File size: 10,164 Bytes
bf620c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
package old;

import java.util.*;
import java.util.function.Consumer;

/**
 * clique2_ablations_streaming (INTERNAL-DEGREE Q, streaming)
 *
 * Computes Q(C) = d^T L_C d with d_i = deg_C(i) (INTERNAL degree in the induced subgraph),
 * exactly and incrementally during reverse reconstruction.
 *
 * Entry point:
 *   - runLaplacianRMCStreaming(List<Integer>[] adj1Based, Consumer<SnapshotDTO> sink)
 *
 * Notes:
 * - Adjacency is 1-based on input; we convert to 0-based int[][].
 * - This implementation favors correctness; for very large graphs it may be slow.
 */
public class clique2_ablations_compat {

    public static List<SnapshotDTO> runLaplacianRMC(List<Integer>[] adj1Based) {
        ArrayList<SnapshotDTO> out = new ArrayList<>();
        runLaplacianRMCStreaming(adj1Based, out::add);
        return out;
    }

    public static void runLaplacianRMCStreaming(List<Integer>[] adj1Based,
                                                Consumer<SnapshotDTO> sink) {
        final int n = adj1Based.length - 1; // 1-based
        int[][] nbrs = new int[n][];
        int[] degFull = new int[n];
        for (int u1 = 1; u1 <= n; u1++) {
            List<Integer> lst = adj1Based[u1];
            int m = lst.size();
            int[] arr = new int[m];
            for (int i = 0; i < m; i++) arr[i] = lst.get(i) - 1;
            nbrs[u1 - 1] = arr;
            degFull[u1 - 1] = m;
        }

        // Degeneracy order (stable PQ for small, bucket for large)
        int[] order = (n <= 100_000) ? degeneracyOrderStable(nbrs, degFull)
                                     : degeneracyOrderBucket(nbrs, degFull);

        DSU dsu = new DSU(n);
        boolean[] added = new boolean[n];
        int[] degC = new int[n];              // internal degree within current induced subgraph
        // Per-component aggregates for Q = 2*(S3 - P)
        double[] S3 = new double[n];          // Σ d_i^3 per component
        double[] P  = new double[n];          // Σ_{(i,j)∈E_C} d_i d_j per component (unordered edges)

        for (int step = n - 1; step >= 0; step--) {
            final int u = order[step];
            added[u] = true;
            dsu.makeSingleton(u);

            // Gather neighbors of u already added
            int[] Nu = nbrs[u];
            int t = 0;
            for (int v : Nu) if (added[v]) t++;

            // Collect those neighbors and their current internal degrees b_v
            int[] neigh = new int[t];
            int k = 0;
            long sum_b = 0L;
            long sum_b2 = 0L;
            for (int v : Nu) {
                if (!added[v]) continue;
                neigh[k++] = v;
                int b = degC[v];
                sum_b += b;
                sum_b2 += (long) b * (long) b;
            }

            // Union u with each neighbor's component
            int ru = dsu.find(u);
            for (int i = 0; i < t; i++) {
                int rv = dsu.find(neigh[i]);
                if (ru != rv) ru = dsu.union(ru, rv);
            }

            // --- Exact Δ for Q = 2*(S3 - P) ---
            // ΔS3 = t^3 + Σ_i [(b_i+1)^3 - b_i^3] = t^3 + Σ_i [3 b_i^2 + 3 b_i + 1]
            double deltaS3 = (double) t * t * t + 3.0 * (double) sum_b2 + 3.0 * (double) sum_b + (double) t;

            // ΔP = Σ_i [ t*(b_i+1) + sN_pre(v_i) ]
            // where sN_pre(v) = Σ_{w ∈ N_C(v) before} degC(w).
            double deltaP = 0.0;
            for (int i = 0; i < t; i++) {
                int v = neigh[i];
                int b = degC[v];
                // sum degrees of neighbors w that are already added and are in the same component as v (before updating degC)
                int rv = dsu.find(v);
                long sNv = 0L;
                for (int w : nbrs[v]) {
                    if (!added[w]) continue;
                    if (dsu.find(w) != rv) continue;
                    sNv += degC[w];
                }
                deltaP += (double) t * (double) (b + 1) + (double) sNv;
            }

            // Apply deltas to component aggregates
            S3[ru] += deltaS3;
            P[ru]  += deltaP;

            // Emit snapshot for the component containing u
            int[] nodes = dsu.nodesOf(ru);
            long sumDegIn2 = dsu.sumDegIn2(ru); // 2*|E_C| == Σ d_i
            double Q = 2.0 * (S3[ru] - P[ru]);
            sink.accept(new SnapshotDTO(nodes, nodes.length, sumDegIn2, Q));

            // Now update degC for u and neighbors (for the next steps)
            degC[u] += t;
            for (int i = 0; i < t; i++) {
                int v = neigh[i];
                degC[v] += 1;
            }
        }
    }

    // ------------------------- Degeneracy Order -------------------------

    static int[] degeneracyOrderStable(int[][] nbrs, int[] deg0) {
        final int n = nbrs.length;
        int[] deg = Arrays.copyOf(deg0, n);
        boolean[] removed = new boolean[n];
        PriorityQueue<long[]> pq = new PriorityQueue<>(Comparator.comparingLong(a -> (a[0] << 21) | a[1]));
        for (int u = 0; u < n; u++) pq.add(new long[]{deg[u], u});
        int[] order = new int[n];
        int ptr = 0;
        while (ptr < n) {
            long[] top = pq.poll();
            int du = (int) top[0];
            int u = (int) top[1];
            if (removed[u] || du != deg[u]) continue;
            removed[u] = true;
            order[ptr++] = u;
            for (int v : nbrs[u]) if (!removed[v]) {
                deg[v]--;
                pq.add(new long[]{deg[v], v});
            }
        }
        return order;
    }

    static int[] degeneracyOrderBucket(int[][] nbrs, int[] deg0) {
        final int n = nbrs.length;
        int maxDeg = 0;
        for (int d : deg0) if (d > maxDeg) maxDeg = d;

        int[] deg = Arrays.copyOf(deg0, n);
        int[] head = new int[Math.max(2, maxDeg + 2)];
        int[] next = new int[n];
        int[] prev = new int[n];
        Arrays.fill(head, -1);
        Arrays.fill(next, -1);
        Arrays.fill(prev, -1);
        for (int u = 0; u < n; u++) {
            int d = deg[u];
            next[u] = head[d];
            if (head[d] >= 0) prev[head[d]] = u;
            head[d] = u;
        }

        boolean[] removed = new boolean[n];
        int[] order = new int[n];
        int ptr = 0;
        int cur = 0;
        while (cur <= maxDeg && head[cur] < 0) cur++;

        for (int it = 0; it < n; it++) {
            while (cur <= maxDeg && head[cur] < 0) cur++;
            if (cur > maxDeg) cur = maxDeg;
            int u = head[cur];
            head[cur] = next[u];
            if (head[cur] >= 0) prev[head[cur]] = -1;
            next[u] = prev[u] = -1;
            removed[u] = true;
            order[ptr++] = u;

            for (int v : nbrs[u]) if (!removed[v]) {
                int dv = deg[v];
                int pv = prev[v], nv = next[v];
                if (pv >= 0) next[pv] = nv; else head[dv] = nv;
                if (nv >= 0) prev[nv] = pv;
                int nd = dv - 1;
                deg[v] = nd;
                next[v] = head[nd];
                if (head[nd] >= 0) prev[head[nd]] = v;
                prev[v] = -1;
                head[nd] = v;
                if (nd < cur) cur = nd;
            }
        }
        return order;
    }

    // --------------------------- DSU ---------------------------

    static final class DSU {
        final int n;
        final int[] parent;
        final int[] size;
        final long[] sumDegIn2;  // 2 * |E_C|
        final IntList[] members;

        DSU(int n) {
            this.n = n;
            this.parent = new int[n];
            this.size = new int[n];
            this.sumDegIn2 = new long[n];
            this.members = new IntList[n];
            for (int i = 0; i < n; i++) {
                parent[i] = i;
                size[i] = 0;
                sumDegIn2[i] = 0L;
                members[i] = new IntList();
            }
        }

        void makeSingleton(int u) {
            parent[u] = u;
            size[u] = 1;
            sumDegIn2[u] = 0L;
            members[u].clear();
            members[u].add(u);
        }

        int find(int x) {
            int r = x;
            while (r != parent[r]) r = parent[r];
            int y = x;
            while (y != r) { int p = parent[y]; parent[y] = r; y = p; }
            return r;
        }

        int union(int ra, int rb) {
            ra = find(ra); rb = find(rb);
            if (ra == rb) return ra;
            if (size[ra] < size[rb]) { int t = ra; ra = rb; rb = t; }
            parent[rb] = ra;
            size[ra] += size[rb];
            sumDegIn2[ra] += sumDegIn2[rb];
            members[ra].addAll(members[rb]);
            members[rb].clear();
            return ra;
        }

        long sumDegIn2(int r) { return sumDegIn2[find(r)]; }

        int[] nodesOf(int r) {
            return members[find(r)].toArray();
        }
    }

    // Simple dynamic int list
    static final class IntList {
        int[] a; int sz;
        IntList() { a = new int[4]; sz = 0; }
        void clear() { sz = 0; }
        void add(int x) { if (sz == a.length) a = Arrays.copyOf(a, sz << 1); a[sz++] = x; }
        void addAll(IntList other) {
            if (other.sz == 0) return;
            int need = sz + other.sz;
            if (need > a.length) {
                int cap = a.length;
                while (cap < need) cap <<= 1;
                a = Arrays.copyOf(a, cap);
            }
            System.arraycopy(other.a, 0, a, sz, other.sz);
            sz = need;
        }
        int[] toArray() { return Arrays.copyOf(a, sz); }
    }

    // ------------------------- Snapshot DTO -------------------------

    public static final class SnapshotDTO {
        public final int[] nodes;   // 0-based ids
        public final int nC;        // |C|
        public final long sumDegIn; // 2 * |E(C)|
        public final double Q;      // EXACT internal-degree Q = d^T L_C d

        public SnapshotDTO(int[] nodes, int nC, long sumDegIn, double Q) {
            this.nodes = nodes;
            this.nC = nC;
            this.sumDegIn = sumDegIn;
            this.Q = Q;
        }
    }
}