File size: 8,255 Bytes
bf620c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import java.io.*;
import java.util.*;
/**
* RMC with Laplacian surrogate (Fix B: incremental reverse updates).
*
* Input: args[0] = epsilon (double), args[1] = path to input file
* File format:
* n m
* u1 v1
* ...
* um vm
*/
public class clique2_fixb {
static int n, m;
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: java clique2_fixb <epsilon> <inputfile>");
}
final double EPS = Double.parseDouble(args[0]);
Scanner r;
try {
r = new Scanner(new FileReader(args[1]));
} catch (IOException e) {
System.err.println("Could not open " + args[1] + ". Falling back to stdin.");
r = new Scanner(System.in);
}
n = r.nextInt();
m = r.nextInt();
List<Integer>[] adj = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int a = r.nextInt(), b = r.nextInt();
adj[a].add(b);
adj[b].add(a);
}
r.close();
long t0 = System.nanoTime();
Result res = runLaplacianRMC(adj, EPS);
long t1 = System.nanoTime();
System.out.printf(Locale.US, "%.6f, %d%n", res.bestSL, res.bestRoot);
System.out.printf(Locale.US, "Runtime: %.3f ms%n", (t1 - t0) / 1_000_000.0);
}
static Result runLaplacianRMC(List<Integer>[] adj, double EPS) {
// Phase 1: peel by nondecreasing degree with stale-check heap
int[] deg = new int[n + 1];
PriorityQueue<Pair> pq = new PriorityQueue<>();
for (int i = 1; i <= n; i++) {
deg[i] = adj[i].size();
pq.add(new Pair(i, deg[i]));
}
Deque<Pair> stack = new ArrayDeque<>(n);
while (!pq.isEmpty()) {
Pair p = pq.poll();
if (p.degree != deg[p.node]) continue; // stale
stack.push(p);
for (int v : adj[p.node]) {
if (deg[v] > 0) {
deg[v]--;
pq.add(new Pair(v, deg[v]));
}
}
deg[p.node] = 0;
}
// Phase 2: reverse reconstruction with incremental Laplacian bookkeeping
DSU dsu = new DSU(n);
boolean[] inGraph = new boolean[n + 1];
// Node-local state inside the evolving graph
int[] d = new int[n + 1]; // internal degree
long[] sumNbrDeg = new long[n + 1]; // sum of internal-neighbor degrees
// Component-local energy E[root]
long[] compEnergy = new long[n + 1];
// For fast membership checks within components
int[] rootSeenStamp = new int[n + 1];
int stamp = 1;
double bestSL = 0.0;
int bestRoot = 0;
while (!stack.isEmpty()) {
Pair item = stack.pop();
int u = item.node;
// Gather already-in neighbors
List<Integer> nbrs = new ArrayList<>();
for (int v : adj[u]) {
if (inGraph[v]) nbrs.add(v);
}
// Union u into the component(s) of its processed neighbors
int root = u;
dsu.makeIfNeeded(u);
for (int v : nbrs) {
root = dsu.union(root, v);
}
root = dsu.find(root);
// Merge component energies from distinct neighbor roots (sum once per root)
long mergedEnergy = compEnergy[root];
if (!nbrs.isEmpty()) {
long add = 0;
for (int v : nbrs) {
int rv = dsu.find(v);
if (rootSeenStamp[rv] != stamp) {
rootSeenStamp[rv] = stamp;
add += compEnergy[rv];
}
}
stamp++;
mergedEnergy = add; // all old parts will now be represented by root
}
// Insert u and add edges (u, v) incrementally
// For each new edge, update energy using endpoint-only data, then fix the
// node-local sums for future steps (touch only current internal neighbors).
inGraph[u] = true;
// Ensure root's energy starts at mergedEnergy
compEnergy[root] = mergedEnergy;
// Process each neighbor; maintain current root because unions may attach via u
for (int v : nbrs) {
// connect u-v inside the same component
int rBefore = dsu.find(u);
int rOther = dsu.find(v);
if (rBefore != rOther) {
// Should not happen because we unioned above, but defend anyway
int rNew = dsu.union(u, v);
root = rNew;
} else {
root = rBefore;
}
// 1) Add new edge term
long du = d[u], dv = d[v];
long delta = (du - dv) * (du - dv);
// 2) Bump energy for existing edges incident to u
// Δ_u = Σ_{x in N_in(u)} [2(du - d[x]) + 1]
// which equals 2*du*deg_u - 2*sumNbrDeg[u] + deg_u
long deg_u = du;
delta += 2 * du * deg_u - 2 * sumNbrDeg[u] + deg_u;
// 3) Symmetric bump for v
long deg_v = dv;
delta += 2 * dv * deg_v - 2 * sumNbrDeg[v] + deg_v;
compEnergy[root] += delta;
// 4) Update neighbor sums for endpoints, then increment degrees
// First, add each other’s current degree to the endpoint’s neighbor-degree sum
sumNbrDeg[u] += dv;
sumNbrDeg[v] += du;
// Now the degrees actually increase by 1
d[u] = (int) (du + 1);
d[v] = (int) (dv + 1);
// 5) Because d[u] and d[v] increased by 1, every current internal neighbor
// of u and v should see its sumNbrDeg[*] go up by 1 once.
// We touch only internal neighbors, not the whole adjacency.
for (int x : adj[u]) if (inGraph[x] && dsu.find(x) == root) sumNbrDeg[x] += 1;
for (int y : adj[v]) if (inGraph[y] && dsu.find(y) == root) sumNbrDeg[y] += 1;
}
// Score the component containing u
int compRoot = dsu.find(u);
int compSize = dsu.size[compRoot];
double sL = compSize / (compEnergy[compRoot] + EPS);
if (sL > bestSL) {
bestSL = sL;
bestRoot = compRoot;
}
}
Result out = new Result();
out.bestSL = bestSL;
out.bestRoot = bestRoot;
return out;
}
// Helpers
static class Result {
double bestSL;
int bestRoot;
}
static class Pair implements Comparable<Pair> {
final int node, degree;
Pair(int node, int degree) { this.node = node; this.degree = degree; }
public int compareTo(Pair o) {
if (degree != o.degree) return Integer.compare(degree, o.degree);
return Integer.compare(node, o.node);
}
}
static class DSU {
final int[] parent;
final int[] size;
final boolean[] made;
DSU(int n) {
parent = new int[n + 1];
size = new int[n + 1];
made = new boolean[n + 1];
}
void makeIfNeeded(int v) {
if (!made[v]) {
made[v] = true;
parent[v] = v;
size[v] = 1;
}
}
int find(int v) {
if (!made[v]) return v; // treat as isolated until made
if (parent[v] != v) parent[v] = find(parent[v]);
return parent[v];
}
int union(int a, int b) {
makeIfNeeded(a);
makeIfNeeded(b);
int ra = find(a), rb = find(b);
if (ra == rb) return ra;
if (size[ra] < size[rb]) { int t = ra; ra = rb; rb = t; }
parent[rb] = ra;
size[ra] += size[rb];
return ra;
}
}
}
|