply hcon.1 xm (by simp)" }, { "id": 55, "match": false, "ground_truth": "simp [hx2, hw.2]", "model_output": "simp [hx2]" }, { "id": 56, "match": false, "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", "model_output": "rw [smul_sub, smul_sub, add_sub, ← sub_sub, sub_eq_iff_eq_add]" }, { "id": 57, "match": false, "ground_truth": "simp [ConvexCone.addPoint] at hx", "model_output": "rcases (Convex.mem_toCone hs).mp hx with ⟨c, hc, hcy⟩\n use c\n exact ⟨le_of_lt hc, hcy⟩" }, { "id": 58, "match": false, "ground_truth": "intro x", "model_output": "intro x hx y hy\n apply lagrange hs hf x hx y hy\n simp [Ioo]" }, { "id": 59, "match": false, "ground_truth": "simp", "model_output": "simp at hx" }, { "id": 60, "match": false, "ground_truth": "by\n simp only [mem_setOf_eq]\n intro _ _ _ _ hp1 hp2 hp3\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]", "model_output": "intro c p₁ p₂ p₃ hp₁ hp₂ hp₃\n simp at hp₁ hp₂ hp₃ ⊢\n rw [map_vsub, smul_vsub_vadd_eq_vsub, ← map_smul, ← map_smul, hp₁, hp₂, hp₃]\n simp\n exact hp₃" }, { "id": 61, "match": false, "ground_truth": "linarith", "model_output": "exact ht" }, { "id": 62, "match": false, "ground_truth": "simp [h]", "model_output": "rw [LinearIsometryEquiv.symm_apply_apply] at h\n exact h" }, { "id": 63, "match": true, "ground_truth": "simp [g]", "model_output": "simp [g]" }, { "id": 64, "match": false, "ground_truth": "rw [Prod.tendsto_iff] at xntend", "model_output": "rcases underboundf with ⟨b, ubf⟩" }, { "id": 65, "match": false, "ground_truth": "by_cases ha1 : a = 0", "model_output": "simp [coe_mul_top_of_pos ha, h1]" }, { "id": 66, "match": true, "ground_truth": "by_cases hb1 : b = 0", "model_output": "by_cases hb1 : b = 0" }, { "id": 67, "match": false, "ground_truth": "congr", "model_output": "congr!" }, { "id": 68, "match": false, "ground_truth": "intro z", "model_output": "intro y hy\n have : HasFDerivAt f (gradient f y) y := by apply hasGradientAt_iff_hasFDerivAt.mp\n have : gradient f y = (toDual ℝ E) ((gradient f y): E →L[ℝ] ℝ) := by simp\n rw [this]\n exact HasFDerivAt.unique hu3 y hy" }, { "id": 69, "match": false, "ground_truth": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl", "model_output": "exact bot_lt_one'" }, { "id": 70, "match": false, "ground_truth": "intro y", "model_output": "intro x' xdiff" }, { "id": 71, "match": false, "ground_truth": "have hb : b = 1 := by linarith", "model_output": "simp [ha] at absum ⊢" }, { "id": 72, "match": false, "ground_truth": "intro x y r", "model_output": "intro x y r\n rw [← hEq]\n exact affine_map_representation A x y r" }, { "id": 73, "match": true, "ground_truth": "rw [hab]", "model_output": "rw [hab]" }, { "id": 74, "match": false, "ground_truth": "obtain h := ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff\n rw [slope_def_field, le_div_iff₀] at h\n repeat linarith", "model_output": "apply ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff" }, { "id": 75, "match": false, "ground_truth": "have ze : z ≠ 0 := by\n by_contra hz; simp [hz] at zin; simp [r] at zin", "model_output": "by_cases z0 : z = 0" }, { "id": 76, "match": false, "ground_truth": "rw [← hEq]", "model_output": "rw [← hEq]\n exact affine_map_representation A x y r" }, { "id": 77, "match": false, "ground_truth": "have h1 : M -ᵥ M ⊆ Submodule.comap (LinearMap.inl R α β) v := by\n rintro p ⟨c, hc, d, hd, rfl⟩\n exact Submodule.subset_span ⟨⟨c, n0⟩, ⟨hc, hn0⟩, ⟨d, n0⟩, ⟨hd, hn0⟩, by simp⟩", "model_output": "have : (m, n) = (m, n0) + (m0, n) - (m0, n0) := by simp [Prod.mk_sub_mk, sub_eq_add_neg]" }, { "id": 78, "match": false, "ground_truth": "have h_nonempty : S.Nonempty := by\n obtain ⟨a, ha⟩ := @NormedSpace.sphere_nonempty_rclike 𝕜 _ V _ _ _ 1 zero_le_one\n use a", "model_output": "have h_nonempty : S.Nonempty := by\n apply Set.nonempty_def.mp\n exact exists_ne 0" }, { "id": 79, "match": false, "ground_truth": "linarith", "model_output": "linarith [hy.2]" }, { "id": 80, "match": false, "ground_truth": "apply DifferentiableAt.hasGradientAt", "model_output": "apply DifferentiableAt.hasGradientAt\n have : DifferentiableAt ℝ (fun x => (x, z.2)) (z.1, z.2) := by\n apply DifferentiableAt.prodMk (differentiableAt_id') (differentiableAt_const)\n apply DifferentiableAt.comp (diff_from_l2 h) this\n simp [grad_fst]" }, { "id": 81, "match": false, "ground_truth": "rcases lbdf with ⟨L, Lbound⟩", "model_output": "have eqImS : ImS = f '' univ := by\n simp [S]; rw [← image_univ, image_image, univ_inter, image_univ]" }, { "id": 82, "match": false, "ground_truth": "simp", "model_output": "simp [μpos]" }, { "id": 83, "match": true, "ground_truth": "norm_num", "model_output": "norm_num" }, { "id": 84, "match": false, "ground_truth": "intro x hx", "model_output": "intro x hx\n have : x ∈ Icc 0 1 := by simp at hx; simp; constructor <;> linarith\n exact h1 x this" }, { "id": 85, "match": false, "ground_truth": "intro x _", "model_output": "intro x _; exact (h1 x)" }, { "id": 86, "match": false, "ground_truth": "rw [mem_setOf]", "model_output": "constructor <;> intro h" }, { "id": 87, "match": false, "ground_truth": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n rw[← inequ₂''];\n exact inequ₂' y nonempty lscf x_converge g_converge", "model_output": "apply ge_liminf_of_lowerSemicontinuous lscf x_converge g_converge y nonempty" }, { "id": 88, "match": false, "ground_truth": "refine norm_ne_zero_iff.mpr ?_", "model_output": "apply norm_ne_zero_iff.mpr\n exact Basis.ne_zero b i" }, { "id": 89, "match": false, "ground_truth": "rw [← hT.span_range_v_eq_orthogonal_ker,\n mem_span_range_iff_exists_fun] at hx₂", "model_output": "have : x₂ ∈ range (toContinuousLinearMap T) := by\n rw [mem_orthogonal, mem_ker, mem_range, mem_range, mem_range, mem_range]\n exact ⟨x₂, x₂, x₂, x₂, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl, rfl⟩" }, { "id": 90, "match": false, "ground_truth": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]", "model_output": "· rcases hx with ⟨hx, hx2⟩\n use (fun n => (x.1, ⊤))\n constructor\n · intro n\n simpa [hx2] using hx\n · simp [hx2] at hx\n rw [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨w, hw, h2⟩\n use w\n constructor\n · exact fun n => hw n\n rw [Prod.tendsto_iff]\n exact ⟨hw, h2⟩" }, { "id": 91, "match": false, "ground_truth": "apply Finset.sum_eq_zero", "model_output": "apply Finset.sum_eq_zero\n intro i _\n rw [hx.1.2 i i.2]" }, { "id": 92, "match": false, "ground_truth": "mul_inv_cancel₀ (by linarith),", "model_output": "rw [← mul_assoc, ← mul_assoc, mul_inv_cancel₀, one_mul, mul_div_assoc, mul_one]" }, { "id": 93, "match": true, "ground_truth": "by rw [one_smul]; rfl", "model_output": "rw [one_smul]" }, { "id": 94, "match": false, "ground_truth": "intro b", "model_output": "intro b hb; specialize h 1 zero_lt_one; filter_upwards [h] with y hy; simp [sa] at hy; linarith [hy]" }, { "id": 95, "match": false, "ground_truth": "by linarith", "model_output": "apply mul_pos hc (by linarith)" }, { "id": 96, "match": true, "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", "model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]" }, { "id": 97, "match": false, "ground_truth": "· rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]; exact mk_mem_prod (by simp) hx", "model_output": "apply intrinsicInterior_prod_eq_prod_intrinsicInterior\n exact mk_mem_prod (by simp) hx" }, { "id": 98, "match": false, "ground_truth": "rw [alg.γeq k, alg.teq k]", "model_output": "have : 0 < k + 2 := by linarith [k.zero_le]" }, { "id": 99, "match": false, "ground_truth": "intro i _", "model_output": "intro i _; apply mul_nonneg (h1 i) (h32 i i.2)" }, { "id": 100, "match": false, "ground_truth": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩", "model_output": "rcases vt with ⟨c, d, ⟨⟨a, ha⟩, ⟨ct, cv⟩⟩⟩⟩" }, { "id": 101, "match": false, "ground_truth": "exact hu.2.2 (mem_inter hu.2.1 hx)", "model_output": "apply hu.2.1" }, { "id": 102, "match": true, "ground_truth": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf", "model_output": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf" }, { "id": 103, "match": false, "ground_truth": "intro x", "model_output": "intro v" }, { "id": 104, "match": false, "ground_truth": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a", "model_output": "simp [φ]" }, { "id": 105, "match": false, "ground_truth": "rw[Metric.isOpen_iff] at isopen", "model_output": "rcases ht with ⟨ht, ht_conv, ht_open, ht_bd⟩\n apply Lipschitz_of_Bounded hf ht_conv ht_open ht_bd x_pos" }, { "id": 106, "match": false, "ground_truth": "rw [deriv_of_const_mul_func (f u - f x)]", "model_output": "have h1 : ‖u - x‖ + ‖f u - f x‖ < c := by\n rw [← add_halves c]\n apply add_lt_add\n · apply mem_ball_iff_norm.mp hu.1\n · simp at *\n rw [abs_eq_self.2] <;> linarith [hu.2.1, hu.2.2]" }, { "id": 107, "match": false, "ground_truth": "rcases exists_seq_tendsto_sInf hs hs' with ⟨fx, _, cfx, fxs⟩", "model_output": "rcases hs with ⟨x, hx⟩\n rcases hs' with ⟨w, hw⟩\n use x\n intro x1 _\n by_contra h\n have : f x < f x1 := by exact Ne.lt_of_le' (id (Ne.symm h)) (le_of_lt h)\n have : f x ∉ f ⁻¹' Set.Iic y := by simp; exact this\n have : f x ∉ f ⁻¹' Set.Iic y := by simp; exact this\n contradiction" }, { "id": 108, "match": false, "ground_truth": "induction n with", "model_output": "apply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply Φ_isdescending\napply �" }, { "id": 109, "match": false, "ground_truth": "simp at ht", "model_output": "simp at ht [Icc]" }, { "id": 110, "match": false, "ground_truth": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]", "model_output": "· intro i\n simp [c1]\n apply cpos i i.2" }, { "id": 111, "match": false, "ground_truth": "rw [subdiff_gradient g g' hg gradcon]", "model_output": "apply mem_of_hasGradientAt g' hg" }, { "id": 112, "match": false, "ground_truth": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity), mul_comm] at hd", "model_output": "rw [abs_of_nonneg (by positivity)] at hd" }, { "id": 113, "match": true, "ground_truth": "simp [phi_add] at this", "model_output": "simp [phi_add] at this" }, { "id": 114, "match": false, "ground_truth": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]", "model_output": "simp at hu_eq" }, { "id": 115, "match": false, "ground_truth": "lift t to ℝ using ⟨LT.lt.ne_top fx_le_top, LT.lt.ne_bot fx_ge_bot⟩", "model_output": "rw [ht] at fx_le_top fx_ge_bot ⊢\n exact EReal.coe_le_coe_iff fx_ge_bot fx_le_top" }, { "id": 116, "match": false, "ground_truth": "rcases zin with ⟨u,hux,hufx,hv⟩", "model_output": "rcases zin with ⟨u,ux,hf,hv⟩" }, { "id": 117, "match": false, "ground_truth": "by linarith", "model_output": "apply h.1" }, { "id": 118, "match": true, "ground_truth": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex", "model_output": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex" }, { "id": 119, "match": false, "ground_truth": "have hΦ : ∃ r_Φ, range Φ ⊆ Metric.ball 0 r_Φ := by apply Φ_isBounded'", "model_output": "apply A₁e₁_A₂e₂_isBounded'" }, { "id": 120, "match": true, "ground_truth": "· simp", "model_output": "· simp" }, { "id": 121, "match": false, "ground_truth": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this", "model_output": "apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2\n · apply Satisfying_equational_constraint3\n · apply Satisfying_equational_constraint4\n · apply Satisfying_equational_constraint5\n · apply Satisfying_equational_constraint6\n · apply Satisfying_equational_constraint7\n · apply Satisfying_equational_constraint8\n · apply Satisfying_equational_constraint9\n · apply Satisfying_equational_constraint10\n · apply Satisfying_equational" }, { "id": 122, "match": false, "ground_truth": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]", "model_output": "have h1 : (-(φ l.1).1 x + t) / u l.1 ≤ f x := by\n have h2 : (-(φ l.1).1 x + t) / u l.1 ≤ (f x).toReal := by\n rw [← EReal.coe_toReal hfx]\n apply (div_le_iff₀ (EReal.coe_lt_top (f x)).ne (EReal.coe_lt_top (f x)).ne_top) |>.mpr\n rw [← EReal.coe_sub, ← EReal.coe_mul]" }, { "id": 123, "match": false, "ground_truth": "by_cases u₁_eq_0 : u₁ = 0", "model_output": "have : u₁ = ∑ x ∈ coef.support, coef x • hT.v x := by exact hu₁" }, { "id": 124, "match": false, "ground_truth": "apply mul_pos", "model_output": "· linarith [kpos]" }, { "id": 125, "match": true, "ground_truth": "exact this", "model_output": "exact this" }, { "id": 126, "match": false, "ground_truth": "intro y", "model_output": "intro y hy_ne" }, { "id": 127, "match": true, "ground_truth": "calc\n _= inner ℝ (u (n) - (- A₁† y')) (x₁ (n) - x₁') := by simp\n _≥ (0 : ℝ) := by\n apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁", "model_output": "apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁" }, { "id": 128, "match": false, "ground_truth": "simp [grad_fun_comp,grad_comp] at h", "model_output": "simp [grad_fun_comp, grad_comp, fderiv_prod_const, sub_add_sub_comm, sub_sub_sub_eq_add_sub] at h" }, { "id": 129, "match": true, "ground_truth": "exact hu₂", "model_output": "exact hu₂" }, { "id": 130, "match": false, "ground_truth": "apply Finset.card_eq_zero.2", "model_output": "have h1 : {i | ∑ j, A i j < 1} = ∅ := by\n ext i\n simp\n intro hlt\n have h1 : ∑ j, A i j = 1 := h_row_eq i\n linarith [h1]" }, { "id": 131, "match": false, "ground_truth": "exact False.elim (by simp at this)", "model_output": "have : r = 0 := by omega" }, { "id": 132, "match": false, "ground_truth": "simp", "model_output": "linarith [sq_nonneg b]" }, { "id": 133, "match": false, "ground_truth": "rw [← add_assoc, ← add_assoc]", "model_output": "rw [add_assoc, add_comm (b • j.1), ← add_assoc]" }, { "id": 134, "match": false, "ground_truth": "simp", "model_output": "simp [Metric.ball] at *" }, { "id": 135, "match": false, "ground_truth": "intro y yin z zin a b anneg bnneg absum1", "model_output": "intro x1 _ y1 _ a b ha hb hab\n specialize hfun (by simp) (by simp) ha hb hab\n rw [add_div, add_sub, add_sub, add_sub, add_sub, add_sub, add_sub]\n simp; rw [← add_sub, sub_add, sub_add, sub_add, sub_add, sub_add, sub_add]\n simp; rw [← add_sub, sub_add, sub_add, sub_add, sub_add, sub_add]\n simp; rw [← add_sub, sub_add, sub_add, sub_add, sub_add]\n simp;" }, { "id": 136, "match": false, "ground_truth": "gcongr", "model_output": "apply mul_lt_mul_of_pos_left _ hc'\n[ASSISTANT]\napply lt_of_lt_of_le zin antil" }, { "id": 137, "match": false, "ground_truth": "have hzd : ∀ n, d n = z n - loc := fun _ => eq_sub_of_add_eq' rfl", "model_output": "have h1 : ∀ n, z n ∈ s1 := by\n intro n\n simp [z]\n apply mem_inter (Metric.ball_mem_nhds _ (by positivity))\n apply ha n (by simp)" }, { "id": 138, "match": true, "ground_truth": "rfl", "model_output": "rfl" }, { "id": 139, "match": false, "ground_truth": "rw [mul_one] at htp", "model_output": "simp at htp" }, { "id": 140, "match": false, "ground_truth": "apply Continuous.tendsto", "model_output": "apply Continuous.tendsto\n apply ContinuousLinearMap.continuous" }, { "id": 141, "match": false, "ground_truth": "by\n have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero", "model_output": "apply Filter.tendsto_iff_seq_tendsto.1 (A₂e₂_subseq_converge_zero fullrank₁ fullrank₂)" }, { "id": 142, "match": false, "ground_truth": "apply A₁e₁_converge_zero", "model_output": "apply Satisfying_equational_constraint1\n · apply A₁e₁_converge_zero\n · apply A₂e₂_converge_zero\n · apply A₁e₁_converge_zero\n · apply A₂e₂_converge_zero\n · apply fullrank₁\n · apply fullrank₂\n · apply admm_kkt₁\n · apply admm_kkt₂\n · apply admm_kkt₃\n · apply admm_kkt₄\n · apply admm_kkt₅\n · apply admm_kkt₆" }, { "id": 143, "match": false, "ground_truth": "intro j", "model_output": "intro j\n have h4 : ∑ i, A i j ≤ 1 := hA_col_sum j\n have h5 : ∑ i, A i j ≥ 1 := by\n by_contra hlt\n push_neg at hlt\n have h6 : ∑ i, A i j < 1 := by linarith [hlt]\n have h7 : j ∈ Finset.univ.filter fun j => ∑ i, A i j < 1 := by\n simp; exact h6\n have h8 : Finset.card {j | ∑" }, { "id": 144, "match": false, "ground_truth": "rw[this]", "model_output": "rw [← this]" }, { "id": 145, "match": false, "ground_truth": "· simp; linarith [μpos]", "model_output": "apply inv_nonneg.mpr; linarith [μpos]" }, { "id": 146, "match": false, "ground_truth": "ext x", "model_output": "ext x\n simp only [c]\n rw [add_sub_right_comm, add_sub_right_comm A₁ x (A₂ x₂ n.natPred)]\n ring_nf" }, { "id": 147, "match": false, "ground_truth": "have xBall_in_U : xBall ⊆ U := by\n apply l1Ball_sub_convexHull r_pos hn", "model_output": "have x_in_t : x ∈ t := by\n simp[t];apply mem_inter x_in_xBall hr₀.1" }, { "id": 148, "match": false, "ground_truth": "rw [← zero_pow]", "model_output": "apply squeeze_zero_norm\n · have : ∀ n, ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖ ^ 2 ≤ 2 * (‖A₁ (e₁ (φ n))‖ ^ 2 + ‖A₂ (e₂ (φ n))‖ ^ 2) := by\n intro n; apply pow_two_nonneg (‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖)\n · apply A₁e₁_A₂e₂_converge_zero₂\n · apply" }, { "id": 149, "match": false, "ground_truth": "apply mul_nonneg", "model_output": "apply mul_nonneg\n · apply mul_nonneg\n · apply le_of_lt h1\n · apply le_of_lt admm.hrho\n · apply pow_two_nonneg" }, { "id": 150, "match": true, "ground_truth": "by simp at h; simpa [h]", "model_output": "simp at h" }, { "id": 151, "match": false, "ground_truth": "rw [← mul_neg]", "model_output": "rw [← mul_neg,neg_sub,← map_neg (A₂ (e₂ (n+1)))]" }, { "id": 152, "match": true, "ground_truth": "exact h", "model_output": "exact h" }, { "id": 153, "match": false, "ground_truth": "by rw [z]; simp; left; rw [z]; simp", "model_output": "rw [z] ; simp ; left ; rfl" }, { "id": 154, "match": true, "ground_truth": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:=by\n simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos", "model_output": "apply neg_le.mpr" }, { "id": 155, "match": false, "ground_truth": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩", "model_output": "rcases this with ⟨z_, α, ⟨monoa, conv⟩⟩" }, { "id": 156, "match": false, "ground_truth": "intro n x", "model_output": "apply ADMM_iter_process₁'_eq3_3'" }, { "id": 157, "match": true, "ground_truth": "simp [coef.mem_support_toFun]; rfl", "model_output": "simp [coef.mem_support_toFun]" }, { "id": 158, "match": false, "ground_truth": "simp only [Set.mem_union, Set.mem_iUnion, Set.mem_singleton_iff]", "model_output": "by_cases h1 : i = n + 1" }, { "id": 159, "match": false, "ground_truth": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le", "model_output": "have h2: ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le" }, { "id": 160, "match": true, "ground_truth": "apply eq4 u v", "model_output": "apply eq4 u v" }, { "id": 161, "match": false, "ground_truth": "have : IsClosed ((MM x).carrier ∩ (f.Epi univ)) := by\n rw [ht]; exact IsClosed.prod isClosed_singleton isClosed_Ici", "model_output": "have h2 : (MM x).carrier ∩ (f.Epi univ) = (MM x).carrier ∩ (f.Epi univ) := rfl" }, { "id": 162, "match": false, "ground_truth": "simp [z]", "model_output": "apply Convex.add_smul_sub_mem hs xin yin a b absum1" }, { "id": 163, "match": false, "ground_truth": "by\n apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2", "model_output": "apply Tendsto.norm\n apply Satisfying_equational_constraint2\n apply Satisfying_equational_constraint1\n apply Satisfying_equational_constraint3\n apply Satisfying_equational_constraint4\n apply Satisfying_equational_constraint5\n apply Satisfying_equational_constraint6\n apply Satisfying_equational_constraint7\n apply Satisfying_equational_constraint8\n apply Satisfying_equational_constraint9\n apply Satisfying_equational_constraint10\n apply Satisfying_equational_constraint11\n apply Satisfying_equational_constraint12" }, { "id": 164, "match": false, "ground_truth": "· have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt", "model_output": "have h0 : ∑ j, C x j = ∑ j, A x j := dsimp [C]\n simp [h]" }, { "id": 165, "match": false, "ground_truth": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]", "model_output": "apply le_trans [ey_diff_le] [t_Ax_Ax_n1_le]" }, { "id": 166, "match": false, "ground_truth": "intro n", "model_output": "intro n\n apply ADMM_iter_process₁'_eq2_3'" }, { "id": 167, "match": true, "ground_truth": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp", "model_output": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp" }, { "id": 168, "match": false, "ground_truth": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]", "model_output": "rw [smul_smul, one_div, inv_eq_one_div, div_mul_cancel₀, add_comm, add_sub, sub_self, add_zero]" }, { "id": 169, "match": false, "ground_truth": "suffices 0 ≤ (a1 • tx + b1 • ty) by exact this", "model_output": "intro i\n simp\n apply add_nonneg\n · apply mul_nonneg\n · linarith [anng]\n · apply txcond i\n · apply mul_nonneg\n · linarith [bnng]\n · apply tycond i" }, { "id": 170, "match": false, "ground_truth": "by\n rw [sub_right_comm]", "model_output": "rw [sub_right_comm, norm_sub_rev]" }, { "id": 171, "match": false, "ground_truth": "intro i hi", "model_output": "intro i hi\n apply iSup₂_le\n intro y hy\n apply ht1 y hy\n exact hi" }, { "id": 172, "match": false, "ground_truth": "apply le_trans (Nat.le_add_left ax N)", "model_output": "apply le_trans _ (hax _ (Nat.le_add_left ax (φ n)))" }, { "id": 173, "match": false, "ground_truth": "rw [hdomain]; trivial", "model_output": "rw [hdomain]; simp [z]" }, { "id": 174, "match": false, "ground_truth": "rfl", "model_output": "simp [xsub']" }, { "id": 175, "match": true, "ground_truth": "exact trivial", "model_output": "exact trivial" }, { "id": 176, "match": false, "ground_truth": "simp", "model_output": "apply pow_two_nonneg" }, { "id": 177, "match": false, "ground_truth": "intro _ epos", "model_output": "intro _ _" }, { "id": 178, "match": true, "ground_truth": "intro n", "model_output": "intro n" }, { "id": 179, "match": false, "ground_truth": "simp", "model_output": "rw [abs_of_nonneg, one_mul, mul_assoc, mul_assoc, mul_comm, mul_comm ‖⟪T e, T u⟫_𝕜‖ ^ 2]" }, { "id": 180, "match": false, "ground_truth": "· simp", "model_output": "apply tendsto_const_nhds" }, { "id": 181, "match": false, "ground_truth": "simp at hu", "model_output": "apply h_Ω1 u (hO1 hu.1) (hu.2.1) (hu.2.2)" }, { "id": 182, "match": false, "ground_truth": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c", "model_output": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c₁\n lift ⨆ u, Real.toEReal (inner ℝ u y) - f u to ℝ with c₂\n rw [← EReal.coe_add, ← EReal.coe_add, ← EReal.coe_mul, ← EReal.coe_mul]\n apply EReal.coe_le_coe_iff.mpr\n apply add_le_add\n · exact supa\n · exact supb" }, { "id": 183, "match": false, "ground_truth": "simp at vt1", "model_output": "have : ∀ᶠ (a : ℕ) in atTop, ‖1 / c a‖ ≤ ‖c a‖⁻¹ := by\n apply Filter.Eventually.mp (tendsto_one_div_atTop_nhds_zero_nat.eventually hcp)\n apply Filter.Eventually.of_forall; intro a ha; simp at ha; simp; exact ha.1" }, { "id": 184, "match": false, "ground_truth": "rw [pow_two]", "model_output": "rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc, ← mul_assoc]\n rw [← mul_assoc, ← mul_assoc" }, { "id": 185, "match": false, "ground_truth": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩", "model_output": "rcases exist_open_sub_finite_cover with ⟨b', _, b'finite, subb'⟩" }, { "id": 186, "match": true, "ground_truth": "intro b _", "model_output": "intro b _" }, { "id": 187, "match": false, "ground_truth": "ring", "model_output": "rw [← mul_add,← mul_assoc,mul_comm _ (1 - τ),mul_assoc,mul_comm _ (1 - τ)]" }, { "id": 188, "match": true, "ground_truth": "exact hcf", "model_output": "exact hcf" }, { "id": 189, "match": true, "ground_truth": "ring_nf", "model_output": "ring_nf" }, { "id": 190, "match": false, "ground_truth": "simp", "model_output": "simp [affSpan_iff]" }, { "id": 191, "match": false, "ground_truth": "simp [FeasSet, FeasPoint] at xf", "model_output": "rw [hab]" }, { "id": 192, "match": false, "ground_truth": "· simp [hx]", "model_output": "· rw [hx]; simp [ha.ne']" }, { "id": 193, "match": false, "ground_truth": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3", "model_output": "have : a * b * ⟪f' (z + d • (y - z)) - f' (x + c • (z - x)), y - x⟫_ℝ = a * b * (0 : ℝ) := by\n rw [← e2, ← e1, ← this1, ← this2, inner_sub_left, ← sub_sub, sub_self, inner_zero_right]" }, { "id": 194, "match": false, "ground_truth": "by ring", "model_output": "rw [one_div_mul_cancel]" }, { "id": 195, "match": false, "ground_truth": "by\n rw[sign_mul_abs]\n field_simp [bi_pos i]", "model_output": "have : ‖(b).equivFun (x₀ - x) i‖ ≠ 0 := by\n exact norm_ne_zero_iff.mpr (b.equivFun_apply_ne_zero i)" }, { "id": 196, "match": false, "ground_truth": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ]", "model_output": "apply h_add'" }, { "id": 197, "match": true, "ground_truth": "· simp [V₂]", "model_output": "· simp [V₂]" }, { "id": 198, "match": false, "ground_truth": "intro s", "model_output": "intro s g cond sumeq i" }, { "id": 199, "match": true, "ground_truth": "rw[zero_add]", "model_output": "rw[zero_add]" }, { "id": 200, "match": false, "ground_truth": "linarith", "model_output": "linarith [kleaw, this]" }, { "id": 201, "match": false, "ground_truth": "repeat apply mul_nonneg", "model_output": "· apply mul_nonneg\n · apply mul_nonneg\n · apply inv_nonneg_of_nonneg\n apply le_of_lt admm.hrho\n · apply pow_two_nonneg\n · apply pow_two_nonneg" }, { "id": 202, "match": false, "ground_truth": "exact Eq.symm (Nat.add_sub_of_le kge)", "model_output": "rw [Nat.add_sub_of_le kge]" }, { "id": 203, "match": false, "ground_truth": "rw [Filter.tendsto_congr' this]", "model_output": "apply Filter.Tendsto.congr' this" }, { "id": 204, "match": false, "ground_truth": "intro c1", "model_output": "intro c1 hc1\n filter_upwards [t5] with n hn\n rw [inner_sub_left, inner_smul_right]\n apply le_of_lt\n apply mul_lt_mul_of_pos_right\n · exact hn\n · apply norm_pos_iff.mpr\n simp\n exact inv_ne_zero (ne_of_gt hc1)" }, { "id": 205, "match": false, "ground_truth": "exact min_le_right δ₀ δ₂", "model_output": "apply min_le_right δ₀ δ₂" }, { "id": 206, "match": false, "ground_truth": "simp", "model_output": "rw [abs_of_nonneg (alg.step₁ k)]" }, { "id": 207, "match": false, "ground_truth": "simp", "model_output": "simp [h]" }, { "id": 208, "match": false, "ground_truth": "rw[← mul_div]", "model_output": "ring_nf" }, { "id": 209, "match": false, "ground_truth": "simp", "model_output": "apply Nat.zero_le i" }, { "id": 210, "match": false, "ground_truth": "intro c", "model_output": "intro c cin" }, { "id": 211, "match": false, "ground_truth": "intro i", "model_output": "intro i ieqN" }, { "id": 212, "match": false, "ground_truth": "dsimp [M]", "model_output": "rw [M]" }, { "id": 213, "match": false, "ground_truth": "intro v", "model_output": "simp [LinearMap.toContinuousLinearMap_apply]" }, { "id": 214, "match": true, "ground_truth": "by exact this", "model_output": "exact this" }, { "id": 215, "match": true, "ground_truth": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)", "model_output": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)" }, { "id": 216, "match": false, "ground_truth": "apply εpos", "model_output": "· apply εpos" }, { "id": 217, "match": true, "ground_truth": "linarith [eq1]", "model_output": "linarith [eq1]" }, { "id": 218, "match": false, "ground_truth": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp", "model_output": "apply Finset.sum_pos\n · intro i _\n apply (alg.ha i)\n · simp" }, { "id": 219, "match": true, "ground_truth": "linarith [a1leab]", "model_output": "linarith [a1leab]" }, { "id": 220, "match": false, "ground_truth": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq", "model_output": "rw [add_div] at ieq" }, { "id": 221, "match": false, "ground_truth": "simp at din", "model_output": "constructor <;> linarith [din.1, din.2]" }, { "id": 222, "match": false, "ground_truth": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin (alg.x (α q -1),alg.y (α q -1))\n exact mem_image_of_mem alg.z trivial", "model_output": "apply sq (alg.x (α q - 1), alg.y (α q - 1)) _" }, { "id": 223, "match": false, "ground_truth": "by\n rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))", "model_output": "apply prod_norm_ge_of_first\n apply norm_nonneg" }, { "id": 224, "match": false, "ground_truth": "intro a t hat IH w hw_pos' hw_sum' hmem'", "model_output": "intro a s has IH w hw_nonneg hw_sum' hw_in_U'" }, { "id": 225, "match": false, "ground_truth": "by\n apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂", "model_output": "apply add_lt_add\n · apply ha₁ b (le_trans (le_max_left a₁ a₂) hba₁)\n · apply ha₂ b (le_trans (le_max_right a₁ a₂) hba₂)" }, { "id": 226, "match": false, "ground_truth": "exact inv_sub_inv l' h₁", "model_output": "rw [inv_eq_one_div, inv_eq_one_div, one_div, one_div, sub_div, div_mul_eq_div_div]" }, { "id": 227, "match": true, "ground_truth": "apply hpos'", "model_output": "apply hpos'" }, { "id": 228, "match": false, "ground_truth": "apply Set.add_subset_add_right", "model_output": "apply add_subset_add_right\n · apply Finset.sum_subset\n intro i hi\n apply smul_subset_smul_left\n · apply intrinsicInterior_subset\n · simp [ι']\n · exact hi\n · exact subset_refl (l i₀ • intrinsicInterior ℝ (C i₀))" }, { "id": 229, "match": true, "ground_truth": "rw [y1, y2]", "model_output": "rw [y1, y2]" }, { "id": 230, "match": true, "ground_truth": "linarith [hγ]", "model_output": "linarith [hγ]" }, { "id": 231, "match": false, "ground_truth": "apply norm_sub_le", "model_output": "apply norm_sub_norm_le" }, { "id": 232, "match": false, "ground_truth": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 3) (by positivity)", "model_output": "have h1:= hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 2) (by positivity)" }, { "id": 233, "match": false, "ground_truth": "intro n", "model_output": "intro n\n specialize allh' (n + 1) (Nn n)\n simp at allh'\n exact allh'" }, { "id": 234, "match": false, "ground_truth": "by\n apply zp5", "model_output": "exact zp5" }, { "id": 235, "match": false, "ground_truth": "by\n apply Simplifying₂\n apply h₁\n apply norm_nonneg", "model_output": "rw [mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc, mul_div_assoc]" }, { "id": 236, "match": false, "ground_truth": "refine LICQ_injM z m Z Ax ?_ mlen ?_ eq2 eq1 ⟨heq1, heq2⟩", "model_output": "have h1 : Ax *ᵥ z = 0 := heq1" }, { "id": 237, "match": false, "ground_truth": "apply le_trans", "model_output": "apply le_trans Nge (Nat.cast_le.mpr (Nat.le_add_right N n))" }, { "id": 238, "match": false, "ground_truth": "apply mul_eq_mul_left_iff.mpr", "model_output": "rw [mul_eq_mul_left_iff]" } ] }