File size: 10,164 Bytes
bf620c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
package old;
import java.util.*;
import java.util.function.Consumer;
/**
* clique2_ablations_streaming (INTERNAL-DEGREE Q, streaming)
*
* Computes Q(C) = d^T L_C d with d_i = deg_C(i) (INTERNAL degree in the induced subgraph),
* exactly and incrementally during reverse reconstruction.
*
* Entry point:
* - runLaplacianRMCStreaming(List<Integer>[] adj1Based, Consumer<SnapshotDTO> sink)
*
* Notes:
* - Adjacency is 1-based on input; we convert to 0-based int[][].
* - This implementation favors correctness; for very large graphs it may be slow.
*/
public class clique2_ablations_compat {
public static List<SnapshotDTO> runLaplacianRMC(List<Integer>[] adj1Based) {
ArrayList<SnapshotDTO> out = new ArrayList<>();
runLaplacianRMCStreaming(adj1Based, out::add);
return out;
}
public static void runLaplacianRMCStreaming(List<Integer>[] adj1Based,
Consumer<SnapshotDTO> sink) {
final int n = adj1Based.length - 1; // 1-based
int[][] nbrs = new int[n][];
int[] degFull = new int[n];
for (int u1 = 1; u1 <= n; u1++) {
List<Integer> lst = adj1Based[u1];
int m = lst.size();
int[] arr = new int[m];
for (int i = 0; i < m; i++) arr[i] = lst.get(i) - 1;
nbrs[u1 - 1] = arr;
degFull[u1 - 1] = m;
}
// Degeneracy order (stable PQ for small, bucket for large)
int[] order = (n <= 100_000) ? degeneracyOrderStable(nbrs, degFull)
: degeneracyOrderBucket(nbrs, degFull);
DSU dsu = new DSU(n);
boolean[] added = new boolean[n];
int[] degC = new int[n]; // internal degree within current induced subgraph
// Per-component aggregates for Q = 2*(S3 - P)
double[] S3 = new double[n]; // Σ d_i^3 per component
double[] P = new double[n]; // Σ_{(i,j)∈E_C} d_i d_j per component (unordered edges)
for (int step = n - 1; step >= 0; step--) {
final int u = order[step];
added[u] = true;
dsu.makeSingleton(u);
// Gather neighbors of u already added
int[] Nu = nbrs[u];
int t = 0;
for (int v : Nu) if (added[v]) t++;
// Collect those neighbors and their current internal degrees b_v
int[] neigh = new int[t];
int k = 0;
long sum_b = 0L;
long sum_b2 = 0L;
for (int v : Nu) {
if (!added[v]) continue;
neigh[k++] = v;
int b = degC[v];
sum_b += b;
sum_b2 += (long) b * (long) b;
}
// Union u with each neighbor's component
int ru = dsu.find(u);
for (int i = 0; i < t; i++) {
int rv = dsu.find(neigh[i]);
if (ru != rv) ru = dsu.union(ru, rv);
}
// --- Exact Δ for Q = 2*(S3 - P) ---
// ΔS3 = t^3 + Σ_i [(b_i+1)^3 - b_i^3] = t^3 + Σ_i [3 b_i^2 + 3 b_i + 1]
double deltaS3 = (double) t * t * t + 3.0 * (double) sum_b2 + 3.0 * (double) sum_b + (double) t;
// ΔP = Σ_i [ t*(b_i+1) + sN_pre(v_i) ]
// where sN_pre(v) = Σ_{w ∈ N_C(v) before} degC(w).
double deltaP = 0.0;
for (int i = 0; i < t; i++) {
int v = neigh[i];
int b = degC[v];
// sum degrees of neighbors w that are already added and are in the same component as v (before updating degC)
int rv = dsu.find(v);
long sNv = 0L;
for (int w : nbrs[v]) {
if (!added[w]) continue;
if (dsu.find(w) != rv) continue;
sNv += degC[w];
}
deltaP += (double) t * (double) (b + 1) + (double) sNv;
}
// Apply deltas to component aggregates
S3[ru] += deltaS3;
P[ru] += deltaP;
// Emit snapshot for the component containing u
int[] nodes = dsu.nodesOf(ru);
long sumDegIn2 = dsu.sumDegIn2(ru); // 2*|E_C| == Σ d_i
double Q = 2.0 * (S3[ru] - P[ru]);
sink.accept(new SnapshotDTO(nodes, nodes.length, sumDegIn2, Q));
// Now update degC for u and neighbors (for the next steps)
degC[u] += t;
for (int i = 0; i < t; i++) {
int v = neigh[i];
degC[v] += 1;
}
}
}
// ------------------------- Degeneracy Order -------------------------
static int[] degeneracyOrderStable(int[][] nbrs, int[] deg0) {
final int n = nbrs.length;
int[] deg = Arrays.copyOf(deg0, n);
boolean[] removed = new boolean[n];
PriorityQueue<long[]> pq = new PriorityQueue<>(Comparator.comparingLong(a -> (a[0] << 21) | a[1]));
for (int u = 0; u < n; u++) pq.add(new long[]{deg[u], u});
int[] order = new int[n];
int ptr = 0;
while (ptr < n) {
long[] top = pq.poll();
int du = (int) top[0];
int u = (int) top[1];
if (removed[u] || du != deg[u]) continue;
removed[u] = true;
order[ptr++] = u;
for (int v : nbrs[u]) if (!removed[v]) {
deg[v]--;
pq.add(new long[]{deg[v], v});
}
}
return order;
}
static int[] degeneracyOrderBucket(int[][] nbrs, int[] deg0) {
final int n = nbrs.length;
int maxDeg = 0;
for (int d : deg0) if (d > maxDeg) maxDeg = d;
int[] deg = Arrays.copyOf(deg0, n);
int[] head = new int[Math.max(2, maxDeg + 2)];
int[] next = new int[n];
int[] prev = new int[n];
Arrays.fill(head, -1);
Arrays.fill(next, -1);
Arrays.fill(prev, -1);
for (int u = 0; u < n; u++) {
int d = deg[u];
next[u] = head[d];
if (head[d] >= 0) prev[head[d]] = u;
head[d] = u;
}
boolean[] removed = new boolean[n];
int[] order = new int[n];
int ptr = 0;
int cur = 0;
while (cur <= maxDeg && head[cur] < 0) cur++;
for (int it = 0; it < n; it++) {
while (cur <= maxDeg && head[cur] < 0) cur++;
if (cur > maxDeg) cur = maxDeg;
int u = head[cur];
head[cur] = next[u];
if (head[cur] >= 0) prev[head[cur]] = -1;
next[u] = prev[u] = -1;
removed[u] = true;
order[ptr++] = u;
for (int v : nbrs[u]) if (!removed[v]) {
int dv = deg[v];
int pv = prev[v], nv = next[v];
if (pv >= 0) next[pv] = nv; else head[dv] = nv;
if (nv >= 0) prev[nv] = pv;
int nd = dv - 1;
deg[v] = nd;
next[v] = head[nd];
if (head[nd] >= 0) prev[head[nd]] = v;
prev[v] = -1;
head[nd] = v;
if (nd < cur) cur = nd;
}
}
return order;
}
// --------------------------- DSU ---------------------------
static final class DSU {
final int n;
final int[] parent;
final int[] size;
final long[] sumDegIn2; // 2 * |E_C|
final IntList[] members;
DSU(int n) {
this.n = n;
this.parent = new int[n];
this.size = new int[n];
this.sumDegIn2 = new long[n];
this.members = new IntList[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
size[i] = 0;
sumDegIn2[i] = 0L;
members[i] = new IntList();
}
}
void makeSingleton(int u) {
parent[u] = u;
size[u] = 1;
sumDegIn2[u] = 0L;
members[u].clear();
members[u].add(u);
}
int find(int x) {
int r = x;
while (r != parent[r]) r = parent[r];
int y = x;
while (y != r) { int p = parent[y]; parent[y] = r; y = p; }
return r;
}
int union(int ra, int rb) {
ra = find(ra); rb = find(rb);
if (ra == rb) return ra;
if (size[ra] < size[rb]) { int t = ra; ra = rb; rb = t; }
parent[rb] = ra;
size[ra] += size[rb];
sumDegIn2[ra] += sumDegIn2[rb];
members[ra].addAll(members[rb]);
members[rb].clear();
return ra;
}
long sumDegIn2(int r) { return sumDegIn2[find(r)]; }
int[] nodesOf(int r) {
return members[find(r)].toArray();
}
}
// Simple dynamic int list
static final class IntList {
int[] a; int sz;
IntList() { a = new int[4]; sz = 0; }
void clear() { sz = 0; }
void add(int x) { if (sz == a.length) a = Arrays.copyOf(a, sz << 1); a[sz++] = x; }
void addAll(IntList other) {
if (other.sz == 0) return;
int need = sz + other.sz;
if (need > a.length) {
int cap = a.length;
while (cap < need) cap <<= 1;
a = Arrays.copyOf(a, cap);
}
System.arraycopy(other.a, 0, a, sz, other.sz);
sz = need;
}
int[] toArray() { return Arrays.copyOf(a, sz); }
}
// ------------------------- Snapshot DTO -------------------------
public static final class SnapshotDTO {
public final int[] nodes; // 0-based ids
public final int nC; // |C|
public final long sumDegIn; // 2 * |E(C)|
public final double Q; // EXACT internal-degree Q = d^T L_C d
public SnapshotDTO(int[] nodes, int nC, long sumDegIn, double Q) {
this.nodes = nodes;
this.nC = nC;
this.sumDegIn = sumDegIn;
this.Q = Q;
}
}
}
|