File size: 20,698 Bytes
fa06c67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
# Learning Munsell

Technical documentation covering performance benchmarks, training methodology, architecture design, and experimental findings.

## Overview

This project implements ML models for bidirectional conversion between CIE xyY colorspace values and Munsell specifications:

- **xyY to Munsell (from_xyY)**: 25+ architectures, best Delta-E 0.52
- **Munsell to xyY (to_xyY)**: 9 architectures, best Delta-E 0.48

### Delta-E Interpretation

- **< 1.0**: Not perceptible by human eye
- **1-2**: Perceptible through close observation
- **2-10**: Perceptible at a glance
- **> 10**: Colors are perceived as completely different

Our best models achieve **Delta-E 0.48-0.52**, meaning the difference between ML prediction and iterative algorithm is **not perceptible by the human eye**.

## xyY to Munsell (from_xyY)

### Performance Benchmarks

Comprehensive comparison using all 2,734 REAL Munsell colors:

| Model                                                    | Delta-E     | Speed (ms) |
|----------------------------------------------------------|-------------|------------|
| Colour Library (Baseline)                                | 0.00        | 111.90     |
| **Multi-ResNet + Multi-Error Predictor (Large Dataset)** | **0.52**    | 0.089      |
| Multi-MLP (W+B) + Multi-Error Predictor (W+B) Large      | 0.52        | 0.057      |
| Multi-MLP + Multi-Error Predictor (Large Dataset)        | 0.52        | 0.058      |
| Multi-MLP + Multi-Error Predictor                        | 0.53        | 0.058      |
| MLP + Error Predictor                                    | 0.53        | 0.030      |
| Multi-ResNet (Large Dataset)                             | 0.54        | 0.044      |
| Multi-Head + Multi-Error Predictor                       | 0.54        | 0.042      |
| Multi-Head + Multi-Error Predictor (Large Dataset)       | 0.56        | 0.043      |
| Deep + Wide                                              | 0.60        | 0.074      |
| Multi-Head (Large Dataset)                               | 0.66        | 0.013      |
| Mixture of Experts                                       | 0.80        | 0.020      |
| Transformer (Large Dataset)                              | 0.82        | 0.123      |
| Multi-MLP                                                | 0.86        | 0.027      |
| MLP + Self-Attention                                     | 0.88        | 0.173      |
| MLP (Base Only)                                          | 1.09        | **0.007**  |
| Unified MLP                                              | 1.12        | 0.072      |

Note: The Colour library baseline had 171 convergence failures out of 2,734 samples (6.3% failure rate).

**Best Models**:

- **Best Accuracy**: Multi-ResNet + Multi-Error Predictor (Large Dataset) - Delta-E 0.52
- **Fastest**: MLP Base Only (0.007 ms/sample) - 15,492x faster than Colour library
- **Best Balance**: Multi-MLP (W+B: Weighted Boundary) + Multi-Error Predictor (W+B) Large - 1,951x faster with Delta-E 0.52

### Model Architectures

25+ architectures were systematically evaluated:

**Single-Stage Models**

1.  **MLP (Base Only)** - Simple MLP network, 3 inputs to 4 outputs
2.  **Unified MLP** - Single large MLP with shared features
3.  **Multi-Head** - Shared encoder with 4 independent decoder heads
4.  **Multi-Head (Large Dataset)** - Multi-Head trained on 1.4M samples
5.  **Multi-MLP** - 4 completely independent MLP branches (one per output)
6.  **Multi-MLP (Large Dataset)** - Multi-MLP trained on 1.4M samples
7.  **MLP + Self-Attention** - MLP with attention mechanism for feature weighting
8.  **Deep + Wide** - Combined deep and wide network paths
9.  **Mixture of Experts** - Gating network selecting specialized expert networks
10. **Transformer (Large Dataset)** - Feature Tokenizer Transformer for tabular data
11. **FT-Transformer** - Feature Tokenizer Transformer (standard size)

**Two-Stage Models**

12. **MLP + Error Predictor** - Base MLP with unified error correction
13. **Multi-Head + Multi-Error Predictor** - Multi-Head with 4 independent error predictors
14. **Multi-Head + Multi-Error Predictor (Large Dataset)** - Large dataset variant
15. **Multi-MLP + Multi-Error Predictor** - 4 independent branches with 4 independent error predictors
16. **Multi-MLP + Multi-Error Predictor (Large Dataset)** - Large dataset variant
17. **Multi-ResNet + Multi-Error Predictor (Large Dataset)** - Deep ResNet-style branches (BEST)

The **Multi-ResNet + Multi-Error Predictor (Large Dataset)** architecture achieved the best results with Delta-E 0.52.

### Training Methodology

**Data Generation**

1.  **Dense xyY Grid** (~500K samples)
    - Regular grid in valid xyY space (MacAdam limits for Illuminant C)
    - Captures general input distribution
2.  **Boundary Refinement** (~700K samples)
    - Adaptive dense sampling near Munsell gamut boundaries
    - Uses `maximum_chroma_from_renotation` to detect edges
    - Focuses on regions where iterative algorithm is most complex
    - Includes Y/GY/G hue regions with high value/chroma (challenging areas)
3.  **Forward Augmentation** (~200K samples)
    - Dense Munsell space sampling via `munsell_specification_to_xyY`
    - Ensures coverage of known valid colors

Total: ~1.4M samples for large dataset training.

**Loss Functions**

Two loss function approaches were tested:

*Precision-Focused Loss* (Default):

```
total_loss = 1.0 * MSE + 0.5 * MAE + 0.3 * log_penalty + 0.5 * huber_loss
```

- MSE: Standard mean squared error
- MAE: Mean absolute error
- Log penalty: Heavily penalizes small errors (pushes toward high precision)
- Huber loss: Small delta (0.01) for precision on small errors

*Pure MSE Loss* (Optimized config):

```
total_loss = MSE
```

Interestingly, the precision-focused loss achieved better Delta-E despite higher validation MSE, suggesting the custom weighting better correlates with perceptual accuracy.

### Design Rationale

**Two-Stage Architecture**

The error predictor stage corrects systematic biases in the base model:

1.  Base model learns the general xyY to Munsell mapping
2.  Error predictor learns residual corrections specific to each component
3.  Combined prediction: `final = base_prediction + error_correction`

This decomposition allows each stage to specialize and reduces the complexity each network must learn.

**Independent Branch Design**

Munsell components have different characteristics:

- **Hue**: Circular (0-10, wrapping), most complex
- **Value**: Linear (0-10), easiest to predict
- **Chroma**: Highly variable range depending on hue/value
- **Code**: Discrete hue sector (0-9)

Shared encoders force compromises between these different prediction tasks. Independent branches allow full specialization.

**Architecture Details**

*MLP (Base Only)*

Simple feedforward network predicting all 4 outputs simultaneously:

    Input (3) ──► Linear Layers ──► Output (4: hue, value, chroma, code)

- Smallest model (~8KB ONNX)
- Fastest inference (0.007 ms)
- Baseline for comparison

*Unified MLP*

Single large MLP with shared internal features:

    Input (3) ──► 128 ──► 256 ──► 512 ──► 256 ──► 128 ──► Output (4)

- Shared representations across all outputs
- Moderate size, good speed

*Multi-Head MLP*

Shared encoder with specialized decoder heads:

    Input (3) ──► SHARED ENCODER (3β†’128β†’256β†’512) ──┬──► Hue Head (512β†’256β†’128β†’1)
                                                   β”œβ”€β”€β–Ί Value Head (512β†’256β†’128β†’1)
                                                   β”œβ”€β”€β–Ί Chroma Head (512β†’384β†’256β†’128β†’1)
                                                   └──► Code Head (512β†’256β†’128β†’1)

- Shared encoder learns common color space features
- 4 specialized decoder heads branch from shared representation
- Parameter efficient (encoder weights shared)
- Fast inference (encoder computed once)

*Multi-MLP*

Fully independent branches with no weight sharing:

    Input (3) ──► Hue Branch    (3β†’128β†’256β†’512β†’256β†’128β†’1)
    Input (3) ──► Value Branch  (3β†’128β†’256β†’512β†’256β†’128β†’1)
    Input (3) ──► Chroma Branch (3β†’256β†’512β†’1024β†’512β†’256β†’1)  [2x wider]
    Input (3) ──► Code Branch   (3β†’128β†’256β†’512β†’256β†’128β†’1)

- 4 completely independent MLPs
- Each branch learns its own features from scratch
- Chroma branch is wider (2x) to handle its complexity
- Better accuracy than Multi-Head on large dataset (Delta-E 0.52 vs 0.56 with error predictors)

*Multi-ResNet*

Deep branches with residual-style connections:

    Input (3) ──► Hue Branch    (3β†’256β†’512β†’512β†’512β†’256β†’1)    [6 layers]
    Input (3) ──► Value Branch  (3β†’256β†’512β†’512β†’512β†’256β†’1)    [6 layers]
    Input (3) ──► Chroma Branch (3β†’512β†’1024β†’1024β†’1024β†’512β†’1) [6 layers, 2x wider]
    Input (3) ──► Code Branch   (3β†’256β†’512β†’512β†’512β†’256β†’1)    [6 layers]

- Deeper architecture than Multi-MLP
- BatchNorm + SiLU activation
- Best accuracy when combined with error predictor (Delta-E 0.52)
- Largest model (~14MB base, ~28MB with error predictor)

*Deep + Wide*

Combined deep and wide network paths:

    Input (3) ──┬──► Deep Path (multiple layers) ──┬──► Concat ──► Output (4)
                └──► Wide Path (direct connection) β”€β”˜

- Deep path captures complex patterns
- Wide path preserves direct input information
- Good for mixed linear/nonlinear relationships

*MLP + Self-Attention*

MLP with attention mechanism for feature weighting:

    Input (3) ──► MLP ──► Self-Attention ──► Output (4)

- Attention weights learn feature importance
- Slower due to attention computation (0.173 ms)
- Did not improve over simpler MLPs

*Mixture of Experts*

Gating network selecting specialized expert networks:

    Input (3) ──► Gating Network ──► Weighted sum of Expert outputs ──► Output (4)

- Multiple expert networks specialize in different input regions
- Gating network learns which expert to use
- More complex but did not outperform Multi-MLP

*FT-Transformer*

Feature Tokenizer Transformer for tabular data:

    Input (3) ──► Feature Tokenizer ──► Transformer Blocks ──► Output (4)

- Each input feature tokenized separately
- Self-attention across feature tokens
- Good for tabular data with feature interactions
- Slower inference due to attention computation

*Error Predictor (Two-Stage)*

Second-stage network that corrects base model errors:

    Stage 1: Input (3) ──► Base Model ──► Base Prediction (4)
    Stage 2: [Input (3), Base Prediction (4)] ──► Error Predictor ──► Error Correction (4)
    Final:   Base Prediction + Error Correction = Final Output

- Learns residual corrections for each component
- Can have unified (1 network) or multi (4 networks) error predictors
- Consistently improves accuracy across all base architectures
- Best results: Multi-ResNet + Multi-Error Predictor (Delta-E 0.52)

**Loss-Metric Mismatch**

An important finding: **optimizing MSE does not optimize Delta-E**.

The Optuna hyperparameter search minimized validation MSE, but the best MSE configuration did not achieve the best Delta-E. This is because:

- MSE treats all component errors equally
- Delta-E (CIE2000) weights errors based on human perception
- The precision-focused loss with custom weights better approximates perceptual importance

**Weighted Boundary Loss (Experimental)**

Analysis of model errors revealed systematic underperformance on Y/GY/G hues (Yellow/Green-Yellow/Green) with high value and chroma. The weighted boundary loss approach was explored to address this by:

1.  Applying 3x loss weight to samples in challenging regions:
    - Hue: 0.18-0.35 (normalized range covering Y/YG/G)
    - Value > 0.7 (high brightness)
    - Chroma > 0.5 (high saturation)
2.  Adding boundary penalty to prevent predictions exceeding Munsell gamut limits

**Finding**: The large dataset approach (~1.4M samples with dense boundary sampling) naturally provides sufficient coverage of these challenging regions. Both the weighted boundary loss model (Multi-MLP W+B + Multi-Error Predictor W+B Large, Delta-E 0.524) and the standard large dataset model (Multi-MLP + Multi-Error Predictor Large, Delta-E 0.525) achieve nearly identical results, making explicit loss weighting optional. The best overall model is Multi-ResNet + Multi-Error Predictor (Large Dataset) with Delta-E 0.52.

### Experimental Findings

The following experiments were conducted but did not improve results:

**Delta-E Training**

Training with differentiable Delta-E CIE2000 loss via round-trip through the Munsell-to-xyY approximator.

*Hypothesis*: Perceptual Delta-E loss might outperform MSE-trained models.

*Implementation*: JAX/Flax model with combined MSE + Delta-E loss. Requires lower learning rate (1e-4 vs 3e-4) for stability; higher rates cause NaN gradients.

*Results*: While Delta-E is comparable, **hue accuracy is ~10x worse**:

| Metric (Normalized MAE)  | Delta-E Model | MSE Model |
|--------------------------|---------------|-----------|
| Hue MAE                  | 0.30          | 0.03      |
| Value MAE                | 0.002         | 0.004     |
| Chroma MAE               | 0.007         | 0.008     |
| Code MAE                 | 0.07          | 0.01      |
| **Delta-E (perceptual)** | **0.52**      | **0.50**  |

*Key Takeaway*: **Perceptual similarity != specification accuracy**. The MSE model's slightly better Delta-E (0.50 vs 0.52) comes at the cost of ~10x worse hue accuracy, making it unsuitable for specification prediction. Delta-E is too permissive for hue, allowing the model to find "shortcuts" that minimize perceptual difference without correctly predicting the Munsell specification.

**Classical Interpolation**

Classical interpolation methods were tested on 4,995 reference Munsell colors (80% train / 20% test split). ML evaluated on 2,734 REAL Munsell colors.

*Results (Validation MAE)*:

| Component | RBF  | KD-Tree | Delaunay | ML (Best) |
|-----------|------|---------|----------|-----------|
| Hue       | 1.40 | 1.40    | 1.29     | **0.03**  |
| Value     | 0.01 | 0.10    | 0.02     | 0.05      |
| Chroma    | 0.22 | 0.99    | 0.35     | **0.11**  |
| Code      | 0.33 | 0.28    | 0.28     | **0.00**  |

*Key Insight*: The reference dataset (4,995 colors) is too sparse for 3D xyY interpolation. Classical methods fail on hue prediction (MAE ~1.3-1.4), while ML achieves 47x better hue accuracy and 2-3x better chroma/code accuracy.

**Circular Hue Loss**

Circular distance metrics for hue prediction, accounting for cyclic nature (0-10 wraps).

*Results*: The circular loss model performed **21x worse** on hue MAE (5.14 vs 0.24).

*Key Takeaway*: **Mathematical correctness != training effectiveness**. The circular distance creates gradient discontinuities that harm optimization.

**REAL-Only Refinement**

Fine-tuning using only REAL Munsell colors (2,734) instead of ALL colors (4,995).

*Results*: Essentially identical performance (Delta-E 1.5233 vs 1.5191).

*Key Takeaway*: **Data quality is not the bottleneck**. Both REAL and extrapolated colors are sufficiently accurate.

**Gamma Normalization**

Gamma correction to the Y (luminance) channel during normalization.

*Results*: No consistent improvement across gamma values 1.0-3.0:

| Gamma          | Median Ξ”E (Β± std) |
|----------------|-------------------|
| 1.0 (baseline) | 0.730 Β± 0.054     |
| 2.5 (best)     | 0.683 Β± 0.132     |

![Gamma sweep results](_static/gamma_sweep_plot.png)

*Key Takeaway*: **Gamma normalization does not provide consistent improvement**. Standard deviations overlap - differences are within noise.

## Munsell to xyY (to_xyY)

### Performance Benchmarks

Comprehensive comparison using all 2,734 REAL Munsell colors:

| Model                                         | Delta-E     | Speed (ms) |
|-----------------------------------------------|-------------|------------|
| Colour Library (Baseline)                     | 0.00        | 1.27       |
| **Multi-MLP (Optimized)**                     | **0.48**    | 0.008      |
| Multi-MLP (Opt) + Multi-Error Predictor (Opt) | 0.48        | 0.025      |
| Multi-MLP + Multi-Error Predictor             | 0.65        | 0.030      |
| Multi-MLP                                     | 0.66        | 0.016      |
| Multi-MLP + Error Predictor                   | 0.67        | 0.018      |
| Multi-Head (Optimized)                        | 0.71        | 0.015      |
| Multi-Head                                    | 0.78        | 0.008      |
| Multi-Head + Multi-Error Predictor            | 1.11        | 0.028      |
| Simple MLP                                    | 1.42        | **0.0008** |

**Best Models**:

- **Best Accuracy**: Multi-MLP (Optimized) - Delta-E 0.48
- **Fastest**: Simple MLP (0.0008 ms/sample) - 1,654x faster than Colour library
- **Best Balance**: Multi-MLP (Optimized) - 154x faster with Delta-E 0.48

### Model Architectures

9 architectures were evaluated for the Munsell to xyY direction:

**Single-Stage Models**

1.  **Simple MLP** - Basic MLP network, 4 inputs to 3 outputs
2.  **Multi-Head** - Shared encoder with 3 independent decoder heads (x, y, Y)
3.  **Multi-Head (Optimized)** - Hyperparameter-optimized variant
4.  **Multi-MLP** - 3 completely independent MLP branches
5.  **Multi-MLP (Optimized)** - Hyperparameter-optimized variant (BEST)

**Two-Stage Models**

6.  **Multi-MLP + Error Predictor** - Base Multi-MLP with unified error correction
7.  **Multi-MLP + Multi-Error Predictor** - 3 independent error predictors
8.  **Multi-MLP (Opt) + Multi-Error Predictor (Opt)** - Optimized two-stage
9.  **Multi-Head + Multi-Error Predictor** - Multi-Head with error correction

The **Multi-MLP (Optimized)** architecture achieved the best results with Delta-E 0.48.

### Differentiable Approximator

A small MLP (68K parameters) trained to approximate the Munsell to xyY conversion for use in differentiable Delta-E loss:

- **Architecture**: 4 -> 128 -> 256 -> 128 -> 3 with LayerNorm + SiLU
- **Accuracy**: MAE ~0.0006 for x, y, and Y components
- **Output formats**: PyTorch (.pth), ONNX, and JAX-compatible weights (.npz)

This enables differentiable Munsell to xyY conversion, which was previously only possible through non-differentiable lookup tables.

## Shared Infrastructure

### Hyperparameter Optimization

Optuna was used for systematic hyperparameter search over:

- Learning rate (1e-4 to 1e-3)
- Batch size (256, 512, 1024)
- Dropout rate (0.0 to 0.2)
- Chroma branch width multiplier (1.0 to 2.0)
- Loss function weights (MSE, Huber)

Key finding: **No dropout (0.0)** consistently performed better across all models in both conversion directions, contrary to typical deep learning recommendations for regularization.

### Training Infrastructure

- **Optimizer**: AdamW with weight decay
- **Scheduler**: ReduceLROnPlateau (patience=10, factor=0.5)
- **Early stopping**: Patience=20 epochs
- **Checkpointing**: Best model saved based on validation loss
- **Logging**: MLflow for experiment tracking

### JAX Delta-E Implementation

Located in `learning_munsell/losses/jax_delta_e.py`:

- Differentiable xyY -> XYZ -> Lab color space conversions
- Full CIE 2000 Delta-E implementation with gradient support
- JIT-compiled functions for performance

Usage:

```python
from learning_munsell.losses import delta_E_loss, delta_E_CIE2000

# Compute perceptual loss between predicted and target xyY
loss = delta_E_loss(pred_xyY, target_xyY)
```

## Limitations

### BatchNorm Instability on MPS

Models using `BatchNorm1d` layers exhibit numerical instability when trained on Apple Silicon GPUs via the MPS backend:

1.  **Validation loss spikes** during training
2.  **Occasional extreme outputs** during inference (e.g., 20M instead of ~0.1)
3.  **Non-reproducible behavior**

**Affected Models**: Large dataset error predictors using BatchNorm.

**Workarounds**:

1.  Use CPU for training
2.  Replace BatchNorm with LayerNorm
3.  Use smaller models (300K samples vs 2M)
4.  Skip error predictor stage for affected models

The recommended production model (`multi_resnet_error_predictor_large.onnx`) was trained on the large dataset and does not exhibit this instability.

**References**:

- [BatchNorm non-trainable exception](https://github.com/pytorch/pytorch/issues/98602)
- [ONNX export incorrect on MPS](https://github.com/pytorch/pytorch/issues/83230)
- [MPS kernel bugs](https://elanapearl.github.io/blog/2025/the-bug-that-taught-me-pytorch/)