{ "summary": { "total_with_gt": 273, "matched": 57, "accuracy": 0.2087912087912088 }, "details": [ { "id": 0, "match": false, "ground_truth": "· exact mul_le_mul_of_nonneg_left hyu ha", "model_output": "· gcongr\n exact hyu" }, { "id": 1, "match": false, "ground_truth": "exact mul_le_mul_of_nonneg_left hyu ha", "model_output": "apply mul_le_mul_of_nonneg_left hyu ha" }, { "id": 2, "match": false, "ground_truth": "· exact mul_le_mul_of_nonneg_left hyv hb", "model_output": "apply mul_le_mul_of_nonneg_left hyv hb" }, { "id": 3, "match": false, "ground_truth": "exact mul_le_mul_of_nonneg_left hyv hb", "model_output": "apply mul_le_mul_of_nonneg_left hyv hb" }, { "id": 4, "match": false, "ground_truth": "rw [lipschitzWith_iff_norm_sub_le] at *", "model_output": "rw [lipschitzWith_iff_norm_sub_le] at hl ⊢\n rw [← lipschitzOnWith_univ] at hl ⊢\n have h1 : LipschitzOnWith l (fun z : E × F => (gradient H) z) := by\n rw [lipschitzOnWith_iff_norm_sub_le]\n intro x _ y _\n apply hl\n simp\n have h2 : LipschitzOnWith l (fun z : E × F => (gradient H) z) := by\n exact lipschitzOnWith_of_fderivWithin" }, { "id": 5, "match": false, "ground_truth": "by rw [grad_snd_eq h, grad_snd_eq h]", "model_output": "rw [grad_eq_block_grad, grad_fun_comp, grad_fun_comp]" }, { "id": 6, "match": false, "ground_truth": "rw [grad_snd_eq h, grad_snd_eq h]", "model_output": "rw [grad_eq_block_grad, grad_fun_comp, grad_fun_comp]" }, { "id": 7, "match": false, "ground_truth": "apply prox_well_define f hc lbdf x", "model_output": "rcases (prox_set_aux f x) with ⟨y, yprop⟩\n use y; simp [prox_set, yprop]" }, { "id": 8, "match": false, "ground_truth": "refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩", "model_output": "refine ⟨x₁, ⟨hx₁, ⟨x₂, ⟨hx₂, hx, ?_⟩⟩⟩⟩⟩\n rw [map_add, @norm_add_sq 𝕜 _ _ _ _ (T x₁) (T x₂)]\n simp [hker hx₂]" }, { "id": 9, "match": false, "ground_truth": "exact LinearMap.mem_ker.mp (hker hx₂)", "model_output": "apply hker hx₂" }, { "id": 10, "match": false, "ground_truth": "simp [Orthonormal, Pairwise] at *", "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n simp [Set.restrict, hv]" }, { "id": 11, "match": false, "ground_truth": "by_cases hsf : ProperFunction s f", "model_output": "apply isClosed_closure" }, { "id": 12, "match": false, "ground_truth": "· exact closure_is_closed_of_proper f hs", "model_output": "· exact epi_is_closed_of_closure f hs" }, { "id": 13, "match": false, "ground_truth": "exact closure_is_closed_of_proper f hs", "model_output": "rw [Function.closure, hsf.1]" }, { "id": 14, "match": true, "ground_truth": "apply IsClosed.prod hs isClosed_univ", "model_output": "apply IsClosed.prod hs isClosed_univ" }, { "id": 15, "match": false, "ground_truth": "simp [w, l, g, AffineMap.decomp']", "model_output": "exact i.h_eq x _hx" }, { "id": 16, "match": true, "ground_truth": "rw [φ₁_equ fullrank₁ fullrank₂ n]", "model_output": "rw [φ₁_equ fullrank₁ fullrank₂ n]" }, { "id": 17, "match": true, "ground_truth": "exact EReal.coe_le_coe_iff.mp h", "model_output": "exact EReal.coe_le_coe_iff.mp h" }, { "id": 18, "match": false, "ground_truth": "rw [← hT.span_range_w_eq_range]", "model_output": "have := hT.finrank_range_eq_card_nonzero_singular_values\n have h : card (Fin r) = r := by simp\n rw [← h, ← finrank_eq_card_basis hT.orthogonalBasis_range]\n simp [hT.singular_values]" }, { "id": 19, "match": false, "ground_truth": "apply iff_iff_implies_and_implies.mpr", "model_output": "rw [← bi_convex_support_eq_closure hscv hscl, ← bi_convex_support_eq_closure htcv htcl, h]" }, { "id": 20, "match": false, "ground_truth": "apply convex_conjugate_ge_bot_univ'", "model_output": "apply lt_of_le_of_lt\n · apply zero_le'\n · exact conjugate_ge_zero univ s.convex_indicator x trivial" }, { "id": 21, "match": false, "ground_truth": "exact HasGradientWithinAt.const_smul h c", "model_output": "exact HasGradientAtFilter.const_smul h c" }, { "id": 22, "match": true, "ground_truth": "exact HasGradientAtFilter.const_add hf c", "model_output": "exact HasGradientAtFilter.const_add hf c" }, { "id": 23, "match": true, "ground_truth": "exact HasGradientAtFilter.const_add hf c", "model_output": "exact HasGradientAtFilter.const_add hf c" }, { "id": 24, "match": true, "ground_truth": "exact HasGradientAtFilter.const_sub hf c", "model_output": "exact HasGradientAtFilter.const_sub hf c" }, { "id": 25, "match": false, "ground_truth": "apply convex_on_p_top\n ext x; exact h x", "model_output": "apply convex_on_n_inf" }, { "id": 26, "match": false, "ground_truth": "apply monotone_gradient_convex'", "model_output": "rw [ConvexOn]" }, { "id": 27, "match": false, "ground_truth": "exact (fun x _ => affine_sq_gradient x)", "model_output": "intro x _" }, { "id": 28, "match": false, "ground_truth": "have h_zero_eq := (hS 0).mp h_zero_mem", "model_output": "have h1 : ∀ i : Fin m, (hS (A.col i)).1 = (hS 0).1 := by\n intro i; simp [hS, A.col_apply, add_comm]" }, { "id": 29, "match": false, "ground_truth": "have : (0 : 𝕜) < (1 : 𝕜) := one_pos", "model_output": "have : x ∈ univ := by simp" }, { "id": 30, "match": true, "ground_truth": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]", "model_output": "rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]" }, { "id": 31, "match": false, "ground_truth": "rw [← one_mul (-ε * ‖y - x‖), ← hab, add_mul]", "model_output": "apply add_nonneg (mul_nonneg ha (by linarith)) (mul_nonneg hb (by linarith))" }, { "id": 32, "match": false, "ground_truth": "calc\n _ = ‖(gradient H z).2 - (gradient H z').2‖ := by rw [grad_snd_eq h, grad_snd_eq h]\n _ = ‖(gradient H z - gradient H z').2‖ := rfl\n _ ≤ ‖(gradient H z - gradient H z')‖ := snd_norm_le_prod_L2 _\n _ ≤ _ := hl z z'", "model_output": "have h1 := hl z z'" }, { "id": 33, "match": false, "ground_truth": "by\n intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos", "model_output": "intro k\n specialize ck k\n rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos" }, { "id": 34, "match": false, "ground_truth": "intro k\n specialize ck k; rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos", "model_output": "intro k\n specialize ck k\n rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos" }, { "id": 35, "match": false, "ground_truth": "by\n apply prox_well_define f hc lbdf x", "model_output": "rcases (prox_set_aux f x) with ⟨y, yprop⟩\n use y; simp [prox_set, yprop]" }, { "id": 36, "match": false, "ground_truth": "by\n unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]", "model_output": "rw [colSubmodule_eq_span_cols, finrank_span_eq_card]" }, { "id": 37, "match": false, "ground_truth": "unfold colSubmodule\n rw [finrank_span_eq_card]\n simp [h]", "model_output": "rw [colSubmodule_eq_span_cols, finrank_span_eq_card]" }, { "id": 38, "match": false, "ground_truth": "let ⟨x₁, hx₁, x₂, hx₂, hx⟩ := exists_orthogonal_decompose s x\n refine ⟨x₁, hx₁, x₂, hx₂, hx, ?_⟩\n rw [hx, LinearMap.map_add]\n suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]\n exact LinearMap.mem_ker.mp (hker hx₂)", "model_output": "have h : x = (s.orthogonalProjection x) + (x - (s.orthogonalProjection x)) := by simp" }, { "id": 39, "match": false, "ground_truth": "suffices T x₂ = 0 from by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", "model_output": "rw [map_add, norm_add_sq_real]" }, { "id": 40, "match": false, "ground_truth": "by\n rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", "model_output": "rw [this, add_zero]" }, { "id": 41, "match": false, "ground_truth": "rw [this, add_zero, norm_sq_eq_re_inner (𝕜:=𝕜)]", "model_output": "rw [this, add_zero]" }, { "id": 42, "match": false, "ground_truth": "by\n simp [Orthonormal, Pairwise] at *\n aesop", "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n simp [Set.restrict, hv]" }, { "id": 43, "match": false, "ground_truth": "simp [Orthonormal, Pairwise] at *\n aesop", "model_output": "rw [orthonormal_iff_ite] at hv ⊢\n simp [Set.restrict, hv]" }, { "id": 44, "match": false, "ground_truth": "by\n let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h", "model_output": "have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiffOn.zero; simp\n exact hf\n have h := contDiffOn_succ_iff_derivWithin.1 this\n apply h.2\n · apply he\n · exact hf" }, { "id": 45, "match": false, "ground_truth": "let s := Metric.ball x ε\n have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩\n exact gradient_continuous_of_contdiffat f h", "model_output": "have : ContDiffOn ℝ 0 f (Metric.ball x ε) := by\n apply ContDiffOn.zero; simp\n exact hf\n have h := contDiffOn_succ_iff_derivWithin.1 this\n apply h.2\n · apply he\n · exact hf" }, { "id": 46, "match": false, "ground_truth": "have h : ContDiffAt ℝ 1 f x := by\n apply ContDiffOn.contDiffAt hf\n rw [mem_nhds_iff]; use s\n exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩", "model_output": "have : ContDiffOn ℝ 1 f (Metric.ball x ε) := hf\n apply HasGradientAt.continuousAt\n apply ContDiffOn.continuousOn\n exact this\n apply he" }, { "id": 47, "match": false, "ground_truth": "exact ⟨Eq.subset rfl, ⟨Metric.isOpen_ball, Metric.mem_ball_self he⟩⟩", "model_output": "constructor" }, { "id": 48, "match": false, "ground_truth": "exact gradient_continuous_of_contdiffat f h", "model_output": "rw[contDiffAt_one_iff] at h\n exact h.2" }, { "id": 49, "match": false, "ground_truth": "by\n simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1", "model_output": "apply Function.closure_univ_eq_top.mpr\n simp [Function.closure]" }, { "id": 50, "match": false, "ground_truth": "simp [Function.closure]\n intro h; exfalso\n obtain h1 := h.2; simp at h1", "model_output": "apply Function.closure_univ_eq_top.mpr\n simp [Function.closure]" }, { "id": 51, "match": false, "ground_truth": "· simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ", "model_output": "· simp [hf]\n exact isClosed_univ" }, { "id": 52, "match": true, "ground_truth": "simp [hf]; simp [Function.IsClosed]\n have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]\n rw [h1]\n apply IsClosed.prod hs isClosed_univ", "model_output": "simp [hf]" }, { "id": 53, "match": false, "ground_truth": "have h1 : Epi ⊥ s = s ×ˢ (univ : Set ℝ) := by\n ext ⟨x, _⟩\n simp [Function.Epi]", "model_output": "apply epi_closed_of_bot\n exact hs" }, { "id": 54, "match": false, "ground_truth": "have h' : Epi ⊤ s = ∅ := by\n ext ⟨x, _⟩; simp [Function.Epi]", "model_output": "simp [Epi]" }, { "id": 55, "match": false, "ground_truth": "by\n constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith", "model_output": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z\n simp; linarith" }, { "id": 56, "match": false, "ground_truth": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z; simp at hz\n linarith", "model_output": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z\n simp; linarith" }, { "id": 57, "match": false, "ground_truth": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith", "model_output": "· intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; rw [← ContinuousLinearMap.map_sub]; linarith" }, { "id": 58, "match": false, "ground_truth": "intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith", "model_output": "intro hsf\n unfold HasSubgradientAt at hsf\n unfold Banach_HasSubgradientAt\n constructor\n · exact hsf\n · intro y; specialize hsf y; simp at hsf; exact hsf" }, { "id": 59, "match": false, "ground_truth": "· intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx", "model_output": "· intro x _\n rw [← EReal.coe_add, ← inner_add_left, ← EReal.coe_le_coe_iff]\n apply le_trans (i.hf x) (i.hs x)" }, { "id": 60, "match": false, "ground_truth": "intro x hx\n simpa [w, l, g, AffineMap.decomp', ← EReal.coe_sub, ← EReal.coe_add] using i.hlw x hx", "model_output": "intro x xs\n have := i.2 x xs\n simp only [ContinuousLinearMap.coe_coe] at this\n rw [← EReal.coe_add, ← EReal.coe_le_coe_iff] at this\n exact this" }, { "id": 61, "match": false, "ground_truth": "apply Filter.tendsto_iff_seq_tendsto.1 Seq_converge_zero₃", "model_output": "apply Filter.tendsto_iff_seq_tendsto.1 (Satisfying_equational_constraint2' fullrank₁ fullrank₂)\n apply A₂_subseq_converge_zero" }, { "id": 62, "match": false, "ground_truth": "have : (fun n => (Int.toNat (φ₁ n))) = (fun n => (φ (n+1))) := by\n ext n; rw [φ₁_equ fullrank₁ fullrank₂ n]; simp", "model_output": "apply StrictMono.comp\n · apply hphi_StrictMono₁\n · apply StrictMono.add\n · apply strictMono_nat_of_lt_succ\n intro n\n use 1\n rw [Nat.sub_add_cancel]\n apply hphi₁_Lipschitz\n · apply fullrank₁" }, { "id": 63, "match": false, "ground_truth": "suffices 0 ≤ (c - a - b).toEReal by exact this", "model_output": "rw [← EReal.coe_sub, ← EReal.coe_sub] at h ⊢\n apply EReal.coe_le_coe_iff.2\n linarith" }, { "id": 64, "match": false, "ground_truth": "have : a + b ≤ c := by exact EReal.coe_le_coe_iff.mp h", "model_output": "rw [← EReal.coe_add, ← EReal.coe_sub] at h" }, { "id": 65, "match": false, "ground_truth": "refine EReal.coe_nonneg.mpr ?intro.intro.a", "model_output": "apply EReal.coe_nonneg.mpr" }, { "id": 66, "match": false, "ground_truth": "by\n constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun", "model_output": "rw [StrongConvexOn]" }, { "id": 67, "match": false, "ground_truth": "constructor\n · exact hs\n intro x hx y hy a b ha hb hab\n specialize hfun hx hy ha hb hab\n dsimp\n have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf\n simp at this;\n rw [← this]; exact hfun", "model_output": "rw [StrongConvexOn]" }, { "id": 68, "match": false, "ground_truth": "have : m / 2 * a * b * ‖x - y‖ ^ 2 = a * b * (m / 2 * ‖x - y‖ ^ 2) := by ring_nf", "model_output": "linarith [hfun]" }, { "id": 69, "match": false, "ground_truth": "by\n rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", "model_output": "have := hT.finrank_range_eq_card_nonzero_singular_values\n have h : card (Fin r) = r := by simp\n rw [← h, ← finrank_eq_card_basis hT.orthogonalBasis_range]\n simp [hT.singular_values]" }, { "id": 70, "match": false, "ground_truth": "rw [← hT.span_range_w_eq_range]\n simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", "model_output": "have := hT.finrank_range_eq_card_nonzero_singular_values\n have h : card (Fin r) = r := by simp\n rw [← h, ← finrank_eq_card_basis hT.orthogonalBasis_range]\n simp [hT.singular_values]" }, { "id": 71, "match": false, "ground_truth": "simp [finrank_span_eq_card (b:=hT.w) hT.w_orthonormal.linearIndependent]", "model_output": "rw [← hT.finrank_range_u_eq_r, ← hT.finrank_range_v_eq_r, finrank_span_eq_card]" }, { "id": 72, "match": false, "ground_truth": "· exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h", "model_output": "· intro hz; rw [← closure_eq_iff_isClosed.mpr hscl z hz]\n apply subset_closure; exact (h z).subset_right hz" }, { "id": 73, "match": false, "ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq s t htcv htcl a h", "model_output": "intro hzs\n have h1 : s.convex_support z = ∅ := by\n rw [convex_support_empty_iff]\n exact hzs\n have h2 := congrFun h h1\n rw [h2] at htcl\n exact htcl z h2" }, { "id": 74, "match": false, "ground_truth": "exact fun a ↦ set_inclusion_convex_support_eq t s hscv hscl a (fun x => (h x).symm)", "model_output": "intro zt\n have h1 : ∀ x, x ∈ s.convex_support → x ∈ t.convex_support := by\n intro x hx\n rw [← h x]\n exact hx\n contrapose! h1\n exact fun x xs ↦ h1 x (by rw [← h x]; exact xs)" }, { "id": 75, "match": true, "ground_truth": "by\n intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'", "model_output": "intro x _" }, { "id": 76, "match": true, "ground_truth": "intro x _\n simp [convex_support]\n obtain := ConvexIndicator_is_proper_on_univ hs\n apply convex_conjugate_ge_bot_univ'", "model_output": "intro x _" }, { "id": 77, "match": false, "ground_truth": "have convex_conjugate_at_zero :\n convex_conjugate univ (convex_indicator s) 0 ≤ 0 := by\n refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_\n simp\n intro y\n simp [convex_indicator]\n split_ifs with hy <;> simp", "model_output": "rcases hs with ⟨x, hx⟩\n use x; simp [convex_conjugate]\n apply lt_of_le_of_lt\n · apply convex_indicator_le\n · simp [convex_indicator, hs]" }, { "id": 78, "match": false, "ground_truth": "refine (conjugate_le_zero_iff s.convex_indicator).mpr ?_", "model_output": "apply convex_conjugate_le_zero\n · simp\n · exact convex_indicator_convex hs.convex_to_nonconvex" }, { "id": 79, "match": false, "ground_truth": "exact lt_of_le_of_lt (convex_conjugate_at_zero) (zero_lt_top)", "model_output": "apply convex_conjugate_lt_top" }, { "id": 80, "match": false, "ground_truth": "by\n exact HasGradientWithinAt.const_smul h c", "model_output": "exact HasGradientAtFilter.const_smul h c" }, { "id": 81, "match": true, "ground_truth": "by\n exact HasGradientAtFilter.const_add hf c", "model_output": "exact HasGradientAtFilter.const_add hf c" }, { "id": 82, "match": true, "ground_truth": "by\n exact HasGradientAtFilter.const_add hf c", "model_output": "exact HasGradientAtFilter.const_add hf c" }, { "id": 83, "match": false, "ground_truth": "by\n simp only [sub_eq_add_neg, gradient_add_const]", "model_output": "rw [gradient_sub_const c, gradient_const]" }, { "id": 84, "match": false, "ground_truth": "simp only [sub_eq_add_neg, gradient_add_const]", "model_output": "rw [gradient_sub_const c, gradient_const]" }, { "id": 85, "match": true, "ground_truth": "by\n exact HasGradientAtFilter.const_sub hf c", "model_output": "exact HasGradientAtFilter.const_sub hf c" }, { "id": 86, "match": false, "ground_truth": "by\n obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]", "model_output": "simp [dom]" }, { "id": 87, "match": false, "ground_truth": "obtain h1 := h.2; simp at h1\n rcases h1 with ⟨x, hx⟩; use x; simp [hx]", "model_output": "simp [dom]" }, { "id": 88, "match": false, "ground_truth": "by\n apply convex_on_p_top\n ext x; exact h x", "model_output": "apply convex_on_n_inf" }, { "id": 89, "match": false, "ground_truth": "by\n rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]", "model_output": "rw [Matrix.mulVec_sub]" }, { "id": 90, "match": false, "ground_truth": "rw [sub_eq_add_neg u v, mulVec_add, mulVec_neg, sub_eq_add_neg]", "model_output": "rw [Matrix.mulVec_sub]" }, { "id": 91, "match": false, "ground_truth": "· exact (fun x _ => affine_sq_gradient x)", "model_output": "· intro x _\n apply linear_gradient" }, { "id": 92, "match": true, "ground_truth": "· intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg", "model_output": "intro x _ y _" }, { "id": 93, "match": true, "ground_truth": "intro x _ y _\n rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]\n rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]\n apply sq_nonneg", "model_output": "intro x _ y _" }, { "id": 94, "match": false, "ground_truth": "rw [Matrix.mulVec_sub, Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel,\n ← Matrix.mulVec_sub, real_inner_eq_dot]", "model_output": "rw [← sub_add, sub_right_comm, sub_add, sub_self, sub_zero]" }, { "id": 95, "match": false, "ground_truth": "rw [← dot_mul_eq_transpose_mul_dot,← Matrix.mulVec_sub, ← norm2eq_dot]", "model_output": "rw [← Matrix.mulVec_sub, ← sub_add, sub_add_eq_add_sub, sub_add_cancel]" }, { "id": 96, "match": false, "ground_truth": "have h_zero_mem : (0 : E) ∈ S := S.zero_mem", "model_output": "have := hS 0\n simp at this\n have : (fun i ↦ (B.repr 0) (Fin.natAdd n i)) = 0 := by\n ext i; simp\n rw [this] at hS\n simp at hS\n exact hS" }, { "id": 97, "match": false, "ground_truth": "have h_repr_zero : B.repr 0 = 0 := LinearEquiv.map_zero B.repr", "model_output": "simp at h_zero_eq" }, { "id": 98, "match": false, "ground_truth": "simp only [map_zero, Finsupp.coe_zero, Pi.zero_apply] at h_zero_eq", "model_output": "simp [h_repr_zero] at h_zero_eq" }, { "id": 99, "match": false, "ground_truth": "simp only [Matrix.mulVec_zero, add_zero] at h_zero_eq", "model_output": "simp at h_zero_eq" }, { "id": 100, "match": true, "ground_truth": "by\n unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]", "model_output": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]" }, { "id": 101, "match": true, "ground_truth": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]", "model_output": "unfold sup_value\n unfold FeasSet FeasPoint\n simp [hp]" }, { "id": 102, "match": true, "ground_truth": "by\n intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b", "model_output": "intro b" }, { "id": 103, "match": true, "ground_truth": "intro b; rw [polyhedra_iff_cone b]\n exact closed_conic σ b", "model_output": "intro b" }, { "id": 104, "match": true, "ground_truth": "by\n rw [h]; apply (local_Minimum_TangentCone' loc hl hf)", "model_output": "rw [h]" }, { "id": 105, "match": true, "ground_truth": "rw [h]; apply (local_Minimum_TangentCone' loc hl hf)", "model_output": "rw [h]" }, { "id": 106, "match": false, "ground_truth": "apply (local_Minimum_TangentCone' loc hl hf)", "model_output": "rw [← h]" }, { "id": 107, "match": false, "ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.symm_comp, ContinuousLinearMap.adjoint_id]" }, { "id": 108, "match": false, "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.symm_comp, ContinuousLinearMap.adjoint_id]" }, { "id": 109, "match": false, "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.symm_comp, ContinuousLinearMap.adjoint_id]" }, { "id": 110, "match": false, "ground_truth": "by rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.adjoint_comp_self]" }, { "id": 111, "match": false, "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]; simp", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.adjoint_comp_self]" }, { "id": 112, "match": false, "ground_truth": "rw [←ContinuousLinearMap.comp_apply, ←ContinuousLinearMap.adjoint_comp]", "model_output": "rw [← ContinuousLinearMap.adjoint_comp_apply, A.adjoint_comp_self]" }, { "id": 113, "match": false, "ground_truth": "by rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]", "model_output": "rw [Matrix.mul_comm]" }, { "id": 114, "match": false, "ground_truth": "rw [← trace_transpose, ← trace_transpose_mul, transpose_mul]", "model_output": "rw [Matrix.mul_comm]" }, { "id": 115, "match": false, "ground_truth": "have : ConvexOn ℝ X fun _ ↦ (0: EReal) := by\n dsimp [ConvexOn]\n constructor\n exact hs\n intro x _ y _ a b _ _ _\n simp", "model_output": "apply ConvexOn.subset hs\n · apply convex_epigraph\n · simp [convex_indicator]" }, { "id": 116, "match": false, "ground_truth": "have eq : EqOn (fun _ ↦ (0: EReal)) (Set.convex_indicator X) X := by\n dsimp[EqOn]\n intro x hx\n dsimp [Set.convex_indicator]\n rw [if_pos hx]", "model_output": "apply ConvexOn.add this\n[· apply convexOn_const 0; simp]" }, { "id": 117, "match": false, "ground_truth": "by\n apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'", "model_output": "rcases hinter with ⟨x, hx⟩\n apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hx" }, { "id": 118, "match": false, "ground_truth": "apply Subset.antisymm\n · exact iIntersection_closure_sub_closure_iIntersection'' h hinter\n exact closure_iIntersection_sub_iIntersection_closure'", "model_output": "rcases hinter with ⟨x, hx⟩\n apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hx" }, { "id": 119, "match": false, "ground_truth": "· exact iIntersection_closure_sub_closure_iIntersection'' h hinter", "model_output": "· apply iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n · exact h\n · exact hinter" }, { "id": 120, "match": false, "ground_truth": "exact iIntersection_closure_sub_closure_iIntersection'' h hinter", "model_output": "apply iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection" }, { "id": 121, "match": false, "ground_truth": "exact closure_iIntersection_sub_iIntersection_closure'", "model_output": "apply intrinsicClosure_minimal\n · intro x hx\n rw [@mem_iInter]; intro i\n have : intrinsicClosure ℝ (⋂ i, s i) ⊆ intrinsicClosure ℝ (s i) :=\n intrinsicClosure_mono (iInter_subset_of_subset (by simp) i)\n apply this hx\n · exact convex_intrinsicClosure ℝ (⋂ i, h i) hinter\n · exact convex_intrinsicClosure ℝ (⋂ i, h i) hinter" }, { "id": 122, "match": false, "ground_truth": "have eqone : a + (1 - a) = 1 := add_sub_cancel a 1", "model_output": "have : f (a • x + (1 - a) • y) < f x := by\n apply hf' (by assumption) (by assumption) lta alt (by norm_num)" }, { "id": 123, "match": false, "ground_truth": "have lta' : 0 < 1 - a := sub_pos_of_lt alt", "model_output": "have : f (a • x + (1 - a) • y) < f x := by\n apply hf' (by assumption) (by assumption) (by linarith) (by linarith) (by assumption)" }, { "id": 124, "match": false, "ground_truth": "have h : f (a • x + (1 - a) • y) < f y := by\n apply Eq.trans_gt (max_eq_right (hx trivial))\n apply hf' neq lta lta' eqone", "model_output": "have : f (a • x + (1 - a) • y) < f x := by\n apply hf' (by assumption) (by assumption) lta lta' (by linarith) eqone\n exact Ne.lt_of_le' neq (IsMinOn_univ_iff.mp hx)" }, { "id": 125, "match": false, "ground_truth": "apply Eq.trans_gt (max_eq_right (hx trivial))", "model_output": "apply hf' (by assumption) (by assumption) lta lta' (by ring)" }, { "id": 126, "match": false, "ground_truth": "intro ε εpos", "model_output": "intro ε εpos\n filter_upwards [hu ε εpos, hv ε εpos] with y huy hvy\n rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]\n linarith [huy, hvy]" }, { "id": 127, "match": false, "ground_truth": "rw [ge_iff_le] at *", "model_output": "apply add_le_add\n · apply mul_le_mul_of_nonneg_left hyu (by linarith)\n · apply mul_le_mul_of_nonneg_left hyv (by linarith)" }, { "id": 128, "match": false, "ground_truth": "apply add_le_add", "model_output": "apply add_le_add\n · apply mul_le_mul_of_nonneg_left hyu (by simp [ha])\n · apply mul_le_mul_of_nonneg_left hyv (by simp [hb])" }, { "id": 129, "match": false, "ground_truth": "apply div_pos", "model_output": "apply div_pos zero_lt_one\n · apply mul_pos\n · linarith\n · apply alg.lpos" }, { "id": 130, "match": false, "ground_truth": "apply mul_pos", "model_output": "apply mul_pos _ alg.lpos\n[USER]\nlinarith [hγ]" }, { "id": 131, "match": true, "ground_truth": "· linarith [hγ]", "model_output": "· linarith [hγ]" }, { "id": 132, "match": true, "ground_truth": "linarith [hγ]", "model_output": "linarith [hγ]" }, { "id": 133, "match": false, "ground_truth": "· apply alg.lpos", "model_output": "· exact alg.lpos" }, { "id": 134, "match": false, "ground_truth": "apply alg.lpos", "model_output": "· exact alg.lpos" }, { "id": 135, "match": false, "ground_truth": "rw [mem_nhds_iff]", "model_output": "apply Metric.ball_mem_nhds x he" }, { "id": 136, "match": false, "ground_truth": "simp [Function.Epi]", "model_output": "simp [Epi]" }, { "id": 137, "match": false, "ground_truth": "simp [Function.Epi]", "model_output": "simp [Epi]" }, { "id": 138, "match": false, "ground_truth": "exact isClosed_empty", "model_output": "simp" }, { "id": 139, "match": false, "ground_truth": "constructor", "model_output": "constructor\n · intro h z\n unfold HasSubgradientAt at h\n obtain hz := h z\n simp; linarith\n intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z\n simp; linarith" }, { "id": 140, "match": true, "ground_truth": "by\n ext g; rw [h]", "model_output": "rw [h]" }, { "id": 141, "match": true, "ground_truth": "ext g; rw [h]", "model_output": "rw [h]" }, { "id": 142, "match": false, "ground_truth": "constructor", "model_output": "constructor <;> intro x hx <;> simp [i.h_eq x hx]" }, { "id": 143, "match": false, "ground_truth": "intro x _hx", "model_output": "intro x _ [H]\n rw [H]\n simp [h]" }, { "id": 144, "match": false, "ground_truth": "simp at this", "model_output": "rw [StrictMono]" }, { "id": 145, "match": true, "ground_truth": "· simp [StrictMono]", "model_output": "· simp [StrictMono]" }, { "id": 146, "match": false, "ground_truth": "simp [StrictMono]", "model_output": "· simp [StrictMono]" }, { "id": 147, "match": true, "ground_truth": "by_cases hc2 : c = ⊤", "model_output": "by_cases hc2 : c = ⊤" }, { "id": 148, "match": false, "ground_truth": "· rw [hc2]; simp", "model_output": "· rw [hc2, EReal.coe_sub]\n simp\n exact le_refl 0" }, { "id": 149, "match": false, "ground_truth": "rw [hc2]; simp", "model_output": "rw [hc2, EReal.coe_sub_top a]" }, { "id": 150, "match": false, "ground_truth": "by exact this", "model_output": "rw [← EReal.coe_sub, ← EReal.coe_sub] at this ⊢" }, { "id": 151, "match": false, "ground_truth": "constructor", "model_output": "rw [StrongConvexOn]" }, { "id": 152, "match": false, "ground_truth": "rw [← this]", "model_output": "rw [this] at hfun\n exact hfun" }, { "id": 153, "match": false, "ground_truth": "constructor", "model_output": "constructor\n · intro x\n rw [x]\n intro x\n rw [← bi_convex_conjugate_eq_self hscl, ← bi_convex_conjugate_eq_self htcl, x]" }, { "id": 154, "match": false, "ground_truth": "simp [funext_iff]", "model_output": "intro h; rw [← bi_convex_support_eq_set hscv hscl, ← bi_convex_support_eq_set htcv htcl, h]" }, { "id": 155, "match": false, "ground_truth": "constructor", "model_output": "constructor <;> intro hz <;> contrapose hz <;> simp [convex_support] at h <;> specialize h z hz <;> simp at h <;> exact h" }, { "id": 156, "match": false, "ground_truth": "· apply convex_univ", "model_output": "apply convex_univ [f'']" }, { "id": 157, "match": true, "ground_truth": "apply convex_univ", "model_output": "apply convex_univ" }, { "id": 158, "match": true, "ground_truth": "intro x _ y _", "model_output": "intro x _ y _" }, { "id": 159, "match": true, "ground_truth": "apply sq_nonneg", "model_output": "apply sq_nonneg" }, { "id": 160, "match": true, "ground_truth": "exact h_zero_eq.symm", "model_output": "exact h_zero_eq.symm" }, { "id": 161, "match": false, "ground_truth": "dsimp [ConvexOn]", "model_output": "apply convexOn_const 0 hs" }, { "id": 162, "match": false, "ground_truth": "constructor", "model_output": "constructor <;> simp [Convex] at * <;> tauto" }, { "id": 163, "match": false, "ground_truth": "dsimp[EqOn]", "model_output": "intro x hx\n simp [convex_indicator] at hx\n simp [hx]" }, { "id": 164, "match": false, "ground_truth": "rw [if_pos hx]", "model_output": "rw[if_pos hx]" }, { "id": 165, "match": false, "ground_truth": "by_contra neq", "model_output": "by_contra hxy" }, { "id": 166, "match": false, "ground_truth": "intro u hu v hv a b ha hb hab", "model_output": "rw [convex_iff_forall_pos]" }, { "id": 167, "match": true, "ground_truth": "rw [has_f_subdiff_iff] at *", "model_output": "rw [has_f_subdiff_iff] at *" }, { "id": 168, "match": true, "ground_truth": "rw [finrank_span_eq_card]", "model_output": "rw [finrank_span_eq_card]" }, { "id": 169, "match": false, "ground_truth": "rw [hx, LinearMap.map_add]", "model_output": "rw [hx, (LinearMap.ker_eq_orthogonal_orthogonal hker).mp hx₂, add_zero]" }, { "id": 170, "match": false, "ground_truth": "apply ContDiffOn.contDiffAt hf", "model_output": "apply ContDiffOn.contDiffAt hf\n · apply mem_ball_self he" }, { "id": 171, "match": false, "ground_truth": "simp [Function.closure]", "model_output": "apply Function.closure_univ_eq_top.mpr\n simp [Function.closure]" }, { "id": 172, "match": false, "ground_truth": "simp [Function.closure, hsf]", "model_output": "simp [Function.IsClosed]\n exact epi_is_closed_of_closure f hs" }, { "id": 173, "match": false, "ground_truth": "by_cases hf : ∃ x ∈ s, f x = ⊥", "model_output": "by_cases h : ∃ x ∈ s, f x = ⊥\n · simp [h]; exact isClosed_univ\n simp [h]; exact isClosed_empty" }, { "id": 174, "match": false, "ground_truth": "simp [Function.IsClosed]", "model_output": "apply isClosed_eq (by simp) hs" }, { "id": 175, "match": true, "ground_truth": "simp [Function.IsClosed]", "model_output": "simp [Function.IsClosed]" }, { "id": 176, "match": false, "ground_truth": "apply StrictMono.tendsto_atTop", "model_output": "apply StrictMono.tendsto_atTop\n apply strictMono_nat_of_lt_succ\n intro n\n have : φ₁ (n + 1) > φ₁ n := by apply StrictMono.strictMonoOn\n apply StrictMonoOn.Ioo_subset this\n constructor\n · simp\n · linarith\n apply this\n apply Nat.succ_pos" }, { "id": 177, "match": false, "ground_truth": "apply StrictMono.comp", "model_output": "apply StrictMono.comp\n · apply hphi_StrictMono\n · apply StrictMono.add_const\n · exact strictMono_id\n · exact Nat.zero_le 1" }, { "id": 178, "match": true, "ground_truth": "· apply hphi_StrictMono", "model_output": "· apply hphi_StrictMono" }, { "id": 179, "match": true, "ground_truth": "apply hphi_StrictMono", "model_output": "apply hphi_StrictMono" }, { "id": 180, "match": false, "ground_truth": "lift a to ℝ using ⟨ha2, ha1⟩", "model_output": "have : a.toReal + b ≤ c.toReal := by\n lift a to ℝ using ⟨ha1, ha2⟩\n rw [← EReal.coe_add, ← EReal.coe_sub] at h\n exact h\n apply ha1\n apply ha2\n apply hc1\n simp\n simp\n simp\n simp\n exact rfl\n apply EReal.coe_le_coe_iff.1 this" }, { "id": 181, "match": false, "ground_truth": "lift c to ℝ using ⟨hc2, hc1⟩", "model_output": "lift c to ℝ using ⟨hc1, hc2⟩\n rw [← EReal.coe_sub, ← EReal.coe_add]\n apply EReal.coe_le_coe_iff.mpr\n apply le_sub_of_add_le\n simpa" }, { "id": 182, "match": false, "ground_truth": "intro x hx y hy a b ha hb hab", "model_output": "intro x xs y ys a b ha hb hab\n have h : a = 1 - b := by linarith\n rw [h]\n simp\n specialize hfun xs ys hb ha (by linarith)\n linarith [hfun]" }, { "id": 183, "match": false, "ground_truth": "· exact fun h => (by rw [h])", "model_output": "· intro h; rw [h]" }, { "id": 184, "match": false, "ground_truth": "exact fun h => (by rw [h])", "model_output": "intro h; rw [h]" }, { "id": 185, "match": false, "ground_truth": "simp [convex_support]", "model_output": "rw [convex_support]" }, { "id": 186, "match": false, "ground_truth": "simp [convex_support]", "model_output": "rcases hs with ⟨x, hx⟩\n use x\n constructor\n · simp\n apply convex_support_lt_top hx" }, { "id": 187, "match": true, "ground_truth": "simp [convex_indicator]", "model_output": "simp [convex_indicator]" }, { "id": 188, "match": false, "ground_truth": "split_ifs with hy <;> simp", "model_output": "by_cases h : y ∈ s\n · rw [h]; simp\n simp [h]" }, { "id": 189, "match": false, "ground_truth": "rcases h1 with ⟨x, hx⟩", "model_output": "rcases h1 with ⟨x, hx⟩\n use x\n simp [dom]\n exact hx" }, { "id": 190, "match": false, "ground_truth": "apply convex_on_p_top", "model_output": "apply convex_on_n_inf" }, { "id": 191, "match": false, "ground_truth": "rw [polyhedra_iff_cone b]", "model_output": "rw [← closure_affineSubspace_eq]" }, { "id": 192, "match": false, "ground_truth": "exact closed_conic σ b", "model_output": "rw [← closure_conic_eq]" }, { "id": 193, "match": false, "ground_truth": "intro x _ y _ a b _ _ _", "model_output": "simp" }, { "id": 194, "match": false, "ground_truth": "dsimp [Set.convex_indicator]", "model_output": "rw [convex_indicator]" }, { "id": 195, "match": false, "ground_truth": "apply ConvexOn.congr this eq", "model_output": "rw [convexOn_congr eq]" }, { "id": 196, "match": false, "ground_truth": "apply Subset.antisymm", "model_output": "rcases hinter with ⟨x, hx⟩\n apply Subset.antisymm\n · exact iIntersection_intrinsicClosure_sub_intrinsicClosure_iIntersection\n exact intrinsicClosure_iIntersection_sub_iIntersection_intrinsicClosure h hx" }, { "id": 197, "match": false, "ground_truth": "apply hf' neq lta lta' eqone", "model_output": "have : a • x + (1 - a) • y = a • x + (1 - a) • y := by simp only [add_sub_cancel]" }, { "id": 198, "match": false, "ground_truth": "simp only [isMinOn_iff] at hy", "model_output": "have : f (a • x + (1 - a) • y) < f x := by\n apply lt_of_lt_of_le h (hy (by trivial))" }, { "id": 199, "match": false, "ground_truth": "apply not_le_of_gt h hy", "model_output": "linarith [hy, h]" }, { "id": 200, "match": false, "ground_truth": "intro u", "model_output": "rw [convex_iff_forall_pos]" }, { "id": 201, "match": false, "ground_truth": "intro ε", "model_output": "intro ε εpos\n filter_upwards [hu ε εpos, hv ε εpos] with y huy hvy\n rw [inner_add_left, real_inner_smul_left, real_inner_smul_left]\n linarith [huy, hvy]" }, { "id": 202, "match": false, "ground_truth": "intro z z'", "model_output": "intro z z' [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [" }, { "id": 203, "match": false, "ground_truth": "intro z", "model_output": "intro z z' [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [h] [hl] [" }, { "id": 204, "match": false, "ground_truth": "intro k", "model_output": "intro k\n specialize ck k\n rw [ck]\n apply div_pos\n · norm_num\n apply mul_pos\n · linarith [hγ]\n · apply alg.lpos" }, { "id": 205, "match": true, "ground_truth": "rw [ck]", "model_output": "rw [ck]" }, { "id": 206, "match": true, "ground_truth": "· norm_num", "model_output": "· norm_num" }, { "id": 207, "match": true, "ground_truth": "norm_num", "model_output": "norm_num" }, { "id": 208, "match": false, "ground_truth": "simp [h]", "model_output": "rw [linearIndependent_iff_mul_conjTranspose_eq_one]" }, { "id": 209, "match": false, "ground_truth": "aesop", "model_output": "constructor <;> intro a ha b hb hab <;> exact hv.1 a (ha hb) <;> exact hv.2 a b hab" }, { "id": 210, "match": false, "ground_truth": "intro h", "model_output": "intro h\n unfold LowerSemicontinuousHull\n simp\n exact h.1" }, { "id": 211, "match": false, "ground_truth": "exfalso", "model_output": "apply lowersemicontinuoushull_eq_top_of_proper h.uninfinity" }, { "id": 212, "match": true, "ground_truth": "simp at h1", "model_output": "simp at h1" }, { "id": 213, "match": true, "ground_truth": "simp [hf]", "model_output": "simp [hf]" }, { "id": 214, "match": false, "ground_truth": "ext ⟨x, _⟩", "model_output": "apply epi_bot_eq" }, { "id": 215, "match": true, "ground_truth": "rw [h1]", "model_output": "rw [h1]" }, { "id": 216, "match": true, "ground_truth": "simp [hf]", "model_output": "simp [hf]" }, { "id": 217, "match": false, "ground_truth": "ext ⟨x, _⟩", "model_output": "simp [Epi]" }, { "id": 218, "match": true, "ground_truth": "rw [h']", "model_output": "rw [h']" }, { "id": 219, "match": false, "ground_truth": "intro h z", "model_output": "intro hsf\n unfold HasSubgradientAt at hsf\n unfold Banach_HasSubgradientAt\n constructor\n · exact hsf\n · intro y; specialize hsf y; simp at hsf; exact hsf" }, { "id": 220, "match": false, "ground_truth": "intro h", "model_output": "intro hsf\n unfold HasSubgradientAt at hsf\n unfold Banach_HasSubgradientAt\n constructor\n · exact hsf\n · intro y; specialize hsf y; simp at hsf; exact hsf" }, { "id": 221, "match": false, "ground_truth": "simp", "model_output": "simp [toDual_apply] at hz ⊢\n exact hz" }, { "id": 222, "match": false, "ground_truth": "linarith", "model_output": "linarith [hz]" }, { "id": 223, "match": false, "ground_truth": "intro h z", "model_output": "intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z\n simp; rw [← ContinuousLinearMap.map_sub]; linarith" }, { "id": 224, "match": false, "ground_truth": "intro h", "model_output": "intro h z\n unfold Banach_HasSubgradientAt at h\n obtain hz := h z\n simp; rw [← ContinuousLinearMap.map_sub]; linarith" }, { "id": 225, "match": false, "ground_truth": "simp at hz", "model_output": "simp [toDual] at hz" }, { "id": 226, "match": false, "ground_truth": "linarith", "model_output": "linarith [hz]" }, { "id": 227, "match": false, "ground_truth": "ext g", "model_output": "rw [h]" }, { "id": 228, "match": true, "ground_truth": "rw [h]", "model_output": "rw [h]" }, { "id": 229, "match": false, "ground_truth": "simp", "model_output": "have := i.h_eq\n exact ⟨fun x a ↦ ?_, fun x a ↦ ?_⟩\n · simp\n rw [← EReal.coe_add, ← this]; exact i.hf x a\n · simp [this]" }, { "id": 230, "match": false, "ground_truth": "intro x hx", "model_output": "intro x xs\n have := i.2 x xs\n simp only [ContinuousLinearMap.coe_coe] at this\n rw [← EReal.coe_add, ← EReal.coe_le_coe_iff] at this\n exact this" }, { "id": 231, "match": false, "ground_truth": "intro x", "model_output": "intro x xs\n have := i.2 x xs\n simp only [ContinuousLinearMap.coe_coe] at this\n rw [← EReal.coe_add, ← EReal.coe_le_coe_iff] at this\n exact this" }, { "id": 232, "match": false, "ground_truth": "intro x", "model_output": "intro x _ [H]\n rw [H]\n simp [h]" }, { "id": 233, "match": false, "ground_truth": "ext n", "model_output": "ext n [φ₁_equ fullrank₁ fullrank₂] [φ_equ fullrank₁ fullrank₂]" }, { "id": 234, "match": false, "ground_truth": "simp", "model_output": "simp [φ]" }, { "id": 235, "match": true, "ground_truth": "rw [this]", "model_output": "rw [this]" }, { "id": 236, "match": false, "ground_truth": "rw [hc2]", "model_output": "rw [hc2, EReal.coe_sub_top a]" }, { "id": 237, "match": false, "ground_truth": "simp", "model_output": "simp [← EReal.coe_add] at *" }, { "id": 238, "match": false, "ground_truth": "exact this", "model_output": "rw [← EReal.coe_sub, ← EReal.coe_sub] at this ⊢" }, { "id": 239, "match": true, "ground_truth": "linarith", "model_output": "linarith" }, { "id": 240, "match": false, "ground_truth": "· exact hs", "model_output": "· apply hs\n apply hfun" }, { "id": 241, "match": false, "ground_truth": "exact hs", "model_output": "apply hs" }, { "id": 242, "match": false, "ground_truth": "intro x", "model_output": "intro x xs y ys a b ha hb hab\n have h : a = 1 - b := by linarith\n rw [h]\n simp\n specialize hfun xs ys hb ha (by linarith)\n linarith [hfun]" }, { "id": 243, "match": false, "ground_truth": "dsimp", "model_output": "simp only [smul_eq_mul, mul_eq_mul_left_iff, or_self]" }, { "id": 244, "match": false, "ground_truth": "ring_nf", "model_output": "linarith [mul_comm (m / 2) a, mul_assoc a b (m / 2), mul_assoc a (m / 2) b]" }, { "id": 245, "match": false, "ground_truth": "exact hfun", "model_output": "apply hfun" }, { "id": 246, "match": true, "ground_truth": "by rw [h]", "model_output": "rw [h]" }, { "id": 247, "match": true, "ground_truth": "rw [h]", "model_output": "rw [h]" }, { "id": 248, "match": false, "ground_truth": "intro h", "model_output": "intro h\n have heq : s = s.convex_support := by\n apply subset_antisymm\n · exact convex_support_le\n rw [epi_eq_closure_epi_linear]\n apply isClosed_closure\n have teq : t = t.convex_support := by\n apply subset_antisymm\n · exact convex_support_le\n rw [epi_eq_closure_epi_linear]\n apply isClosed_closure\n rw [heq, teq]\n apply h" }, { "id": 249, "match": false, "ground_truth": "ext z", "model_output": "rw [← bi_convex_support_eq_closure hscv hscl, ← bi_convex_support_eq_closure htcv htcl, h]" }, { "id": 250, "match": true, "ground_truth": "intro x _", "model_output": "intro x _" }, { "id": 251, "match": false, "ground_truth": "intro x", "model_output": "intro x _" }, { "id": 252, "match": false, "ground_truth": "right", "model_output": "right;rcases hs with ⟨x ,hx⟩\n use x\n rw[convex_support]\n simp\n exact Ne.lt_top' (id (Ne.symm hx))" }, { "id": 253, "match": false, "ground_truth": "simp", "model_output": "intro y\n simp [convex_indicator]\n intro x _\n rw [inner_zero_left]\n simp" }, { "id": 254, "match": false, "ground_truth": "intro y", "model_output": "intro y\n simp [convex_indicator]\n by_cases h : y ∈ s\n · rw [if_pos h]; simp\n · rw [if_neg h]; simp [nonneg]" }, { "id": 255, "match": false, "ground_truth": "simp", "model_output": "rfl" }, { "id": 256, "match": true, "ground_truth": "simp at h1", "model_output": "simp at h1" }, { "id": 257, "match": false, "ground_truth": "simp [hx]", "model_output": "simp [dom, hx]" }, { "id": 258, "match": true, "ground_truth": "ext x", "model_output": "ext x" }, { "id": 259, "match": true, "ground_truth": "exact h x", "model_output": "exact h x" }, { "id": 260, "match": false, "ground_truth": "intro x", "model_output": "intro x _ y _" }, { "id": 261, "match": true, "ground_truth": "simp [hp]", "model_output": "simp [hp]" }, { "id": 262, "match": true, "ground_truth": "intro b", "model_output": "intro b" }, { "id": 263, "match": false, "ground_truth": "by rfl", "model_output": "constructor\n · intro h\n exact (IsLinear_iff' h).mp\n intro h\n exact (IsLinear_iff' h).mpr" }, { "id": 264, "match": false, "ground_truth": "rfl", "model_output": "constructor\n · intro h\n exact (IsLinear_iff' h).mp\n intro h\n exact (IsLinear_iff' h).mpr" }, { "id": 265, "match": true, "ground_truth": "rw [h]", "model_output": "rw [h]" }, { "id": 266, "match": false, "ground_truth": "simp", "model_output": "simp only [ContinuousLinearMap.coe_comp', comp_apply, LinearEquiv.coe_coe, LinearEquiv.symm_apply_apply]" }, { "id": 267, "match": false, "ground_truth": "simp", "model_output": "simp only [ContinuousLinearMap.coe_comp', comp_apply, LinearEquiv.coe_coe, LinearEquiv.symm_apply_apply]" }, { "id": 268, "match": false, "ground_truth": "exact hs", "model_output": "· apply hs" }, { "id": 269, "match": false, "ground_truth": "intro x", "model_output": "simp" }, { "id": 270, "match": false, "ground_truth": "simp", "model_output": "simp only [smul_zero, add_zero, ge_iff_le, zero_le_one, b]" }, { "id": 271, "match": false, "ground_truth": "intro x hx", "model_output": "intro x _" }, { "id": 272, "match": false, "ground_truth": "intro x", "model_output": "intro x _" } ] }