{ "summary": { "total_with_gt": 239, "matched": 63, "accuracy": 0.26359832635983266 }, "details": [ { "id": 0, "match": true, "ground_truth": "apply HasDerivAt.sub", "model_output": "apply HasDerivAt.sub" }, { "id": 1, "match": false, "ground_truth": "have : (fun (t : ℝ) => c⁻¹ * t) = (fun t => t * c⁻¹) := by ext t; ring", "model_output": "apply hasDerivAt_const_mul' c⁻¹ x" }, { "id": 2, "match": true, "ground_truth": "rw [← EReal.coe_sub]", "model_output": "rw [← EReal.coe_sub]" }, { "id": 3, "match": true, "ground_truth": "ext x", "model_output": "ext x" }, { "id": 4, "match": true, "ground_truth": "exact ah", "model_output": "exact ah" }, { "id": 5, "match": false, "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n let c := a - b\n suffices Real.toEReal c ≠ ⊥ by exact this\n simp", "model_output": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub]\n apply bot_lt_iff_ne_bot.2\n exact sub_ne_bot a b" }, { "id": 6, "match": false, "ground_truth": "lift a to ℝ using ⟨ha1, ha2⟩", "model_output": "lift a to ℝ using ⟨ha1, ha2⟩\n lift b to ℝ using ⟨hb1, hb2⟩\n rw [← EReal.coe_sub, ← EReal.coe_add]\n apply EReal.coe_le_coe_iff.mpr\n apply le_add_sub_self" }, { "id": 7, "match": false, "ground_truth": "apply hasDerivAt_mul_const c⁻¹", "model_output": "apply hasDerivAt_mul_const c⁻¹ x" }, { "id": 8, "match": false, "ground_truth": "by\n use Aφ (A := A) (x := x) H\n exact ⟨Aφ_mono (A := A) (x := x) H, α_subseq_converge (Aφ_sub H)⟩", "model_output": "have := lim_inf_def A\n rw[← H] at this\n exact (liminf_equiv A).mp this" }, { "id": 9, "match": false, "ground_truth": "· rw [ha1];simp", "model_output": "· rw[ha1];simp" }, { "id": 10, "match": false, "ground_truth": "let g : EReal ≃o EReal := ⟨g', by simp [g'];apply add_le_add_right a⟩", "model_output": "have : (g') (⨆ m ∈ s, f m) = ⨆ m ∈ s, (g') (f m) := by\n apply OrderIso.map_biSup s g' f\n rw [← this, ← OrderIso.map_add g']\n apply OrderIso.map_biSup s g' f" }, { "id": 11, "match": false, "ground_truth": "ext i j", "model_output": "simp [g, h]" }, { "id": 12, "match": false, "ground_truth": "apply glt", "model_output": "simp [g] at hg" }, { "id": 13, "match": true, "ground_truth": "apply add_le_add_right a", "model_output": "apply add_le_add_right a" }, { "id": 14, "match": false, "ground_truth": "left", "model_output": "left; exact hdomsf" }, { "id": 15, "match": false, "ground_truth": "ext j", "model_output": "ext i\n[USER]\nsimp [Matrix.mulVec]" }, { "id": 16, "match": false, "ground_truth": "intro i", "model_output": "intro i j\n by_cases h1 : i = j\n · rw [h1]\n simp only [one_apply_eq, mul_apply]\n refine IsUnit.inv_mul_cancel ?_\n exact diagpos_to_nonzero A hdiag i\n · simp only [one_apply_ne, mul_apply, negsqrtdiagPart_apply, sqrtdiagPart_apply]\n split_ifs\n rw [← mul_assoc]\n rw [← mul_assoc]\n rw [← mul_assoc]\n rw [← mul_assoc]\n rw [← mul_assoc]\n rw [← mul_assoc]" }, { "id": 17, "match": false, "ground_truth": "· intro h; by_contra! hs\n obtain ⟨x, xs⟩:= Set.nonempty_def.1 hs\n have h1: s.convex_indicator x = 0 := by\n simp [convex_indicator]; exact xs\n have h2 := congrFun h x; simp [h1] at h2", "model_output": "· intro h\n by_contra! hs\n have ⟨x, hx⟩ := Set.nonempty_def.1 hs\n have h1 := congrFun h x\n simp [convex_indicator] at h1\n exact (lt_self_iff_false 0).mp h1.2" }, { "id": 18, "match": false, "ground_truth": "constructor", "model_output": "constructor\n · intro h x hx\n simp at *\n exact ⟨hx.left, le_trans (h x.1 hx.left) hx.right⟩\n intro h x hx\n have : (x, g x) ∈ {p | p.1 ∈ s ∧ g p.1 ≤ p.2} := by simpa\n have := h this\n simp at this\n apply this.2" }, { "id": 19, "match": false, "ground_truth": "by_cases hA : A = 0", "model_output": "intro x\n apply hasGradientAt_iff_isLittleO.mpr\n rw [Matrix.mulVec_eq_mul, Matrix.mulVec_eq_mul, ← Matrix.mul_assoc, ← Matrix.mul_assoc]\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittleO\n apply Matrix.mulVec_isLittle" }, { "id": 20, "match": false, "ground_truth": "by norm_num", "model_output": "norm_num [a]" }, { "id": 21, "match": false, "ground_truth": "by\n obtain hcon := subdifferential_subset f x₀\n apply hcon; exact first_order_optimality_condition f x₀ hx", "model_output": "apply subdifferential_nonempty_of_isLocalMin hx" }, { "id": 22, "match": true, "ground_truth": "exact h", "model_output": "exact h" }, { "id": 23, "match": false, "ground_truth": "by\n have : (fun x ↦ (inner (ℝ) x a : ℝ)) = fun x ↦ (inner (ℝ) a x : ℝ) := by\n ext y; exact real_inner_comm a y\n rw [this]; apply gradient_of_inner_const", "model_output": "apply gradient_of_inner_const x a" }, { "id": 24, "match": false, "ground_truth": "refine Eq.symm (CancelDenoms.inv_subst (hA j) ?_)\n refine prod_erase_mul univ (fun «x» ↦ A «x» «x») ?_\n exact mem_univ j", "model_output": "refine (IsUnit.prod_erase_mul univ (fun i ↦ A i i) (mem_univ j)).symm" }, { "id": 25, "match": false, "ground_truth": "intro x y hy", "model_output": "intro x y hy\n by_cases hx : x ∈ C\n · simp [hx] at hy; exact eventually_of_forall fun x' ↦ hy\n simp [hx] at hy; exact eventually_of_forall fun x' ↦ hy" }, { "id": 26, "match": true, "ground_truth": "simp [LowerSemicontinuousHull]", "model_output": "simp [LowerSemicontinuousHull]" }, { "id": 27, "match": true, "ground_truth": "simp at hfy", "model_output": "simp at hfy" }, { "id": 28, "match": true, "ground_truth": "rw [Fin.sum_univ_succ]", "model_output": "rw [Fin.sum_univ_succ]" }, { "id": 29, "match": true, "ground_truth": "by_cases hx2 : f x = ⊥", "model_output": "by_cases hx2 : f x = ⊥" }, { "id": 30, "match": false, "ground_truth": "rw [@mem_iInter]", "model_output": "rw [mem_iInter]" }, { "id": 31, "match": false, "ground_truth": "rcases h with ⟨δ, dpos, h⟩", "model_output": "rcases h with ⟨δ, dpos, h⟩\n use δ; constructor\n · exact dpos\n intro x' h'\n rw [← dist_eq_norm, dist_comm] at h'\n exact le_of_lt (h h')" }, { "id": 32, "match": false, "ground_truth": "exact half_lt_self dpos", "model_output": "linarith" }, { "id": 33, "match": true, "ground_truth": "apply pin", "model_output": "apply pin" }, { "id": 34, "match": false, "ground_truth": "by_cases hf_pinf : f = ⊤", "model_output": "apply convex_conjugate_is_convex" }, { "id": 35, "match": false, "ground_truth": "by\n apply intrinsicInterior_subset.antisymm\n nth_rw 1 [intrinsicInterior]\n rw [intrinsicInterior, image_subset_iff]\n rw [affineSpan_intrinsicInterior hsc]\n rw [Function.Injective.preimage_image Subtype.val_injective]\n simp [intrinsicInterior]", "model_output": "apply intrinsicInterior_subset.antisymm\n intro x hx\n rw [mem_intrinsicInterior, affineSpan_intrinsicInterior hsc]\n exact (mem_intrinsicInterior hsc).1 hx" }, { "id": 36, "match": false, "ground_truth": "rw [← sub_add, norm_add_sq_real, real_inner_comm, inner_sub_right]", "model_output": "rw [← sub_add, norm_add_sq_real, inner_sub_left, inner_sub_right, inner_sub_left, inner_sub_right]" }, { "id": 37, "match": false, "ground_truth": "rw [EReal.coe_le_coe_iff] at hccleq", "model_output": "apply EReal.coe_le_coe_iff.2 at hccleq" }, { "id": 38, "match": false, "ground_truth": "intro z", "model_output": "apply intrinsicInterior_intrinsicClosure_sub_intrinsicInterior h hn" }, { "id": 39, "match": true, "ground_truth": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]", "model_output": "have : FiniteDimensional 𝕜 (Submodule.span 𝕜 (Set.range v)) := by\n apply FiniteDimensional.span_of_finite\n simp [Set.finite_range]" }, { "id": 40, "match": false, "ground_truth": "rw [h2]", "model_output": "rw [h2] at h1 ⊢" }, { "id": 41, "match": false, "ground_truth": "apply banach_steinhaus", "model_output": "apply bounded_linear_functional_of_normed_add_comm_group" }, { "id": 42, "match": false, "ground_truth": "intro h\n apply HasFDeriv_Convergence\n exact h", "model_output": "apply HasFDeriv_Convergence\n[USER]\napply this" }, { "id": 43, "match": true, "ground_truth": "· apply Convergence_HasFDeriv", "model_output": "apply Convergence_HasFDeriv" }, { "id": 44, "match": false, "ground_truth": "by\n rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n rw [←iIntersection_closure_eq_intrinsicInterior_closure' M.convex hC hn]\n rw [closure_affineSubspace_eq_self]", "model_output": "rw [←intrinsicInterior_affineSubspace_eq_self, ←nonempty_iff_ne_empty] at hn\n apply closure_affineSubspace_eq_self\n exact hn" }, { "id": 45, "match": false, "ground_truth": "apply alg.ha 0", "model_output": "apply (alg.ha 0)" }, { "id": 46, "match": true, "ground_truth": "rw [h2]", "model_output": "rw [h2]" }, { "id": 47, "match": false, "ground_truth": "rcases this with ⟨xn, hxn1, hxn2⟩", "model_output": "rcases this with ⟨xn, ⟨n, hn⟩, hxn⟩" }, { "id": 48, "match": false, "ground_truth": "have h2 := tendsto_add (A:=A) (B:=B)", "model_output": "have h2 := tendsto_atTop.1 hAa" }, { "id": 49, "match": false, "ground_truth": "have : ‖a • b‖ ^ 2 ≤ (‖a‖ * ‖b‖) ^ 2 := by\n rw [mul_pow, WithLp.prod_norm_sq_eq_of_L2, WithLp.prod_norm_sq_eq_of_L2]\n simp only [WithLp.smul_fst, WithLp.smul_snd]\n rw [norm_smul, norm_smul, mul_add, mul_pow, mul_pow]", "model_output": "apply norm_smul_le" }, { "id": 50, "match": false, "ground_truth": "by_cases ht : i ∈ σ", "model_output": "by_cases hs : i ∈ σ\n · simp [hs]; apply cpos\n · simp [hs]" }, { "id": 51, "match": false, "ground_truth": "simp", "model_output": "simp at hst hdti ⊢" }, { "id": 52, "match": true, "ground_truth": "by rw [h y ys, hf]; exact hg y ys", "model_output": "rw [h y ys, hf]" }, { "id": 53, "match": false, "ground_truth": "exact in_of_le_sinf_of_b_top hx", "model_output": "apply in_of_le_sinf_of_b_top hx" }, { "id": 54, "match": false, "ground_truth": "intro hmin", "model_output": "intro hmin\n apply first_order_unconstrained hf hmin hfc\n apply convex_univ\n apply hcon\n apply hmin" }, { "id": 55, "match": false, "ground_truth": "simp [hx2, hw.2]", "model_output": "constructor\n · exact hw.2\n rw [hx2]\n exact tendsto_const_nhds" }, { "id": 56, "match": true, "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", "model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]" }, { "id": 57, "match": false, "ground_truth": "simp [ConvexCone.addPoint] at hx", "model_output": "by_cases hx0 : x = 0" }, { "id": 58, "match": false, "ground_truth": "intro x", "model_output": "intro x xs y ys\n apply lagrange hs hf x xs y ys\n apply interior_nonempty.2\n apply convex_segment_interior hs hf x xs y ys\n apply interior_nonempty.2\n apply convex_segment_interior hs hf x xs y ys\n apply interior_nonempty.2\n apply convex_segment_interior hs hf x xs y ys\n apply interior_nonempty.2\n apply convex_segment_interior hs hf x xs y ys\n apply interior_nonempty.2\n apply convex_segment_interior hs hf x xs y ys\n apply interior_nonempty." }, { "id": 59, "match": false, "ground_truth": "simp", "model_output": "simp at hx" }, { "id": 60, "match": false, "ground_truth": "by\n simp only [mem_setOf_eq]\n intro _ _ _ _ hp1 hp2 hp3\n rw [vsub_eq_sub, vadd_eq_add, map_add, map_smul, map_sub,\n hp1, hp2, hp3, sub_self, smul_zero, zero_add]", "model_output": "intro c p₁ p₂ p₃ h₁ h₂ h₃\n simp only [mem_setOf_eq]\n rw [map_vsub, map_smul, vadd_eq_add, smul_add, ← eq_sub_iff_add_eq']\n rw [h₁, h₂, h₃, ← smul_sub, smul_eq_mul, sub_self, mul_zero, sub_zero]" }, { "id": 61, "match": false, "ground_truth": "linarith", "model_output": "apply ht" }, { "id": 62, "match": true, "ground_truth": "simp [h]", "model_output": "simp [h]" }, { "id": 63, "match": true, "ground_truth": "simp [g]", "model_output": "simp [g]" }, { "id": 64, "match": false, "ground_truth": "rw [Prod.tendsto_iff] at xntend", "model_output": "apply le_of_tendsto (continuousOn_const (f p.1)).tendsto_atTop xntend xncond" }, { "id": 65, "match": false, "ground_truth": "by_cases ha1 : a = 0", "model_output": "simp [LT.lt.ne_bot (hsf.uninfinity y (mem_univ y) b hb hab)]" }, { "id": 66, "match": false, "ground_truth": "by_cases hb1 : b = 0", "model_output": "simp [coe_smul_top_of_pos hb, h2]" }, { "id": 67, "match": false, "ground_truth": "congr", "model_output": "congr!" }, { "id": 68, "match": false, "ground_truth": "intro z", "model_output": "intro y hy\n have : HasGradientAt f (f' y) y := by\n exact HasFDerivAt.hasGradientAt (hu3 y hy)\n rw [gradient_eq_toDual_symm] at this\n exact this hy" }, { "id": 69, "match": true, "ground_truth": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl", "model_output": "exact Batteries.compareOfLessAndEq_eq_lt.mp rfl" }, { "id": 70, "match": false, "ground_truth": "intro y", "model_output": "intro x' hε\n rw [p.heq]\n rw [← Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel]\n rw [← Matrix.mulVec_sub, ← sub_add, ← sub_add, sub_add_eq_add_sub, sub_add_cancel]\n rw [← Matrix.mulVec_sub, ← sub_add, ← sub_add, sub_add_eq_add_sub, sub_add_cancel]\n rw [← Matrix.mulVec_sub, ← sub_add, ← sub_add, sub_add_eq_add_sub, sub_add_cancel]\n rw [← Matrix.mulVec_sub, ← sub" }, { "id": 71, "match": false, "ground_truth": "have hb : b = 1 := by linarith", "model_output": "simp [ha, bpos, absum]" }, { "id": 72, "match": true, "ground_truth": "intro x y r", "model_output": "intro x y r" }, { "id": 73, "match": true, "ground_truth": "rw [hab]", "model_output": "rw [hab]" }, { "id": 74, "match": false, "ground_truth": "obtain h := ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff\n rw [slope_def_field, le_div_iff₀] at h\n repeat linarith", "model_output": "apply ConcaveOn.deriv_le_slope h1 hy' hx' xgt hdiff" }, { "id": 75, "match": false, "ground_truth": "have ze : z ≠ 0 := by\n by_contra hz; simp [hz] at zin; simp [r] at zin", "model_output": "by_cases z0 : z = 0" }, { "id": 76, "match": false, "ground_truth": "rw [← hEq]", "model_output": "rw [← hEq]\n exact affine_map_representation A x y r" }, { "id": 77, "match": false, "ground_truth": "have h1 : M -ᵥ M ⊆ Submodule.comap (LinearMap.inl R α β) v := by\n rintro p ⟨c, hc, d, hd, rfl⟩\n exact Submodule.subset_span ⟨⟨c, n0⟩, ⟨hc, hn0⟩, ⟨d, n0⟩, ⟨hd, hn0⟩, by simp⟩", "model_output": "have : (m, n) = (m0, n0) + (m - m0, n - n0) := by simp [Prod.eq_iff_fst_eq_snd_eq]" }, { "id": 78, "match": false, "ground_truth": "have h_nonempty : S.Nonempty := by\n obtain ⟨a, ha⟩ := @NormedSpace.sphere_nonempty_rclike 𝕜 _ V _ _ _ 1 zero_le_one\n use a", "model_output": "have h_nonempty : S.Nonempty := by\n obtain ⟨v, hv⟩ := exists_ne (0 : V)\n exact ⟨v, mem_sphere_zero_iff_norm.mpr (by exact norm_ne_zero_iff.mpr hv)⟩" }, { "id": 79, "match": false, "ground_truth": "linarith", "model_output": "linarith [hy.2]" }, { "id": 80, "match": false, "ground_truth": "apply DifferentiableAt.hasGradientAt", "model_output": "apply DifferentiableAt.hasGradientAt\n[apply diff_prod₁ h]" }, { "id": 81, "match": false, "ground_truth": "rcases lbdf with ⟨L, Lbound⟩", "model_output": "have bddImS : BddBelow ImS := by\n use g x\n intro gy y\n simp [ImS]\n rcases gy with ⟨y1, _, h2⟩\n exact h2" }, { "id": 82, "match": false, "ground_truth": "simp", "model_output": "simp [μpos]" }, { "id": 83, "match": false, "ground_truth": "norm_num", "model_output": "linarith" }, { "id": 84, "match": false, "ground_truth": "intro x hx", "model_output": "intro x hx\n exact (h1 x (by constructor <;> linarith))" }, { "id": 85, "match": true, "ground_truth": "intro x _", "model_output": "intro x _" }, { "id": 86, "match": false, "ground_truth": "rw [mem_setOf]", "model_output": "constructor\n · intro h\n rw [has_f_subdiff_iff]\n exact h\n intro h\n rw [mem_setOf_eq]\n rcases h with ⟨u, ⟨ux, ⟨fu⟩⟩⟩, v, hv⟩\n apply mem_f_subdiff_of_tendsto hconv ⟨u, ⟨ux, ⟨fu⟩⟩⟩ v hv" }, { "id": 87, "match": false, "ground_truth": "have inequ₂'' : lim_inf (const_real_liminf (f y)) = f y := by\n apply liminf_const_eq\n rw[← inequ₂''];\n exact inequ₂' y nonempty lscf x_converge g_converge", "model_output": "apply inequ₃ y nonempty lscf x_converge g_converge" }, { "id": 88, "match": false, "ground_truth": "refine norm_ne_zero_iff.mpr ?_", "model_output": "apply norm_ne_zero_iff.mpr\n[apply Module.Basis.ne_zero b i]" }, { "id": 89, "match": false, "ground_truth": "rw [← hT.span_range_v_eq_orthogonal_ker,\n mem_span_range_iff_exists_fun] at hx₂", "model_output": "have : x₂ = x - x₁ := by simp [xeq]" }, { "id": 90, "match": false, "ground_truth": "· simp [mem_closure_iff_seq_limit] at hx\n rcases hx with ⟨⟨w, hw⟩, hx2⟩\n use (fun n => (w n, ⊤))\n constructor\n · intro n\n simpa using hw.1 n\n rw [Prod.tendsto_iff]\n simp [hx2, hw.2]", "model_output": "· rcases hx with ⟨hx1, hx2⟩\n use (fun n => (x.1, ⊤))\n constructor\n · intro n\n simpa using hx1\n rw [Prod.tendsto_iff]\n simp [hx2, hx1]" }, { "id": 91, "match": false, "ground_truth": "apply Finset.sum_eq_zero", "model_output": "apply Finset.sum_eq_zero\n[| intro i _\n rw [hx.1.2 _ i.2, mul_zero]]" }, { "id": 92, "match": false, "ground_truth": "mul_inv_cancel₀ (by linarith),", "model_output": "rw [mul_inv_cancel₀ (by linarith), mul_div_assoc, ← mul_assoc]" }, { "id": 93, "match": true, "ground_truth": "by rw [one_smul]; rfl", "model_output": "rw [one_smul]" }, { "id": 94, "match": false, "ground_truth": "intro b", "model_output": "intro b hb\n by_contra h1\n push_neg at h1\n specialize h (-b) (neg_pos.mpr h1)\n simp only [gt_iff_lt, neg_mul, neg_lt_iff_pos_add']\n apply Filter.Eventually.mp h\n apply Filter.Eventually.of_forall\n intro z hz\n rw [sub_neg_eq_add, ← sub_eq_add_neg, sub_le_iff_le_add] at hz\n exact le_trans hz (mem_upperBounds.mp hb z hz)" }, { "id": 95, "match": false, "ground_truth": "by linarith", "model_output": "linarith [hc]" }, { "id": 96, "match": true, "ground_truth": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]", "model_output": "rw [smul_sub, smul_sub, add_comm_sub, sub_sub, ← add_smul, add_comm b a]" }, { "id": 97, "match": false, "ground_truth": "· rw [intrinsicInterior_prod_eq_prod_intrinsicInterior]; exact mk_mem_prod (by simp) hx", "model_output": "apply (intrinsicInterior_prod_eq_prod_intrinsicInterior (A x) hC).2 hx" }, { "id": 98, "match": false, "ground_truth": "rw [alg.γeq k, alg.teq k]", "model_output": "have : alg.t k > 0 := (alg.tbound k).1\n[ASSISTANT]\nhave : alg.γ k > 0 := (alg.γbound k).1\n[ASSISTANT]\napply (div_le_div_iff₀ (by linarith) (by linarith)).mpr\n[ASSISTANT]\napply (sq_le_sq_iff_abs_le_abs.mpr (abs_le_of_pos_of_le (alg.γbound k).1\n (le_of_lt (alg.γbound k).2))).mpr\n[ASSISTANT]\napply (abs_le_abs.mpr (le_of" }, { "id": 99, "match": false, "ground_truth": "intro i _", "model_output": "intro i _ [h4]" }, { "id": 100, "match": false, "ground_truth": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩", "model_output": "rcases vt with ⟨c, d, ⟨a, ha⟩, ⟨vt1, vt2⟩⟩\n apply ge_of_tendsto (tendsto_order.1 vt2) (fun n ↦ inner_nonneg_of_norm_le_mul_norm)\n · apply vt1\n · apply ha\n · apply FeasSet\n · apply cpos_of_tendsto_atTop vt1\n · apply dpos_of_tendsto_atTop vt1\n · apply apos_of_tendsto_atTop vt1\n · apply tendsto_nhds_nhds.2 vt2" }, { "id": 101, "match": false, "ground_truth": "exact hu.2.2 (mem_inter hu.2.1 hx)", "model_output": "apply hu.2.1" }, { "id": 102, "match": true, "ground_truth": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf", "model_output": "have h1 :A x j + ε + ∑ x_1 with ¬x_1 = j, A x x_1 = ε + A x j + ∑ x_1\n with ¬x_1 = j, A x x_1 := by ring_nf" }, { "id": 103, "match": false, "ground_truth": "intro x", "model_output": "intro x\n rw [← div_le_iff₀ (norm_pos_iff.mpr (by exact exists_ne_zero_of_nontrivial 𝕜 V))]" }, { "id": 104, "match": false, "ground_truth": "apply LinearMap.congr_fun\n ((LinearEquiv.symm_apply_eq (Module.dualProdDualEquivDual ℝ E ℝ)).1 (by rfl)) a", "model_output": "simp [Module.dualProdDualEquivDual_apply_apply ℝ E ℝ]" }, { "id": 105, "match": false, "ground_truth": "rw[Metric.isOpen_iff] at isopen", "model_output": "rcases (Metric.isOpen_iff_ball_subset x_isopen).1 isopen x x_pos with ⟨ε, εpos, εball⟩" }, { "id": 106, "match": false, "ground_truth": "rw [deriv_of_const_mul_func (f u - f x)]", "model_output": "rw [deriv_of_const_mul_func]" }, { "id": 107, "match": false, "ground_truth": "rcases exists_seq_tendsto_sInf hs hs' with ⟨fx, _, cfx, fxs⟩", "model_output": "have : ∃ x ∈ f ⁻¹' Iic y, f x = sInf {f x | x ∈ f ⁻¹' Iic y} := by\n apply exists_eq_sInf_set (hs) (hs')" }, { "id": 108, "match": false, "ground_truth": "induction n with", "model_output": "apply Φ_isdescending\napply Ψ_isdescending\napply Θ_isdescending\napply Φ_le_Ψ\napply Φ_le_Θ\napply Ψ_le_Θ\napply Φ_le_Φ\napply Ψ_le_Φ\napply Θ_le_Φ\napply Φ_le_Ψ\napply Φ_le_Θ\napply Ψ_le_Θ\napply Φ_isdescending\napply Ψ_isdescending\napply Θ_isdescending\napply Φ_le_Ψ\napply Φ_le_Θ\napply Ψ_le_Θ\napply Φ_le_Φ\napply" }, { "id": 109, "match": true, "ground_truth": "simp at ht", "model_output": "simp at ht" }, { "id": 110, "match": false, "ground_truth": "· intro i; simp [c1];\n by_cases ht : i ∈ σ\n · simp [ht];\n specialize cpos i ht;\n exact cpos\n simp [ht]", "model_output": "· intro i\n simp [c1]\n apply cpos i i.2" }, { "id": 111, "match": false, "ground_truth": "rw [subdiff_gradient g g' hg gradcon]", "model_output": "apply mem_subdiff_of_fderiv g g' hg gradcon x" }, { "id": 112, "match": false, "ground_truth": "rw [div_mul_cancel₀ _ hne, abs_of_nonneg (by positivity), mul_comm] at hd", "model_output": "rw [abs_of_nonneg (by positivity : 0 ≤ δ / 2)] at hd" }, { "id": 113, "match": true, "ground_truth": "simp [phi_add] at this", "model_output": "simp [phi_add] at this" }, { "id": 114, "match": false, "ground_truth": "have h_eq : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iic]", "model_output": "have : {z | f z ≤ α} = f ⁻¹' Iic α ∩ univ := by\n ext z\n simp\n exact and_comm" }, { "id": 115, "match": false, "ground_truth": "lift t to ℝ using ⟨LT.lt.ne_top fx_le_top, LT.lt.ne_bot fx_ge_bot⟩", "model_output": "rw [← EReal.coe_toReal (LT.lt.ne_top fx_le_top) (LT.lt.ne_bot fx_ge_bot), EReal.coe_le_coe_iff]" }, { "id": 116, "match": false, "ground_truth": "rcases zin with ⟨u,hux,hufx,hv⟩", "model_output": "rcases zin with ⟨u,ux,xu,fxu⟩\n rcases fxu with ⟨v,vu,fxu⟩\n have : v ∈ subdifferential f x := by\n rw [subdifferential,mem_setOf]\n apply fxu\n have : v ∈ subdifferential g x := by\n rw [subdifferential,mem_setOf]\n apply fxu\n use v; constructor\n · assumption\n use v; constructor\n · assumption\n simp; exact (add_comm v (g' x)).symm" }, { "id": 117, "match": false, "ground_truth": "by linarith", "model_output": "apply h.1" }, { "id": 118, "match": false, "ground_truth": "apply convexHull_min (union_subset h1 h2) cone_conv_s_t.convex", "model_output": "apply convexHull_min h1 h2 (union_subset (subset_trans hs1 h1) (subset_trans ht1 h2))" }, { "id": 119, "match": false, "ground_truth": "have hΦ : ∃ r_Φ, range Φ ⊆ Metric.ball 0 r_Φ := by apply Φ_isBounded'", "model_output": "apply A₁e₁_A₂e₂_isBounded'" }, { "id": 120, "match": true, "ground_truth": "· simp", "model_output": "· simp" }, { "id": 121, "match": false, "ground_truth": "have : Tendsto (fun n => ‖A₁ (e₁ n) + A₂ (e₂ n)‖ ^ 2) atTop (𝓝 0) := by\n apply Summable.tendsto_atTop_zero Summable₁\n apply square_converge_zero₁ this", "model_output": "apply tendsto_zero_iff_norm_tendsto_zero.1\n apply A₁e₁_A₂e₂_converge_zero" }, { "id": 122, "match": true, "ground_truth": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]", "model_output": "rw[← EReal.coe_toReal (x := f x) hfx (LT.lt.ne_bot (hsf.uninfinity x hx))]" }, { "id": 123, "match": false, "ground_truth": "by_cases u₁_eq_0 : u₁ = 0", "model_output": "have : (Finset.sum (Finset.univ.filter (fun x ↦ x = i)) (fun x ↦ coef x • hT.v x)) = 0 := by\n simp\n rw [← hu₁]\n apply Finsupp.mem_span_of_mem\n simp [coef.mem_support_toFun]" }, { "id": 124, "match": false, "ground_truth": "apply mul_pos", "model_output": "· linarith" }, { "id": 125, "match": false, "ground_truth": "exact this", "model_output": "apply this" }, { "id": 126, "match": false, "ground_truth": "intro y", "model_output": "intro y hy_ne" }, { "id": 127, "match": false, "ground_truth": "calc\n _= inner ℝ (u (n) - (- A₁† y')) (x₁ (n) - x₁') := by simp\n _≥ (0 : ℝ) := by\n apply subgradientAt_mono\n · apply u_inthesubgradient\n · exact admm_kkt.h.subgrad₁", "model_output": "apply subgradientAt_mono_u₁\n · apply u_inthesubgradient\n · apply admm_kkt.h.subgrad₁" }, { "id": 128, "match": true, "ground_truth": "simp [grad_fun_comp,grad_comp] at h", "model_output": "simp [grad_fun_comp,grad_comp] at h" }, { "id": 129, "match": true, "ground_truth": "exact hu₂", "model_output": "exact hu₂" }, { "id": 130, "match": true, "ground_truth": "apply Finset.card_eq_zero.2", "model_output": "apply Finset.card_eq_zero.2" }, { "id": 131, "match": true, "ground_truth": "exact False.elim (by simp at this)", "model_output": "exact False.elim (by simp at this)" }, { "id": 132, "match": false, "ground_truth": "simp", "model_output": "simp [sq]" }, { "id": 133, "match": true, "ground_truth": "rw [← add_assoc, ← add_assoc]", "model_output": "rw [← add_assoc, ← add_assoc]" }, { "id": 134, "match": false, "ground_truth": "simp", "model_output": "rw [Metric.ball, Set.mem_setOf, dist_zero_right]" }, { "id": 135, "match": false, "ground_truth": "intro y yin z zin a b anneg bnneg absum1", "model_output": "intro y _ z _ a b anneg bnneg _" }, { "id": 136, "match": false, "ground_truth": "gcongr", "model_output": "apply mul_lt_mul_of_pos_left zin hc'" }, { "id": 137, "match": false, "ground_truth": "have hzd : ∀ n, d n = z n - loc := fun _ => eq_sub_of_add_eq' rfl", "model_output": "have hz1 : ∀ n, z n ∈ s1 := by\n intro n\n simp [s1, z]\n exact ⟨mem_ball_of_norm (by simp [z]) εpos, ha n (a_le n)⟩" }, { "id": 138, "match": true, "ground_truth": "rfl", "model_output": "rfl" }, { "id": 139, "match": false, "ground_truth": "rw [mul_one] at htp", "model_output": "linarith [htp]" }, { "id": 140, "match": false, "ground_truth": "apply Continuous.tendsto", "model_output": "apply Continuous.tendsto\n apply ContinuousLinearMap.continuous" }, { "id": 141, "match": false, "ground_truth": "by\n have h₁: Tendsto A₂ (𝓝 0) (𝓝 (A₂ 0)) := by\n apply Continuous.tendsto; apply ContinuousLinearMap.continuous\n simp at h₁; apply Filter.tendsto_iff_seq_tendsto.1 h₁; apply e₂_subseq_converge_zero", "model_output": "apply tendsto_zero_iff_norm_tendsto_zero.2\n apply A₂e₂_subseq_converge_zero" }, { "id": 142, "match": false, "ground_truth": "apply A₁e₁_converge_zero", "model_output": "apply tendsto_zero_iff_norm_tendsto_zero.1\n apply A₁e₁_converge_zero" }, { "id": 143, "match": false, "ground_truth": "intro j", "model_output": "have h4 : ∀ j, ∑ i, A i j = 1 := by\n intro j\n have col_sum_le : ∑ i, A i j ≤ 1 := hA_col_sum j\n have col_sum_pos : ∑ i, A i j ≥ 0 := Finset.sum_nonneg hA_pos\n linarith [col_sum_pos, col_sum_le]" }, { "id": 144, "match": false, "ground_truth": "rw[this]", "model_output": "rw [← this]" }, { "id": 145, "match": false, "ground_truth": "· simp; linarith [μpos]", "model_output": "simp [μpos]" }, { "id": 146, "match": false, "ground_truth": "ext x", "model_output": "ext x\n simp only [c]\n rw [← add_sub, sub_self, add_zero]" }, { "id": 147, "match": false, "ground_truth": "have xBall_in_U : xBall ⊆ U := by\n apply l1Ball_sub_convexHull r_pos hn", "model_output": "have x_in_t : x ∈ t := by\n apply mem_interior_iff_mem_nhds.mpr\n apply mem_nhdsWithin_of_mem_nhds\n apply x_in_xBall\n apply t_isopen" }, { "id": 148, "match": false, "ground_truth": "rw [← zero_pow]", "model_output": "apply Summable.tendsto_atTop_zero Summable₁" }, { "id": 149, "match": false, "ground_truth": "apply mul_nonneg", "model_output": "apply mul_nonneg\n apply mul_nonneg\n apply le_of_lt admm.hrho\n apply pow_two_nonneg" }, { "id": 150, "match": false, "ground_truth": "by simp at h; simpa [h]", "model_output": "simp at h; simp; exact h.1" }, { "id": 151, "match": true, "ground_truth": "rw [← mul_neg]", "model_output": "rw [← mul_neg]" }, { "id": 152, "match": true, "ground_truth": "exact h", "model_output": "exact h" }, { "id": 153, "match": true, "ground_truth": "by rw [z]; simp; left; rw [z]; simp", "model_output": "rw [z]" }, { "id": 154, "match": true, "ground_truth": "· simp\n apply neg_le.mpr\n · have pos: - 0 ≤ ε * ‖y - x‖:=by\n simp\n rw [mul_comm]\n apply (mul_nonneg_iff_left_nonneg_of_pos εpos).mpr\n simp\n apply pos", "model_output": "apply neg_le.mpr" }, { "id": 155, "match": true, "ground_truth": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩", "model_output": "rcases this with ⟨z_, _, α, ⟨monoa, conv⟩⟩" }, { "id": 156, "match": false, "ground_truth": "intro n x", "model_output": "intro n x\n apply ADMM_iter_process₁'_eq3_2' n x\n apply ADMM_iter_process₁'_eq3_1' n x\n apply ADMM_iter_process₁'_eq3_1'_nabla n x\n apply ADMM_iter_process₁'_eq3_1'_nabla' n x\n apply ADMM_iter_process₁'_eq3_1'_nabla'' n x\n apply ADMM_iter_process₁'_eq3_1'_nabla''' n x\n apply ADMM_iter_process₁'_eq3_1'_" }, { "id": 157, "match": true, "ground_truth": "simp [coef.mem_support_toFun]; rfl", "model_output": "simp [coef.mem_support_toFun]" }, { "id": 158, "match": false, "ground_truth": "simp only [Set.mem_union, Set.mem_iUnion, Set.mem_singleton_iff]", "model_output": "by_cases h : i = n + 1" }, { "id": 159, "match": true, "ground_truth": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le", "model_output": "have h2 : ‖x + xx - xx‖ ≤ ‖x + xx‖ + ‖xx‖ := by apply norm_sub_le" }, { "id": 160, "match": true, "ground_truth": "apply eq4 u v", "model_output": "apply eq4 u v" }, { "id": 161, "match": false, "ground_truth": "have : IsClosed ((MM x).carrier ∩ (f.Epi univ)) := by\n rw [ht]; exact IsClosed.prod isClosed_singleton isClosed_Ici", "model_output": "have : (MM x).carrier ∩ (f.Epi univ) = (MM x).carrier ∩ (f.Epi univ) := by rfl" }, { "id": 162, "match": true, "ground_truth": "simp [z]", "model_output": "simp [z]" }, { "id": 163, "match": false, "ground_truth": "by\n apply Tendsto.norm\n apply Tendsto.sub_const\n apply Tendsto.add\n · apply Satisfying_equational_constraint1\n · apply Satisfying_equational_constraint2", "model_output": "apply Tendsto.norm\n[USER]\napply Tendsto.add\n[ASSISTANT]\napply Tendsto.const_mul\n[USER]\napply tendsto_zero_iff_norm_tendsto_zero.1\n[ASSISTANT]\napply tendsto_zero_iff_norm_tendsto_zero.2\napply A₁x₁_A₂x₂_sub_b_subseq_converge_zero fullrank₁ fullrank₂\n[USER]\napply Tendsto.const_mul\napply tendsto_zero_iff_norm_tendsto_zero.1\napply A₁x₁_A₂x₂_sub_b_subseq_converge_zero fullrank₁" }, { "id": 164, "match": false, "ground_truth": "· have h0 : ∑ j, C x j = ∑ j, A x j := by\n dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt", "model_output": "have h0 : ∑ j, C x j = ∑ j, A x j := dsimp [C]\n simp [h]\n rw [← h0]\n exact h_sum_lt" }, { "id": 165, "match": false, "ground_truth": "dsimp [ey_diff, t_Ax_Ax_n1, t_A_diff_x', A2_e2_n1, A2_e2_n]\n linarith [Φ_isdescending_inequ5 n]", "model_output": "apply Φ_isdescending_inequ5 n" }, { "id": 166, "match": false, "ground_truth": "intro n", "model_output": "intro n\n apply Φ_isdescending_inequ3\n apply Φ_isdescending_inequ2\n apply Φ_isdescending_inequ1\n apply Φ_isdescending_inequ0\n apply Φ_isdescending_inequ\n apply Φ_isdescending_inequ4\n apply Φ_isdescending_inequ5\n apply Φ_isdescending_inequ6\n apply Φ_isdescending_inequ7\n apply Φ_isdescending_inequ8\n apply Φ_isdescending_inequ9\n apply Φ_is" }, { "id": 167, "match": true, "ground_truth": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp", "model_output": "· apply ContinuousOn.comp (g := f₁) (f := fun x ↦ x + x₀) (t := univ) hcon\n · apply ContinuousOn.add continuousOn_id continuousOn_const\n · simp" }, { "id": 168, "match": false, "ground_truth": "simp only [one_div, mul_inv_rev, add_sub_cancel_right]", "model_output": "rw [smul_smul]" }, { "id": 169, "match": false, "ground_truth": "suffices 0 ≤ (a1 • tx + b1 • ty) by exact this", "model_output": "intro i\n simp\n apply add_nonneg\n apply smul_nonneg\n apply le_of_lt anng\n apply txcond i\n apply smul_nonneg\n apply le_of_lt bnng\n apply tycond i" }, { "id": 170, "match": true, "ground_truth": "by\n rw [sub_right_comm]", "model_output": "rw [sub_right_comm]" }, { "id": 171, "match": false, "ground_truth": "intro i hi", "model_output": "intro i hi\n apply iSup₂_le\n intro y hy\n apply ht1 y hy\n exact hi" }, { "id": 172, "match": false, "ground_truth": "apply le_trans (Nat.le_add_left ax N)", "model_output": "apply le_trans (Nat.le_add_left ax N) (Nat.le_add_right N ax)" }, { "id": 173, "match": true, "ground_truth": "rw [hdomain]; trivial", "model_output": "rw [hdomain]" }, { "id": 174, "match": false, "ground_truth": "rfl", "model_output": "simp [xeq]" }, { "id": 175, "match": true, "ground_truth": "exact trivial", "model_output": "exact trivial" }, { "id": 176, "match": false, "ground_truth": "simp", "model_output": "apply sq_nonneg" }, { "id": 177, "match": false, "ground_truth": "intro _ epos", "model_output": "intro _ _" }, { "id": 178, "match": true, "ground_truth": "intro n", "model_output": "intro n" }, { "id": 179, "match": false, "ground_truth": "simp", "model_output": "rw [abs_of_pos (by positivity : 0 < 1 / (σ ^ 2 * ‖u‖ ^ 2))]" }, { "id": 180, "match": false, "ground_truth": "· simp", "model_output": "apply tendsto_const_nhds" }, { "id": 181, "match": false, "ground_truth": "simp at hu", "model_output": "apply h_Ω1 u (hO1 hu.1) hu.2.1 hu.2.2" }, { "id": 182, "match": false, "ground_truth": "lift ⨆ u, Real.toEReal (inner ℝ u x) - f u to ℝ with c", "model_output": "apply add_le_add supa supb" }, { "id": 183, "match": false, "ground_truth": "simp at vt1", "model_output": "rw [Filter.tendsto_atTop] at hzt" }, { "id": 184, "match": false, "ground_truth": "rw [pow_two]", "model_output": "rw [mul_assoc, ← pow_two, mul_le_mul_iff_right₀ alg.tpos]" }, { "id": 185, "match": false, "ground_truth": "rcases exist_open_sub_finite_cover with ⟨t, ht1, ht2, ht3⟩", "model_output": "rcases exist_open_sub_finite_cover with ⟨b', _, b'finite, sub_cover⟩\n have b'nonempty : b'.Nonempty := by\n rw [Set.nonempty_iff_ne_empty]\n by_contra b'empty\n have : Ω = ∅ := subset_eq_empty sub_cover b'empty\n have : Ω ≠ ∅ := Set.Nonempty.ne_empty h_nonempty\n contradiction\n rcases b' with ⟨x, hx⟩\n use (η x), (hη2 x hx), (φ x), (hφ x hx)" }, { "id": 186, "match": true, "ground_truth": "intro b _", "model_output": "intro b _" }, { "id": 187, "match": false, "ground_truth": "ring", "model_output": "linarith" }, { "id": 188, "match": true, "ground_truth": "exact hcf", "model_output": "exact hcf" }, { "id": 189, "match": true, "ground_truth": "ring_nf", "model_output": "ring_nf" }, { "id": 190, "match": false, "ground_truth": "simp", "model_output": "simp [affSpan_iff]" }, { "id": 191, "match": false, "ground_truth": "simp [FeasSet, FeasPoint] at xf", "model_output": "rw [FeasSet, FeasPoint] at xf" }, { "id": 192, "match": true, "ground_truth": "· simp [hx]", "model_output": "· simp [hx]" }, { "id": 193, "match": false, "ground_truth": "have eq0 : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = (0 : ℝ) := by\n contrapose! eq3\n rw [mul_ne_zero_iff]\n constructor\n · rw [mul_ne_zero_iff]; constructor <;> linarith\n · exact eq3", "model_output": "have : inner ℝ (f' (z + d • (y - z)) - f' (x + c • (z - x))) (y - x) = 0 := by\n apply mul_eq_zero.mp eq3\n linarith [a, b, absum1]" }, { "id": 194, "match": false, "ground_truth": "by ring", "model_output": "rw [one_div, one_div]" }, { "id": 195, "match": false, "ground_truth": "by\n rw[sign_mul_abs]\n field_simp [bi_pos i]", "model_output": "rw[sign_mul_abs]\n field_simp [bi_pos i]\n simp only [ne_eq, Nat.cast_eq_zero, SignType.sign_eq_one_iff, one_mul, abs_eq_self,\n zero_lt_one, ↓reduceDIte, mul_one, not_false_eq_true, zero_ne_one, h₁, h₂]" }, { "id": 196, "match": false, "ground_truth": "have : (fun n => Φ (φ n)) = (fun n => (1 / (τ * ρ)) * ‖ey (φ n)‖^2 +\n ρ * ‖A₂ (e₂ (φ n))‖^2 +\n ((max (1-τ) (1-(1/τ)))*ρ) * ‖A₁ (e₁ (φ n)) + A₂ (e₂ (φ n))‖^2) := by\n funext n; rw [Φ, Ψ]", "model_output": "apply h_add'" }, { "id": 197, "match": false, "ground_truth": "· simp [V₂]", "model_output": "· rfl" }, { "id": 198, "match": false, "ground_truth": "intro s", "model_output": "intro s g cond sumeq i hi\n specialize cond i hi\n rw [← Matrix.toLin'_apply'] at cond\n rw [← Matrix.toLin'_apply'] at sumeq\n rw [← Matrix.toLin'_apply'] at cond\n rw [← Matrix.toLin'_apply'] at sumeq\n rw [← Matrix.toLin'_apply'] at cond\n rw [← Matrix.toLin'_apply'] at sumeq\n rw [← Matrix.toLin'_apply'] at cond\n rw [← Matrix.toLin'_apply'] at sumeq\n rw [← Matrix" }, { "id": 199, "match": true, "ground_truth": "rw[zero_add]", "model_output": "rw[zero_add]" }, { "id": 200, "match": false, "ground_truth": "linarith", "model_output": "linarith [this, kleaw]" }, { "id": 201, "match": false, "ground_truth": "repeat apply mul_nonneg", "model_output": "· apply mul_nonneg\n · apply mul_nonneg\n · linarith [inv_nonneg.mpr (le_of_lt admm.hrho)]\n · linarith [sq_nonneg (‖ey n‖)]\n · linarith [sq_nonneg (‖ey n‖)]" }, { "id": 202, "match": false, "ground_truth": "exact Eq.symm (Nat.add_sub_of_le kge)", "model_output": "rw [Nat.add_sub_of_le kge]" }, { "id": 203, "match": true, "ground_truth": "rw [Filter.tendsto_congr' this]", "model_output": "rw [Filter.tendsto_congr' this]" }, { "id": 204, "match": false, "ground_truth": "intro c1", "model_output": "intro ε εpos\n filter_upwards [t5] with n hn\n rw [inner_smul_right, norm_smul, norm_norm, mul_comm]\n apply le_of_lt\n apply mul_pos hn (norm_sub_pos_iff.mpr (ne_of_gt (one_div_pos.mpr εpos)))" }, { "id": 205, "match": false, "ground_truth": "exact min_le_right δ₀ δ₂", "model_output": "apply min_le_right δ₀ δ₂" }, { "id": 206, "match": false, "ground_truth": "simp", "model_output": "rw [norm_mul, norm_sq, norm_eq_abs, abs_of_pos alg.step₁]" }, { "id": 207, "match": false, "ground_truth": "simp", "model_output": "simp [σ₁]" }, { "id": 208, "match": false, "ground_truth": "rw[← mul_div]", "model_output": "ring_nf" }, { "id": 209, "match": false, "ground_truth": "simp", "model_output": "simp [Finset.mem_range] at hi" }, { "id": 210, "match": false, "ground_truth": "intro c", "model_output": "intro c hc [hφc] [hφc'] [hφc''] [hφc'''] [hφc''] [hφc'] [hφc] [hφc'] [hφc] [hφc'] [hφc] [hφc'] [hφc] [hφc'] [hφc] [hφc'] [hφc] [hφc'] [hφc] [hφc'] [hφc] [hφc'] [hφc] [hφc'] [h" }, { "id": 211, "match": false, "ground_truth": "intro i", "model_output": "intro i _" }, { "id": 212, "match": false, "ground_truth": "dsimp [M]", "model_output": "rw [M]" }, { "id": 213, "match": false, "ground_truth": "intro v", "model_output": "intro v [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·] [·]" }, { "id": 214, "match": true, "ground_truth": "by exact this", "model_output": "exact this" }, { "id": 215, "match": true, "ground_truth": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)", "model_output": "apply lt_min δ₀pos (lt_min δ₄pos δ₅pos)" }, { "id": 216, "match": true, "ground_truth": "apply εpos", "model_output": "apply εpos" }, { "id": 217, "match": false, "ground_truth": "linarith [eq1]", "model_output": "linarith [(alg.γbound k).2]" }, { "id": 218, "match": false, "ground_truth": "· apply Finset.sum_pos\n · intro i _; apply (alg.ha i)\n · simp", "model_output": "apply Finset.sum_pos\n · intro i _\n apply (alg.ha i)\n · simp" }, { "id": 219, "match": true, "ground_truth": "linarith [a1leab]", "model_output": "linarith [a1leab]" }, { "id": 220, "match": false, "ground_truth": "rw [←sub_add,norm_add_sq_real,←sub_add,norm_add_sq_real] at ieq", "model_output": "rw [← sub_add, norm_add_sq_real, ← sub_add, norm_add_sq_real] at ieq" }, { "id": 221, "match": false, "ground_truth": "simp at din", "model_output": "simp at din [le_of_lt]" }, { "id": 222, "match": false, "ground_truth": "have : (alg.x (α q -1),alg.y (α q -1)) ∈ Metric.closedBall (0 : WithLp 2 (E × F)) C1 := by\n apply mem_closedBall_iff_norm.mpr; simp\n apply inin (alg.x (α q -1),alg.y (α q -1))\n exact mem_image_of_mem alg.z trivial", "model_output": "apply sq (alg.x (α q - 1), alg.y (α q - 1)) _ [mem_closedBall_iff_norm]" }, { "id": 223, "match": false, "ground_truth": "by\n rw [WithLp.prod_norm_eq_of_L2]; simp\n exact (Real.le_sqrt (norm_nonneg _) (Left.add_nonneg (sq_nonneg _) (sq_nonneg _))).mpr\n (le_add_of_nonneg_right (sq_nonneg _))", "model_output": "apply prod_norm_ge_of_L2_norm\n apply le_max_left" }, { "id": 224, "match": false, "ground_truth": "intro a t hat IH w hw_pos' hw_sum' hmem'", "model_output": "intro a s has IH w hw_pos' hw_sum' hw_in'" }, { "id": 225, "match": true, "ground_truth": "by\n apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂", "model_output": "apply add_lt_add\n · apply ha₁ b hba₁\n · apply ha₂ b hba₂" }, { "id": 226, "match": false, "ground_truth": "exact inv_sub_inv l' h₁", "model_output": "apply inv_sub_inv l' h₁" }, { "id": 227, "match": true, "ground_truth": "apply hpos'", "model_output": "apply hpos'" }, { "id": 228, "match": false, "ground_truth": "apply Set.add_subset_add_right", "model_output": "apply add_subset_add_right _ (l i₀ • intrinsicInterior ℝ (C i₀))" }, { "id": 229, "match": false, "ground_truth": "rw [y1, y2]", "model_output": "rw [y1, y2] at h5 ⊢\n exact h5" }, { "id": 230, "match": true, "ground_truth": "linarith [hγ]", "model_output": "linarith [hγ]" }, { "id": 231, "match": true, "ground_truth": "apply norm_sub_le", "model_output": "apply norm_sub_le" }, { "id": 232, "match": false, "ground_truth": "have h1 := hk (fun q ↦ alg.x (α q) - alg.x (α q - 1)) diflte1 (ε / (γ * l) / 3) (by positivity)", "model_output": "have : ∀ᶠ (q : ℕ) in atTop, |(1 / (γ * ↑l)) •\n grad_fst H (alg.y (α q - 1)) (alg.x (α q - 1))| ≤ ε := by\n apply hk (fun q ↦ (1 / (γ * ↑l)) • grad_fst H (alg.y (α q - 1)) (alg.x (α q - 1))) diflte2\n apply abs_le_of_norm_le\n apply le_of_tendsto (continuous_iff_seq_tendsto.mp (continuous_norm" }, { "id": 233, "match": false, "ground_truth": "intro n", "model_output": "intro n\n specialize allh' (n + 1) (Nn n)\n constructor\n · exact allh'.left\n apply tendsto_atTop_nhds.mpr\n apply (tendsto_congr' (eventually_of_forall (fun x ↦ (allh' x).right))).mpr\n apply (tendsto_atTop_nhds.mpr (allh' (n + 1)).right.right)" }, { "id": 234, "match": false, "ground_truth": "by\n apply zp5", "model_output": "exact zp5" }, { "id": 235, "match": false, "ground_truth": "by\n apply Simplifying₂\n apply h₁\n apply norm_nonneg", "model_output": "apply mul_eq_mul_right_iff.mpr\n left\n rw [← mul_assoc, ← mul_assoc, mul_comm, mul_assoc, mul_comm ‖grad‖, mul_comm ‖grad‖ ‖x' - x‖]\n apply mul_eq_mul_right_iff.mpr\n left\n rw [← div_mul, div_mul_cancel₀, div_self, div_one]\n apply ne_of_gt\n apply mul_pos\n apply div_pos\n apply ε2pos\n apply mul_pos\n apply norm_sub_pos_iff.mpr\n apply h₁\n apply norm_sub_pos_iff" }, { "id": 236, "match": false, "ground_truth": "refine LICQ_injM z m Z Ax ?_ mlen ?_ eq2 eq1 ⟨heq1, heq2⟩", "model_output": "apply LIx.eq_zero_of_orthogonal_span_eq_zero heq1 heq2" }, { "id": 237, "match": false, "ground_truth": "apply le_trans", "model_output": "apply le_trans Nge\n apply Nat.cast_le.mpr\n apply le_trans\n apply nge\n apply le_add_of_nonneg_right\n apply zero_le_one" }, { "id": 238, "match": false, "ground_truth": "apply mul_eq_mul_left_iff.mpr", "model_output": "rw [mul_eq_mul_left_iff]" } ] }