{ "summary": { "total_with_gt": 273, "matched": 38, "accuracy": 0.1391941391941392 }, "details": [ { "id": 0, "match": false, "ground_truth": "· exact mul_le_mul_of_nonneg_left hyu ha", "model_output": "apply mul_le_mul_of_nonneg_left hyu ha" }, { "id": 1, "match": false, "ground_truth": "exact mul_le_mul_of_nonneg_left hyu ha", "model_output": "apply mul_le_mul_of_nonneg_left hyu (by linarith) (by linarith) (by positivity)" }, { "id": 2, "match": false, "ground_truth": "· exact mul_le_mul_of_nonneg_left hyv hb", "model_output": "apply mul_le_mul_of_nonneg hb hyv (by linarith) (by positivity)" }, { "id": 3, "match": false, "ground_truth": "exact mul_le_mul_of_nonneg_left hyv hb", "model_output": "apply mul_le_mul_of_nonneg hb hyv (by linarith) (by positivity)" }, { "id": 4, "match": false, "ground_truth": "rw [lipschitzWith_iff_norm_sub_le] at *", "model_output": "rw [lipschitzWith_iff_norm_sub_le] at hl ⊢\n intro x y\n apply hl\n simp [gradient]" }, { "id": 5, "match": false, "ground_truth": "by rw [grad_snd_eq h, grad_snd_eq h]", "model_output": "simp [grad_snd]" }, { "id": 6, "match": false, "ground_truth": "rw [grad_snd_eq h, grad_snd_eq h]", "model_output": "simp [grad_snd]" }, { "id": 7, "match": false, "ground_truth": "apply prox_well_define f hc lbdf x", "model_output": "have : ∃ y, f y = inf (f '' univ) := by\n apply LowerSemicontinuous.exists_inf_of_bddBelow hc lbdf\n rcases this with ⟨y, hy⟩\n use y\n rw [hy]\n exact prox_set_eq_inf f x y" }, { "id": 8, "match": false, "ground_truth": "refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩", "model_output": "refine ⟨x₁, hx₁, ?_⟩" }, { "id": 9, "match": false, "ground_truth": "exact LinearMap.mem_ker.mp (hker hx₂)", "model_output": "have : x₂ ∈ LinearMap.ker T := hker hx₂\n exact this" }, { "id": 10, "match": false, "ground_truth": "simp [Orthonormal, Pairwise] at *", "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]" }, { "id": 11, "match": false, "ground_truth": "by_cases hsf : ProperFunction s f", "model_output": "rw [Function.closure_def]" }, { "id": 12, "match": false, "ground_truth": "· exact closure_is_closed_of_proper f hs", "model_output": "· exact is_closed_of_closure f hs" }, { "id": 13, "match": false, "ground_truth": "exact closure_is_closed_of_proper f hs", "model_output": "rw [Function.IsClosed]" }, { "id": 14, "match": true, "ground_truth": "apply IsClosed.prod hs isClosed_univ", "model_output": "apply IsClosed.prod hs isClosed_univ" }, { "id": 15, "match": false, "ground_truth": "simp [w, l, g, AffineMap.decomp']", "model_output": "rw [i.h]" }, { "id": 16, "match": false, "ground_truth": "rw [φ₁_equ fullrank₁ fullrank₂ n]", "model_output": "simp [φ, φ₁]" }, { "id": 17, "match": false, "ground_truth": "exact EReal.coe_le_coe_iff.mp h", "model_output": "exact EReal.coe_le_coe_iff.1 h" }, { "id": 18, "match": false, "ground_truth": "rw [← hT.span_range_w_eq_range]", "model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]" }, { "id": 19, "match": false, "ground_truth": "apply iff_iff_implies_and_implies.mpr", "model_output": "rw [← convexHull_eq_self_of_closed hscl, ← convexHull_eq_self_of_closed htcl]" }, { "id": 20, "match": false, "ground_truth": "apply convex_conjugate_ge_bot_univ'", "model_output": "apply lt_of_le_of_ne\n · apply convex_conjugate_ge_bot\n · intro h\n rw [h] at hs\n exact hs.1" }, { "id": 21, "match": false, "ground_truth": "exact HasGradientWithinAt.const_smul h c", "model_output": "exact HasGradientAtFilter.const_smul h c" }, { "id": 22, "match": true, "ground_truth": "exact HasGradientAtFilter.const_add hf c", "model_output": "exact HasGradientAtFilter.const_add hf c" }, { "id": 23, "match": false, "ground_truth": "exact HasGradientAtFilter.const_add hf c", "model_output": "exact HasGradientAt.const_add hf c" }, { "id": 24, "match": false, "ground_truth": "exact HasGradientAtFilter.const_sub hf c", "model_output": "exact HasGradientAt.const_sub hf c" }, { "id": 25, "match": false, "ground_truth": "apply convex_on_p_top\n ext x; exact h x", "model_output": "apply convexOn_of_const h" }, { "id": 26, "match": false, "ground_truth": "apply monotone_gradient_convex'", "model_output": "rw [ConvexOn]" }, { "id": 27, "match": false, "ground_truth": "exact (fun x _ => affine_sq_gradient x)", "model_output": "intro x _" }, { "id": 28, "match": false, "ground_truth": "have h_zero_eq := (hS 0).mp h_zero_mem", "model_output": "have h1 : c = (fun j : Fin m => (B.repr 0) (Fin.castAdd m j)) := by\n ext j; rw [hS]; simp [h_zero_mem]" }, { "id": 29, "match": false, "ground_truth": "have : (0 : 𝕜) < (1 : 𝕜) := one_pos", "model_output": "apply hf' x y neq" }, { "id": 30, "match": false, "ground_truth": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]", "model_output": "rw [inner_add_left, ← smul_sub, inner_smul_left, inner_smul_left, ← smul_sub]" }, { "id": 31, "match": false, "ground_truth": "rw [← one_mul (-ε * ‖y - x‖), ← hab, add_mul]", "model_output": "have : a * (f y - f x - inner ℝ u (y - x)) + b * (f y - f x - inner ℝ v (y - x)) ≥ -a * ε * ‖y - x‖ - b * ε * ‖y - x‖ := by\n apply add_le_add (mul_le_mul_of_nonneg_left hyu (by linarith)) (mul_le_mul_of_nonneg_left hyv (by linarith))" }, { "id": 32, "match": false, "ground_truth": "calc\n _ = ‖(gradient H z).2 - (gradient H z').2‖ := by rw [grad_snd_eq h, grad_snd_eq h]\n _ = ‖(gradient H z - gradient H z').2‖ := rfl\n _ ≤ ‖(gradient H z - gradient H z')‖ := snd_norm_le_prod_L2 _\n _ ≤ _ := hl z z'", "model_output": "have h1 : ‖gradient H z - gradient H z'‖ ≤ l * ‖z - z'‖ := hl z z'" }, { "id": 33, "match": false, "ground_truth": "by\n intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos", "model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]" }, { "id": 34, "match": false, "ground_truth": "intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos", "model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]" }, { "id": 35, "match": false, "ground_truth": "by\n apply prox_well_define f hc lbdf x", "model_output": "have : ∃ y, f y = inf (f '' univ) := by\n apply LowerSemicontinuous.exists_inf_of_bddBelow hc lbdf\n rcases this with ⟨y, hy⟩\n use y\n rw [hy]\n exact prox_set_eq_inf f x y" }, { "id": 36, "match": false, "ground_truth": "by\n unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]", "model_output": "have : Aᴴ * A = 1 := h\n have : Aᴴ = A† := by rfl\n rw [this, ← conjTranspose_mul, conjTranspose_conjTranspose] at h\n exact h" }, { "id": 37, "match": false, "ground_truth": "unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]", "model_output": "have : Aᴴ * A = 1 := h\n have : Aᴴ = A† := by rfl\n rw [this, ← conjTranspose_mul, conjTranspose_conjTranspose] at h\n exact h" }, { "id": 38, "match": false, "ground_truth": "let ⟨x₁, hx₁, x₂, hx₂, hx⟩ := exists_orthogonal_decompose s x\n refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩\n rw [hx, LinearMap.map_add]\n suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]\n exact LinearMap.mem_ker.mp (hker hx₂)", "model_output": "have : x = (LinearMap.ker T).lift (LinearMap.quotKerEquivKer T) x := by\n exact (LinearEquiv.symm_apply_eq (LinearMap.quotKerEquivKer T)).mp rfl\n rw [this]\n use (LinearMap.ker T).lift (LinearMap.quotKerEquivKer T) x\n constructor\n · exact Submodule.mem_span_of_mem (LinearMap.mem_ker.1 (hker (LinearMap.quotKerEquivKer T x)))" }, { "id": 39, "match": false, "ground_truth": "suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", "model_output": "rw [LinearMap.map_add]" }, { "id": 40, "match": false, "ground_truth": "by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", "model_output": "rw [this, add_zero]" }, { "id": 41, "match": false, "ground_truth": "rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", "model_output": "rw [this, add_zero]" }, { "id": 42, "match": false, "ground_truth": "by\n simp [Orthonormal, Pairwise] at *\n aesop", "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]" }, { "id": 43, "match": false, "ground_truth": "simp [Orthonormal, Pairwise] at *\n aesop", "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n constructor\n · intro i j hij\n by_cases h : i ∈ s\n · exact hv.1 i j hij\n simp [h]\n intro i\n by_cases h : i ∈ s\n · exact hv.2 i h\n simp [h]" }, { "id": 44, "match": false, "ground_truth": "by\n let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h", "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiffOn.zero_of_le\n linarith\n apply HasGradientAt.continuousAt\n apply HasGradientAt.continuousAt\n apply HasGradientAt.const_smul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply Has" }, { "id": 45, "match": false, "ground_truth": "let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h", "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiffOn.zero_of_le\n linarith\n apply HasGradientAt.continuousAt\n apply HasGradientAt.continuousAt\n apply HasGradientAt.const_smul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply HasGradientAt.const_mul\n · apply HasGradientAt.const_add\n · apply Has" }, { "id": 46, "match": false, "ground_truth": "have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩", "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiff.contDiffOn; apply ContDiff.continuous; apply ContDiff.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt\n apply HasGradientAt.contDiffAt; apply HasGradientAt.contDiffAt; apply Has" }, { "id": 47, "match": false, "ground_truth": "exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩", "model_output": "constructor" }, { "id": 48, "match": false, "ground_truth": "exact gradient_continuous_of_contdiffat f h", "model_output": "rw [contDiffAt_iff_contDiffAt_nhds] at h\n exact HasGradientAt.continuousAt h.hasGradientAt" }, { "id": 49, "match": false, "ground_truth": "by\n simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1", "model_output": "rw [Function.closure_top]" }, { "id": 50, "match": false, "ground_truth": "simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1", "model_output": "rw [Function.closure_top]" }, { "id": 51, "match": true, "ground_truth": "· simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ", "model_output": "· simp [hf]" }, { "id": 52, "match": true, "ground_truth": "simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ", "model_output": "simp [hf]" }, { "id": 53, "match": false, "ground_truth": "have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]", "model_output": "simp [Epi]" }, { "id": 54, "match": false, "ground_truth": "have h' : Epi ⊤ s = ∅ := by\n ext ⟨x, _⟩; simp [Function.Epi]", "model_output": "simp [Epi]" }, { "id": 55, "match": false, "ground_truth": "by\n constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith", "model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt" }, { "id": 56, "match": false, "ground_truth": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith", "model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt" }, { "id": 57, "match": false, "ground_truth": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith", "model_output": "· intro h\n apply HasSubgradientAt.banach_hasSubgradientAt\n exact h" }, { "id": 58, "match": false, "ground_truth": "intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith", "model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h" }, { "id": 59, "match": false, "ground_truth": "· intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx", "model_output": "· intro x _\n exact i.hg x" }, { "id": 60, "match": false, "ground_truth": "intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx", "model_output": "intro x _" }, { "id": 61, "match": false, "ground_truth": "apply Filter.tendsto_iff_seq_tendsto.1 Seq_converge_zero₃", "model_output": "have : (fun n => A₂ (x₂ (φ₁ n + 1) - x₂ (φ₁ n))) = (fun n => A₂ (x₂ (φ₁ n) + (1 : ℕ) - x₂ (φ₁ n))) := by\n ext n; rw [Nat.cast_add, Nat.cast_one, add_sub_assoc, add_sub_cancel_left]\n have h₁ : (fun n => A₂ (x₂ (φ₁ n) + (1 : ℕ) - x₂ (φ₁ n))) = (fun n => A₂ (1 : ℕ)) :=" }, { "id": 62, "match": false, "ground_truth": "have : (fun n => (Int.toNat (φ₁ n))) = (fun n => (φ (n+1))) := by\n ext n; rw [φ₁_equ fullrank₁ fullrank₂ n]; simp", "model_output": "apply strictMono_nat_of_lt_succ" }, { "id": 63, "match": false, "ground_truth": "suffices 0 ≤ (c - a - b).toEReal by exact this", "model_output": "rw [← EReal.coe_sub] at h" }, { "id": 64, "match": false, "ground_truth": "have : a + b ≤ c := by exact EReal.coe_le_coe_iff.mp h", "model_output": "rw [← EReal.coe_sub] at h" }, { "id": 65, "match": false, "ground_truth": "refine EReal.coe_nonneg.mpr ?intro.intro.a", "model_output": "rw [← EReal.coe_sub] at this" }, { "id": 66, "match": false, "ground_truth": "by\n constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun", "model_output": "rw [StrongConvexOn]" }, { "id": 67, "match": false, "ground_truth": "constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun", "model_output": "rw [StrongConvexOn]" }, { "id": 68, "match": false, "ground_truth": "have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf", "model_output": "linarith [hfun]" }, { "id": 69, "match": false, "ground_truth": "by\n rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", "model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]" }, { "id": 70, "match": false, "ground_truth": "rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", "model_output": "have h1 : r = finrank 𝕜 (range (T.toContinuousLinearMap)) := by\n rw [← hT.range_eq_range, hT.finrank_range_eq]" }, { "id": 71, "match": false, "ground_truth": "simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", "model_output": "rw [hT.finrank_range_w]" }, { "id": 72, "match": false, "ground_truth": "· exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h", "model_output": "· intro hzs\n rw [← mem_convex_iff_support_le] at hzs\n rw [← h z] at hzs\n exact mem_convex_iff_support_le.1 hzs z hzs" }, { "id": 73, "match": false, "ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h", "model_output": "intro hzs\n have hzst : z ∈ s.convex_support := by\n rw [h z]; exact mem_convex_support_of_mem htcv hscv htscl htcl hzs\n exact mem_of_mem_convex_support hzst htcl" }, { "id": 74, "match": false, "ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq t s hscv hscl a (fun x => (h x).symm)", "model_output": "intro hzt\n rw [← h z]\n apply convex_support_subset_convex_support hscv htcv htcl hz" }, { "id": 75, "match": true, "ground_truth": "by\n intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'", "model_output": "intro x _" }, { "id": 76, "match": true, "ground_truth": "intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'", "model_output": "intro x _" }, { "id": 77, "match": false, "ground_truth": "have convex_conjugate_at_zero :\n convex_conjugate univ (convex_indicator s) 0 ≤ 0 := by\n refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_\n simp\n intro y\n simp [convex_indicator]\n split_ifs with hy <;> simp", "model_output": "rcases hs with ⟨x, hx⟩\n use x\n rw [convex_conjugate_indicator_eq_indicator_convex_conjugate]\n simp [hx]" }, { "id": 78, "match": false, "ground_truth": "refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_", "model_output": "rw [convex_conjugate_indicator_eq_indicator_convex_conjugate hs]" }, { "id": 79, "match": false, "ground_truth": "exact lt_of_le_of_lt (convex_conjugate_at_zero) (zero_lt_top)", "model_output": "apply lt_of_le_of_ne convex_conjugate_at_zero ?_" }, { "id": 80, "match": false, "ground_truth": "by\n exact HasGradientWithinAt.const_smul h c", "model_output": "exact HasGradientAtFilter.const_smul h c" }, { "id": 81, "match": true, "ground_truth": "by\n exact HasGradientAtFilter.const_add hf c", "model_output": "exact HasGradientAtFilter.const_add hf c" }, { "id": 82, "match": false, "ground_truth": "by\n exact HasGradientAtFilter.const_add hf c", "model_output": "exact HasGradientAt.const_add hf c" }, { "id": 83, "match": false, "ground_truth": "by\n simp only [sub_eq_add_neg, gradient_add_const]", "model_output": "rw [gradient_sub_const]" }, { "id": 84, "match": false, "ground_truth": "simp only [sub_eq_add_neg, gradient_add_const]", "model_output": "rw [gradient_sub_const]" }, { "id": 85, "match": false, "ground_truth": "by\n exact HasGradientAtFilter.const_sub hf c", "model_output": "exact HasGradientAt.const_sub hf c" }, { "id": 86, "match": false, "ground_truth": "by\n obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]", "model_output": "simp [dom]" }, { "id": 87, "match": false, "ground_truth": "obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]", "model_output": "simp [dom]" }, { "id": 88, "match": false, "ground_truth": "by\n apply convex_on_p_top\n ext x; exact h x", "model_output": "apply convexOn_of_const h" }, { "id": 89, "match": false, "ground_truth": "by\n rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]", "model_output": "rw [Matrix.mulVec_sub]" }, { "id": 90, "match": false, "ground_truth": "rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]", "model_output": "rw [Matrix.mulVec_sub]" }, { "id": 91, "match": false, "ground_truth": "· exact (fun x _ => affine_sq_gradient x)", "model_output": "intro x _" }, { "id": 92, "match": true, "ground_truth": "· intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg", "model_output": "intro x _ y _" }, { "id": 93, "match": true, "ground_truth": "intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg", "model_output": "intro x _ y _" }, { "id": 94, "match": false, "ground_truth": "rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]", "model_output": "rw [← Matrix.mulVec_sub, ← Matrix.mulVec_sub, Matrix.mul_assoc, Matrix.mul_assoc, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix.mulVec_sub, Matrix" }, { "id": 95, "match": false, "ground_truth": "rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]", "model_output": "rw [← Matrix.mulVec_sub, transpose_mul_self_nonneg]" }, { "id": 96, "match": false, "ground_truth": "have h_zero_mem : (0 : E) ∈ S := S.zero_mem", "model_output": "have h1 : ∀ (v : E), v ∈ S ↔ (B.repr v) (Fin.natAdd n) = c := by\n intro v\n have h1 := hS v\n simp at h1\n exact h1" }, { "id": 97, "match": false, "ground_truth": "have h_repr_zero : B.repr 0 = 0 := LinearEquiv.map_zero B.repr", "model_output": "simp at h_zero_eq" }, { "id": 98, "match": false, "ground_truth": "simp only [map_zero, Finsupp.coe_zero, Pi.zero_apply] at h_zero_eq", "model_output": "simp [h_repr_zero] at h_zero_eq" }, { "id": 99, "match": false, "ground_truth": "simp only [Matrix.mulVec_zero, add_zero] at h_zero_eq", "model_output": "rw [Matrix.mulVec_zero, add_zero] at h_zero_eq" }, { "id": 100, "match": false, "ground_truth": "by\n unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]", "model_output": "simp [sup_value]" }, { "id": 101, "match": false, "ground_truth": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]", "model_output": "simp [sup_value]" }, { "id": 102, "match": true, "ground_truth": "by\n intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b", "model_output": "intro b" }, { "id": 103, "match": true, "ground_truth": "intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b", "model_output": "intro b" }, { "id": 104, "match": true, "ground_truth": "by\n rw [h]; apply (local_Minimum_TangentCone' loc hl hf)", "model_output": "rw [h]" }, { "id": 105, "match": true, "ground_truth": "rw [h]; apply (local_Minimum_TangentCone' loc hl hf)", "model_output": "rw [h]" }, { "id": 106, "match": false, "ground_truth": "apply (local_Minimum_TangentCone' loc hl hf)", "model_output": "rw [← h]" }, { "id": 107, "match": false, "ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]" }, { "id": 108, "match": false, "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]" }, { "id": 109, "match": false, "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply]\n simp [A.symm_comp_self]" }, { "id": 110, "match": false, "ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", "model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]" }, { "id": 111, "match": false, "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", "model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]" }, { "id": 112, "match": false, "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]", "model_output": "rw [← ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap, A.toContinuousLinearEquiv]" }, { "id": 113, "match": false, "ground_truth": "by rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]", "model_output": "rw [Matrix.trace_mul_comm]" }, { "id": 114, "match": false, "ground_truth": "rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]", "model_output": "rw [Matrix.trace_mul_comm]" }, { "id": 115, "match": false, "ground_truth": "have : ConvexOn ℝ X fun _ ↦ (0: EReal) := by\n dsimp [ConvexOn]\n constructor\n exact hs\n intro x _ y _ a b _ _ _\n simp", "model_output": "apply ConvexOn.convex_indicator (convex_univ X) (convex_univ X) hs (by simp) (by simp)" }, { "id": 116, "match": false, "ground_truth": "have eq : EqOn (fun _ ↦ (0: EReal)) (Set.convex_indicator X) X := by\n dsimp[EqOn]\n intro x hx\n dsimp [Set.convex_indicator]\n rw [if_pos hx]", "model_output": "apply ConvexOn.convex_indicator this (fun x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _" }, { "id": 117, "match": false, "ground_truth": "by\n apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'", "model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]" }, { "id": 118, "match": false, "ground_truth": "apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'", "model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]" }, { "id": 119, "match": false, "ground_truth": "· exact iIntersection_closure_sub_closure_iIntersection'' h hinter", "model_output": "· apply iInter_intrinsicClosure_subset_intrinsicClosure_iInter\n exact h" }, { "id": 120, "match": false, "ground_truth": "exact iIntersection_closure_sub_closure_iIntersection'' h hinter", "model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_exists_intrinsicInterior h hx]\n apply iInter_mono\n intro i\n apply intrinsicClosure_mono\n exact subset_iInter (fun i => intrinsicInterior_subset) i" }, { "id": 121, "match": false, "ground_truth": "exact closure_iIntersection_sub_iIntersection_closure'", "model_output": "rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_intrinsicInterior_nonempty]" }, { "id": 122, "match": false, "ground_truth": "have eqone : a + (1 - a) = 1 := add_sub_cancel a 1", "model_output": "have : a ∈ Set.Ioo 0 1 := ⟨lta, alt⟩\n have : ∃ c : E, c ∈ Set.Ioo 0 1 ∧ f c < min (f x) (f y) := by\n apply strict_inequ_of_strong_quasi hf' this\n obtain ⟨c, hc⟩ := this\n have : f c < min (f x) (f y) := hc.2\n have : f c < f x := by\n apply lt_of_lt_of_eq this (min_eq_left (hx trivial))\n have :" }, { "id": 123, "match": false, "ground_truth": "have lta' : 0 < 1 - a := sub_pos_of_lt alt", "model_output": "have : a + (1 - a) = 1 := by ring_nf" }, { "id": 124, "match": false, "ground_truth": "have h : f (a • x + (1 - a) • y) < f y := by\n apply Eq.trans_gt (max_eq_right (hx trivial))\n apply hf' neq lta lta' eqone", "model_output": "have : a + (1 - a) = 1 := by ring_nf" }, { "id": 125, "match": false, "ground_truth": "apply Eq.trans_gt (max_eq_right (hx trivial))", "model_output": "apply hf' (a • x + (1 - a) • y) y lta' lta (by linarith) (by linarith) (by linarith)" }, { "id": 126, "match": false, "ground_truth": "intro ε εpos", "model_output": "intro ε εpos\n rw [add_comm] at hab\n rw [add_comm] at hv\n rw [add_comm] at hu\n filter_upwards [hu ε εpos, hv ε εpos] with y hy hy'\n rw [add_comm] at hy'\n rw [add_comm] at hy\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add" }, { "id": 127, "match": false, "ground_truth": "rw [ge_iff_le] at *", "model_output": "apply add_le_add hyu hyv" }, { "id": 128, "match": false, "ground_truth": "apply add_le_add", "model_output": "apply add_le_add hyu hyv" }, { "id": 129, "match": false, "ground_truth": "apply div_pos", "model_output": "apply div_pos _ (mul_pos (by linarith) (alg.lpos))" }, { "id": 130, "match": false, "ground_truth": "apply mul_pos", "model_output": "apply mul_pos _ alg.lpos\n linarith [hγ]" }, { "id": 131, "match": true, "ground_truth": "· linarith [hγ]", "model_output": "linarith [hγ]" }, { "id": 132, "match": true, "ground_truth": "linarith [hγ]", "model_output": "linarith [hγ]" }, { "id": 133, "match": false, "ground_truth": "· apply alg.lpos", "model_output": "linarith [alg.lpos]" }, { "id": 134, "match": false, "ground_truth": "apply alg.lpos", "model_output": "linarith [alg.lpos]" }, { "id": 135, "match": false, "ground_truth": "rw [mem_nhds_iff]", "model_output": "exact Metric.ball_mem_nhds x he" }, { "id": 136, "match": false, "ground_truth": "simp [Function.Epi]", "model_output": "simp [Epi]" }, { "id": 137, "match": false, "ground_truth": "simp [Function.Epi]", "model_output": "simp [Epi]" }, { "id": 138, "match": false, "ground_truth": "exact isClosed_empty", "model_output": "simp" }, { "id": 139, "match": false, "ground_truth": "constructor", "model_output": "constructor\n · exact HasSubgradientAt_to_Banach_HasSubgradientAt\n exact Banach_HasSubgradientAt_to_HasSubgradientAt" }, { "id": 140, "match": true, "ground_truth": "by\n ext g; rw [h]", "model_output": "rw [h]" }, { "id": 141, "match": true, "ground_truth": "ext g; rw [h]", "model_output": "rw [h]" }, { "id": 142, "match": true, "ground_truth": "constructor", "model_output": "constructor" }, { "id": 143, "match": true, "ground_truth": "intro x _hx", "model_output": "intro x _" }, { "id": 144, "match": false, "ground_truth": "simp at this", "model_output": "rw [this]" }, { "id": 145, "match": false, "ground_truth": "· simp [StrictMono]", "model_output": "apply strictMono_add_const" }, { "id": 146, "match": false, "ground_truth": "simp [StrictMono]", "model_output": "apply strictMono_add_const" }, { "id": 147, "match": false, "ground_truth": "by_cases hc2 : c = ⊤", "model_output": "by_cases ha3 : a = ⊤" }, { "id": 148, "match": false, "ground_truth": "· rw [hc2]; simp", "model_output": "· rw [hc2]; simp; exact le_top" }, { "id": 149, "match": false, "ground_truth": "rw [hc2]; simp", "model_output": "rw [hc2] at h ⊢\n simp at h ⊢\n linarith" }, { "id": 150, "match": false, "ground_truth": "by exact this", "model_output": "rw [← EReal.coe_sub] at this" }, { "id": 151, "match": false, "ground_truth": "constructor", "model_output": "rw [StrongConvexOn]" }, { "id": 152, "match": false, "ground_truth": "rw [← this]", "model_output": "rw [this] at hfun" }, { "id": 153, "match": false, "ground_truth": "constructor", "model_output": "constructor <;> intro h <;> rw [h] <;> exact Eq.symm (convex_support_eq_convex_cl hscv)" }, { "id": 154, "match": false, "ground_truth": "simp [funext_iff]", "model_output": "intro hst" }, { "id": 155, "match": true, "ground_truth": "constructor", "model_output": "constructor" }, { "id": 156, "match": false, "ground_truth": "· apply convex_univ", "model_output": "apply Convex.univ" }, { "id": 157, "match": true, "ground_truth": "apply convex_univ", "model_output": "apply convex_univ" }, { "id": 158, "match": true, "ground_truth": "intro x _ y _", "model_output": "intro x _ y _" }, { "id": 159, "match": true, "ground_truth": "apply sq_nonneg", "model_output": "apply sq_nonneg" }, { "id": 160, "match": false, "ground_truth": "exact h_zero_eq.symm", "model_output": "exact Eq.symm h_zero_eq" }, { "id": 161, "match": false, "ground_truth": "dsimp [ConvexOn]", "model_output": "apply ConvexOn.const_zero" }, { "id": 162, "match": true, "ground_truth": "constructor", "model_output": "constructor" }, { "id": 163, "match": false, "ground_truth": "dsimp[EqOn]", "model_output": "intro x hx\n rw [convex_indicator_of_mem (hs x hx) (fun x _ => 0) (by simp)]" }, { "id": 164, "match": false, "ground_truth": "rw [if_pos hx]", "model_output": "simp [hx]" }, { "id": 165, "match": false, "ground_truth": "by_contra neq", "model_output": "have h1 : f x ≤ f y := by\n apply hx (mem_univ y)" }, { "id": 166, "match": false, "ground_truth": "intro u hu v hv a b ha hb hab", "model_output": "rw [convex_iff_forall_pos]\n intro y1 hy1 y2 hy2 a b ha hb hab\n rw [f_subdiff_subset_iff_convex]\n intro z hz\n rw [f_subdiff_subset_iff_convex]\n intro w hw\n rw [f_subdiff_subset_iff_convex]\n intro u hu\n rw [f_subdiff_subset_iff_convex]\n intro v hv\n rw [f_subdiff_subset_iff_convex]\n intro p hp\n rw [f_subdiff_subset_iff_convex]\n intro q hq\n rw [f_sub" }, { "id": 167, "match": false, "ground_truth": "rw [has_f_subdiff_iff] at *", "model_output": "rw [f_subdiff] at *" }, { "id": 168, "match": false, "ground_truth": "rw [finrank_span_eq_card]", "model_output": "have : (Aᴴ * A).colVec = Aᴴ.colVec := by\n ext i\n rw [Matrix.mul_apply]\n exact Eq.symm (Matrix.mulVec_colVec Aᴴ A i)" }, { "id": 169, "match": false, "ground_truth": "rw [hx, LinearMap.map_add]", "model_output": "rw [hx, LinearMap.map_add, norm_add_sq_real]" }, { "id": 170, "match": false, "ground_truth": "apply ContDiffOn.contDiffAt hf", "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n have : ContDiffOn ℝ 1 f (Metric.ball x ε) := this\n have : ContDiffAt ℝ 1 f x := ContDiffOn.contDiffAt this (Metric.mem_ball_self he)\n exact this" }, { "id": 171, "match": false, "ground_truth": "simp [Function.closure]", "model_output": "rw [Function.closure_top]" }, { "id": 172, "match": false, "ground_truth": "simp [Function.closure, hsf]", "model_output": "simp [Function.IsClosed, Function.closure, hs]" }, { "id": 173, "match": false, "ground_truth": "by_cases hf : ∃ x ∈ s, f x = ⊥", "model_output": "by_cases h : ∃ x ∈ s, f x = ⊥" }, { "id": 174, "match": false, "ground_truth": "simp [Function.IsClosed]", "model_output": "rw [Function.IsClosed]" }, { "id": 175, "match": false, "ground_truth": "simp [Function.IsClosed]", "model_output": "exact hs" }, { "id": 176, "match": false, "ground_truth": "apply StrictMono.tendsto_atTop", "model_output": "apply Filter.tendsto_coe_nhds_infty" }, { "id": 177, "match": false, "ground_truth": "apply StrictMono.comp", "model_output": "apply StrictMono.add_const" }, { "id": 178, "match": false, "ground_truth": "· apply hphi_StrictMono", "model_output": "· apply strictMono_nat_of_lt_succ\n intro n\n apply φ_strict_mono' n" }, { "id": 179, "match": false, "ground_truth": "apply hphi_StrictMono", "model_output": "apply StrictMono.addMonotone strictMono_id strictMono_const" }, { "id": 180, "match": false, "ground_truth": "lift a to ℝ using ⟨ha2, ha1⟩", "model_output": "have hc2 : c ≠ ⊤ := by\n by_contra h\n rw [h] at hc1\n simp at hc1" }, { "id": 181, "match": false, "ground_truth": "lift c to ℝ using ⟨hc2, hc1⟩", "model_output": "rw [← EReal.coe_add] at h\n rw [← EReal.coe_sub] at h\n rw [← EReal.coe_sub] at *\n rw [← EReal.coe_add]\n exact EReal.coe_le_coe_iff.mpr (le_add_of_nonneg_left (by simp) h)" }, { "id": 182, "match": false, "ground_truth": "intro x hx y hy a b ha hb hab", "model_output": "intro x hx y hy a b ha hb hab\n have h1 : a * f x + b * f y - m / 2 * a * b * ‖x - y‖ ^ 2 = a • f x + b • f y - (a * b * (m / 2) * ‖x - y‖ ^ 2) := by\n rw [smul_eq_mul, smul_eq_mul, mul_assoc, mul_assoc, mul_comm b, mul_assoc]\n rw [h1]\n apply hfun hx hy ha hb hab" }, { "id": 183, "match": false, "ground_truth": "· exact fun h => (by rw [h])", "model_output": "· intro h; rw [h]" }, { "id": 184, "match": false, "ground_truth": "exact fun h => (by rw [h])", "model_output": "intro hst\n rw [hst]" }, { "id": 185, "match": false, "ground_truth": "simp [convex_support]", "model_output": "rw [convex_support]" }, { "id": 186, "match": false, "ground_truth": "simp [convex_support]", "model_output": "rcases hs with ⟨x, hx⟩\n use x\n constructor\n · simp\n rw [convex_support]\n exact lt_top_iff_ne_top.mpr (convex_conjugate_ne_top_of_ne_top x)" }, { "id": 187, "match": false, "ground_truth": "simp [convex_indicator]", "model_output": "rw [convex_indicator]" }, { "id": 188, "match": false, "ground_truth": "split_ifs with hy <;> simp", "model_output": "by_cases h : y ∈ s <;> simp [h] <;> simp [h] <;> linarith [hs]" }, { "id": 189, "match": false, "ground_truth": "rcases h1 with ⟨x, hx⟩", "model_output": "rcases h1 with ⟨x, hx⟩\n use x\n exact hx" }, { "id": 190, "match": false, "ground_truth": "apply convex_on_p_top", "model_output": "apply convexOn_of_const h" }, { "id": 191, "match": false, "ground_truth": "rw [polyhedra_iff_cone b]", "model_output": "simp [IsClosed]" }, { "id": 192, "match": false, "ground_truth": "exact closed_conic σ b", "model_output": "rw [cone_eq_iInter]\n apply isClosed_iInter\n intro i\n apply IsClosed.inter\n · apply isClosed_iInter\n intro j\n apply isClosed_iInter\n intro k\n apply isClosed_iInter\n intro x\n apply isClosed_iInter\n intro h\n apply isClosed_iInter\n intro h'\n apply isClosed_iInter\n intro h''\n apply isClosed_iInter\n intro h'''\n apply isClosed_iInter\n intro h''''\n apply isClosed_iInter\n intro h''''\n apply" }, { "id": 193, "match": false, "ground_truth": "intro x _ y _ a b _ _ _", "model_output": "simp [add_comm]" }, { "id": 194, "match": false, "ground_truth": "dsimp [Set.convex_indicator]", "model_output": "rw [convex_indicator_of_mem] <;> simp [hx]" }, { "id": 195, "match": false, "ground_truth": "apply ConvexOn.congr this eq", "model_output": "rw [convex_indicator_eq_self] at eq" }, { "id": 196, "match": false, "ground_truth": "apply Subset.antisymm", "model_output": "rcases hinter with ⟨x, hx⟩\n rw [intrinsicClosure_iInter_eq_iInter_intrinsicClosure_of_forall_exists_intrinsicInterior h hx]" }, { "id": 197, "match": false, "ground_truth": "apply hf' neq lta lta' eqone", "model_output": "have : a • x + (1 - a) • y = a • x + (1 - a) • y := by simp only [add_smul, one_smul, add_sub, add_comm, add_sub_assoc]" }, { "id": 198, "match": false, "ground_truth": "simp only [isMinOn_iff] at hy", "model_output": "have : f y ≤ f (a • x + (1 - a) • y) := by\n apply hy (a • x + (1 - a) • y) (by simp) (by simp) (by linarith) (by linarith) (by linarith)" }, { "id": 199, "match": false, "ground_truth": "apply not_le_of_gt h hy", "model_output": "linarith [h, hy]" }, { "id": 200, "match": false, "ground_truth": "intro u", "model_output": "rw [convex_iff_forall_pos]\n intro y1 hy1 y2 hy2 a b ha hb hab\n rw [f_subdiff_subset_iff_convex]\n intro z hz\n rw [f_subdiff_subset_iff_convex]\n intro w hw\n rw [f_subdiff_subset_iff_convex]\n intro u hu\n rw [f_subdiff_subset_iff_convex]\n intro v hv\n rw [f_subdiff_subset_iff_convex]\n intro p hp\n rw [f_subdiff_subset_iff_convex]\n intro q hq\n rw [f_sub" }, { "id": 201, "match": false, "ground_truth": "intro ε", "model_output": "intro ε εpos\n rw [add_comm] at hab\n rw [add_comm] at hv\n rw [add_comm] at hu\n filter_upwards [hu ε εpos, hv ε εpos] with y hy hy'\n rw [add_comm] at hy'\n rw [add_comm] at hy\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add_comm] at hab\n rw [add" }, { "id": 202, "match": false, "ground_truth": "intro z z'", "model_output": "intro x y" }, { "id": 203, "match": false, "ground_truth": "intro z", "model_output": "intro x y" }, { "id": 204, "match": false, "ground_truth": "intro k", "model_output": "intro k\n rw [ck k]\n apply div_pos\n · linarith\n · apply mul_pos\n · linarith\n · linarith [alg.lpos]" }, { "id": 205, "match": false, "ground_truth": "rw [ck]", "model_output": "rw [ck]; apply div_pos; constructor; linarith; linarith [alg.lpos]" }, { "id": 206, "match": false, "ground_truth": "· norm_num", "model_output": "linarith [hγ]" }, { "id": 207, "match": false, "ground_truth": "norm_num", "model_output": "linarith" }, { "id": 208, "match": false, "ground_truth": "simp [h]", "model_output": "rw [← rowVec_transpose, ← colVec_transpose] at h" }, { "id": 209, "match": false, "ground_truth": "aesop", "model_output": "constructor <;> intro a _ b _ hab <;> exact hv.1 a <;> exact hv.2 a b hab" }, { "id": 210, "match": false, "ground_truth": "intro h", "model_output": "intro h\n exact ProperFunction.lowerSemicontinuousHull_eq_top h" }, { "id": 211, "match": false, "ground_truth": "exfalso", "model_output": "simp [LowerSemicontinuousHull]" }, { "id": 212, "match": false, "ground_truth": "simp at h1", "model_output": "rcases h1 with h1 | h1" }, { "id": 213, "match": true, "ground_truth": "simp [hf]", "model_output": "simp [hf]" }, { "id": 214, "match": false, "ground_truth": "ext ⟨x, _⟩", "model_output": "simp [epi, hf]" }, { "id": 215, "match": false, "ground_truth": "rw [h1]", "model_output": "rw[h1]" }, { "id": 216, "match": true, "ground_truth": "simp [hf]", "model_output": "simp [hf]" }, { "id": 217, "match": false, "ground_truth": "ext ⟨x, _⟩", "model_output": "simp [ProperFunction] at hsf" }, { "id": 218, "match": false, "ground_truth": "rw [h']", "model_output": "rw[h']; apply isClosed_empty" }, { "id": 219, "match": false, "ground_truth": "intro h z", "model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h" }, { "id": 220, "match": false, "ground_truth": "intro h", "model_output": "intro h\n apply HasSubgradientAt_to_Banach_HasSubgradientAt\n exact h" }, { "id": 221, "match": false, "ground_truth": "simp", "model_output": "simp [toDual_apply]" }, { "id": 222, "match": false, "ground_truth": "linarith", "model_output": "exact hz" }, { "id": 223, "match": false, "ground_truth": "intro h z", "model_output": "intro h\n rw [HasSubgradientAt] ; intro y\n rw [← ContinuousLinearMap.map_sub]; apply h y; simp" }, { "id": 224, "match": false, "ground_truth": "intro h", "model_output": "intro h\n rw [HasSubgradientAt] ; intro y\n rw [← ContinuousLinearMap.map_sub]; apply h y; simp" }, { "id": 225, "match": false, "ground_truth": "simp at hz", "model_output": "simp [toDual_apply] at hz" }, { "id": 226, "match": false, "ground_truth": "linarith", "model_output": "exact hz" }, { "id": 227, "match": false, "ground_truth": "ext g", "model_output": "rw [h]" }, { "id": 228, "match": true, "ground_truth": "rw [h]", "model_output": "rw [h]" }, { "id": 229, "match": false, "ground_truth": "simp", "model_output": "constructor" }, { "id": 230, "match": false, "ground_truth": "intro x hx", "model_output": "intro x _" }, { "id": 231, "match": false, "ground_truth": "intro x", "model_output": "intro x _" }, { "id": 232, "match": false, "ground_truth": "intro x", "model_output": "intro x _" }, { "id": 233, "match": false, "ground_truth": "ext n", "model_output": "ext n\n simp [φ, φ₁]\n congr! 1\n exact Nat.add_sub_cancel' (n + 1)" }, { "id": 234, "match": false, "ground_truth": "simp", "model_output": "apply Nat.toNat_of_nonneg" }, { "id": 235, "match": true, "ground_truth": "rw [this]", "model_output": "rw [this]" }, { "id": 236, "match": false, "ground_truth": "rw [hc2]", "model_output": "rw [hc2] at h ⊢\n simp at h ⊢\n linarith" }, { "id": 237, "match": false, "ground_truth": "simp", "model_output": "simp [hc2] at h" }, { "id": 238, "match": false, "ground_truth": "exact this", "model_output": "rw [← EReal.coe_sub] at this" }, { "id": 239, "match": false, "ground_truth": "linarith", "model_output": "linarith [this]" }, { "id": 240, "match": true, "ground_truth": "· exact hs", "model_output": "· exact hs" }, { "id": 241, "match": false, "ground_truth": "exact hs", "model_output": "apply hs" }, { "id": 242, "match": false, "ground_truth": "intro x", "model_output": "intro x hx y hy a b ha hb hab\n have h1 : a * f x + b * f y - m / 2 * a * b * ‖x - y‖ ^ 2 = a • f x + b • f y - (a * b * (m / 2) * ‖x - y‖ ^ 2) := by\n rw [smul_eq_mul, smul_eq_mul, mul_assoc, mul_assoc, mul_comm b, mul_assoc]\n rw [h1]\n apply hfun hx hy ha hb hab" }, { "id": 243, "match": false, "ground_truth": "dsimp", "model_output": "simp [hab] at hfun ⊢" }, { "id": 244, "match": true, "ground_truth": "ring_nf", "model_output": "ring_nf" }, { "id": 245, "match": true, "ground_truth": "exact hfun", "model_output": "exact hfun" }, { "id": 246, "match": true, "ground_truth": "by rw [h]", "model_output": "rw [h]" }, { "id": 247, "match": true, "ground_truth": "rw [h]", "model_output": "rw [h]" }, { "id": 248, "match": false, "ground_truth": "intro h", "model_output": "intro hst\n have hssub : s ⊆ t := by\n rw [← bi_convex_support_eq_convex_convex_closed hscl hscv]\n rw [← bi_convex_support_eq_convex_convex_closed htcl htcv]\n exact fun x _ => (congrFun hst x).ge\n have htsub : t ⊆ s := by\n rw [← bi_convex_support_eq_convex_convex_closed htcl htcv]\n rw [← bi_convex_support_eq_convex_convex_closed hscl hscv]\n exact" }, { "id": 249, "match": false, "ground_truth": "ext z", "model_output": "rw [← convex_hull_eq_self_of_closed hscl, ← convex_hull_eq_self_of_closed htcl]" }, { "id": 250, "match": true, "ground_truth": "intro x _", "model_output": "intro x _" }, { "id": 251, "match": false, "ground_truth": "intro x", "model_output": "intro x _" }, { "id": 252, "match": false, "ground_truth": "right", "model_output": "right; rcases hs with ⟨x, hx⟩\n use x; constructor\n · trivial\n rw [convex_support, convex_conjugate]\n apply convex_indicator_univ_convex_conjugate_eq_indicator_univ_convex_conjugate\n exact hs.convex_indicator_univ_convex_conjugate_eq_indicator_univ_convex_conjugate hs" }, { "id": 253, "match": false, "ground_truth": "simp", "model_output": "intro y\n rw [inner_zero_left, EReal.coe_zero]\n apply le_convex_indicator_of_mem\n exact hs" }, { "id": 254, "match": false, "ground_truth": "intro y", "model_output": "intro y\n rw [convex_indicator]\n by_cases h : y ∈ s\n · simp [h]\n · simp [h]" }, { "id": 255, "match": false, "ground_truth": "simp", "model_output": "linarith" }, { "id": 256, "match": false, "ground_truth": "simp at h1", "model_output": "rcases h1 with h1 | h1" }, { "id": 257, "match": false, "ground_truth": "simp [hx]", "model_output": "simp [dom]" }, { "id": 258, "match": true, "ground_truth": "ext x", "model_output": "ext x" }, { "id": 259, "match": true, "ground_truth": "exact h x", "model_output": "exact h x" }, { "id": 260, "match": false, "ground_truth": "intro x", "model_output": "intro x _ y _" }, { "id": 261, "match": false, "ground_truth": "simp [hp]", "model_output": "rw [hp]" }, { "id": 262, "match": true, "ground_truth": "intro b", "model_output": "intro b" }, { "id": 263, "match": false, "ground_truth": "by rfl", "model_output": "constructor\n · intro h\n exact IsLinear_to_linear f h\n intro h\n exact linear_to_IsLinear f h" }, { "id": 264, "match": false, "ground_truth": "rfl", "model_output": "constructor\n · intro h\n exact IsLinear_to_linear f h\n intro h\n exact linear_to_IsLinear f h" }, { "id": 265, "match": true, "ground_truth": "rw [h]", "model_output": "rw [h]" }, { "id": 266, "match": false, "ground_truth": "simp", "model_output": "rw [ContinuousLinearMap.adjoint_comp]\n simp [A.toContinuousLinearMap, A.symm_toContinuousLinearMap]" }, { "id": 267, "match": false, "ground_truth": "simp", "model_output": "rw [ContinuousLinearMap.adjoint_comp]\n rw [ContinuousLinearMap.adjoint_coe]\n rw [ContinuousLinearMap.adjoint_coe]\n simp\n exact A.toContinuousLinearEquiv.symm_apply_apply x" }, { "id": 268, "match": false, "ground_truth": "exact hs", "model_output": "apply hs" }, { "id": 269, "match": false, "ground_truth": "intro x", "model_output": "simp [add_comm]" }, { "id": 270, "match": false, "ground_truth": "simp", "model_output": "simp [add_zero, smul_zero]" }, { "id": 271, "match": false, "ground_truth": "intro x hx", "model_output": "intro x _" }, { "id": 272, "match": false, "ground_truth": "intro x", "model_output": "intro x _" } ] }