File size: 10,225 Bytes
bf620c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
package synthetic;
import java.io.*;
import java.util.*;
import java.util.Locale;
public class clique2_mk_benchmark_accuracy {
static int n, m;
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: java clique2_mk_benchmark_accuracy <epsilon> <inputfile>");
}
final double EPS = Double.parseDouble(args[0]);
Scanner r;
try {
r = new Scanner(new FileReader(args[1]));
} catch (IOException e) {
System.err.println("Could not open " + args[1] + ". Falling back to stdin.");
r = new Scanner(System.in);
}
n = r.nextInt();
m = r.nextInt();
@SuppressWarnings("unchecked")
List<Integer>[] adj = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) adj[i] = new ArrayList<>();
for (int i = 0; i < m; i++) {
int a = r.nextInt(), b = r.nextInt();
adj[a].add(b);
adj[b].add(a);
}
r.close();
long t0 = System.nanoTime();
Result res = runLaplacianRMC(adj, EPS);
long t1 = System.nanoTime();
// Print component nodes on a separate line
System.out.print("COMPONENT:");
for (int node : res.bestComponent) {
System.out.print(" " + node);
}
System.out.println();
System.out.printf(Locale.US, "%.6f, %d%n", res.bestSL, res.bestRoot);
System.out.printf(Locale.US, "Runtime: %.3f ms%n", (t1 - t0) / 1_000_000.0);
}
/** Optimized O(Mk) algorithm using reverse-peeling orientation + pred_sum pushes. */
public static Result runLaplacianRMC(List<Integer>[] adj, double EPS) {
// Initialize n from adjacency list
final int n = adj.length - 1;
// Phase 1: peeling (same as before)
int[] deg0 = new int[n + 1];
PriorityQueue<Pair> pq = new PriorityQueue<>();
for (int i = 1; i <= n; i++) {
deg0[i] = adj[i].size();
pq.add(new Pair(i, deg0[i]));
}
Deque<Integer> peelStack = new ArrayDeque<>(n); // store nodes only
while (!pq.isEmpty()) {
Pair p = pq.poll();
if (p.degree != deg0[p.node]) continue; // stale
peelStack.push(p.node);
for (int v : adj[p.node]) {
if (deg0[v] > 0) {
deg0[v]--;
pq.add(new Pair(v, deg0[v]));
}
}
deg0[p.node] = 0;
}
// Build addition order and index
int[] addOrder = new int[n];
int[] idx = new int[n + 1];
for (int t = 0; t < n; t++) {
int u = peelStack.pop(); // reverse-peeling (addition order)
addOrder[t] = u;
idx[u] = t;
}
// Phase 1.5: orient edges by idx and sort successors
@SuppressWarnings("unchecked")
ArrayList<Integer>[] succ = new ArrayList[n + 1];
@SuppressWarnings("unchecked")
ArrayList<Integer>[] pred = new ArrayList[n + 1];
for (int i = 1; i <= n; i++) { succ[i] = new ArrayList<>(); pred[i] = new ArrayList<>(); }
for (int u = 1; u <= n; u++) {
for (int v : adj[u]) {
if (u < v) { // handle undirected edge once
if (idx[u] < idx[v]) {
succ[u].add(v);
pred[v].add(u);
} else {
succ[v].add(u);
pred[u].add(v);
}
}
}
}
for (int v = 1; v <= n; v++) {
if (succ[v].size() > 1) {
succ[v].sort(Comparator.comparingInt(w -> idx[w]));
}
}
// Phase 2: reverse reconstruction with O(k) per edge
DSU dsu = new DSU(n); // tracks parent, size, and Q (double)
int[] deg = new int[n + 1]; // current degree
long[] predSum = new long[n + 1]; // sum of degrees of predecessors
double bestSL = 0.0;
int bestRoot = 0;
Set<Integer> bestComponent = new HashSet<>();
double bestScore = 0.0;
// helper: sum of degrees of active successors of v whose idx < T
final SumSucc sumSucc = new SumSucc(succ, idx, deg);
// helper: calculate RMC score (size * min_degree) for a component
java.util.function.Function<Integer, Double> calculateRMCScore = (root) -> {
int size = 0;
int minDeg = Integer.MAX_VALUE;
for (int i = 1; i <= n; i++) {
if (dsu.made[i] && dsu.find(i) == root) {
size++;
minDeg = Math.min(minDeg, deg[i]);
}
}
return size == 0 ? 0.0 : size * minDeg;
};
for (int u : addOrder) {
dsu.makeIfNeeded(u); // create singleton component
// Single-node score (Q=0)
{
int ru = dsu.find(u);
double sL = dsu.size[ru] / (dsu.Q[ru] + EPS);
if (sL > bestSL) {
bestSL = sL;
bestRoot = ru;
double currentScore = calculateRMCScore.apply(ru);
bestScore = currentScore;
// Snapshot current component
bestComponent.clear();
for (int i = 1; i <= n; i++) {
if (dsu.made[i] && dsu.find(i) == ru) {
bestComponent.add(i);
}
}
}
}
long Su = 0L; // running sum over degrees of neighbors already attached to u
final int Tu = idx[u];
// connect u to all its predecessors
for (int v : pred[u]) {
long a = deg[u];
long b = deg[v];
// S_v = pred_sum[v] + sum of deg[w] for successors w of v with idx[w] < idx[u]
long Sv = predSum[v] + sumSucc.until(v, Tu);
long dQu = 2L * a * a - 2L * Su + a;
long dQv = 2L * b * b - 2L * Sv + b;
long edgeTerm = (a - b) * (a - b);
int ru = dsu.find(u);
int rv = dsu.find(v);
dsu.Q[ru] += (double) dQu;
dsu.Q[rv] += (double) dQv;
int r;
if (ru != rv) {
r = dsu.union(ru, rv);
dsu.Q[r] += (double) edgeTerm;
} else {
r = ru;
dsu.Q[r] += (double) edgeTerm;
}
// score after this edge activation
double sL = dsu.size[r] / (dsu.Q[r] + EPS);
if (sL > bestSL) {
bestSL = sL;
bestRoot = r;
double currentScore = calculateRMCScore.apply(r);
bestScore = currentScore;
// Snapshot current component
bestComponent.clear();
for (int i = 1; i <= n; i++) {
if (dsu.made[i] && dsu.find(i) == r) {
bestComponent.add(i);
}
}
}
deg[u] += 1;
deg[v] += 1;
for (int y : succ[u]) predSum[y] += 1;
for (int y : succ[v]) predSum[y] += 1;
Su += deg[v];
}
}
Result out = new Result();
out.bestSL = bestSL;
out.bestRoot = bestRoot;
out.bestComponent = bestComponent;
out.bestScore = bestScore;
return out;
}
// Small helper for successor-degree partial sums
static final class SumSucc {
final ArrayList<Integer>[] succ;
final int[] idx;
final int[] deg;
SumSucc(ArrayList<Integer>[] succ, int[] idx, int[] deg) {
this.succ = succ; this.idx = idx; this.deg = deg;
}
/** Sum of deg[w] over successors w of v with idx[w] < T (succ[v] sorted by idx). */
long until(int v, int T) {
long s = 0L;
final ArrayList<Integer> sv = succ[v];
final int sz = sv.size();
for (int i = 0; i < sz; i++) {
int w = sv.get(i);
if (idx[w] >= T) break;
s += deg[w];
}
return s;
}
}
// Helpers
public static class Result {
public double bestSL;
public int bestRoot;
public Set<Integer> bestComponent;
public double bestScore;
}
static class Pair implements Comparable<Pair> {
final int node, degree;
Pair(int node, int degree) { this.node = node; this.degree = degree; }
public int compareTo(Pair o) {
if (degree != o.degree) return Integer.compare(degree, o.degree);
return Integer.compare(node, o.node);
}
}
/** DSU that also tracks component Laplacian Q as double. */
static class DSU {
final int[] parent;
final int[] size;
final boolean[] made;
final double[] Q;
DSU(int n) {
parent = new int[n + 1];
size = new int[n + 1];
made = new boolean[n + 1];
Q = new double[n + 1];
}
void makeIfNeeded(int v) {
if (!made[v]) {
made[v] = true;
parent[v] = v;
size[v] = 1;
Q[v] = 0.0;
}
}
int find(int v) {
if (!made[v]) return v; // treat as isolated until made
if (parent[v] != v) parent[v] = find(parent[v]);
return parent[v];
}
int union(int a, int b) {
makeIfNeeded(a);
makeIfNeeded(b);
int ra = find(a), rb = find(b);
if (ra == rb) return ra;
if (size[ra] < size[rb]) { int t = ra; ra = rb; rb = t; }
parent[rb] = ra;
size[ra] += size[rb];
Q[ra] += Q[rb];
return ra;
}
}
}
|