File size: 8,417 Bytes
ac2f8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from sympy.core.function import (Derivative, Function, diff)
from sympy.core.mul import Mul
from sympy.core.numbers import (Integer, pi)
from sympy.core.symbol import (Symbol, symbols)
from sympy.core.sympify import sympify
from sympy.functions.elementary.trigonometric import sin
from sympy.physics.quantum.qexpr import QExpr
from sympy.physics.quantum.dagger import Dagger
from sympy.physics.quantum.hilbert import HilbertSpace
from sympy.physics.quantum.operator import (Operator, UnitaryOperator,
                                            HermitianOperator, OuterProduct,
                                            DifferentialOperator,
                                            IdentityOperator)
from sympy.physics.quantum.state import Ket, Bra, Wavefunction
from sympy.physics.quantum.qapply import qapply
from sympy.physics.quantum.represent import represent
from sympy.physics.quantum.spin import JzKet, JzBra
from sympy.physics.quantum.trace import Tr
from sympy.matrices import eye

from sympy.testing.pytest import warns_deprecated_sympy


class CustomKet(Ket):
    @classmethod
    def default_args(self):
        return ("t",)


class CustomOp(HermitianOperator):
    @classmethod
    def default_args(self):
        return ("T",)

t_ket = CustomKet()
t_op = CustomOp()


def test_operator():
    A = Operator('A')
    B = Operator('B')
    C = Operator('C')

    assert isinstance(A, Operator)
    assert isinstance(A, QExpr)

    assert A.label == (Symbol('A'),)
    assert A.is_commutative is False
    assert A.hilbert_space == HilbertSpace()

    assert A*B != B*A

    assert (A*(B + C)).expand() == A*B + A*C
    assert ((A + B)**2).expand() == A**2 + A*B + B*A + B**2

    assert t_op.label[0] == Symbol(t_op.default_args()[0])

    assert Operator() == Operator("O")
    with warns_deprecated_sympy():
        assert A*IdentityOperator() == A


def test_operator_inv():
    A = Operator('A')
    assert A*A.inv() == 1
    assert A.inv()*A == 1


def test_hermitian():
    H = HermitianOperator('H')

    assert isinstance(H, HermitianOperator)
    assert isinstance(H, Operator)

    assert Dagger(H) == H
    assert H.inv() != H
    assert H.is_commutative is False
    assert Dagger(H).is_commutative is False


def test_unitary():
    U = UnitaryOperator('U')

    assert isinstance(U, UnitaryOperator)
    assert isinstance(U, Operator)

    assert U.inv() == Dagger(U)
    assert U*Dagger(U) == 1
    assert Dagger(U)*U == 1
    assert U.is_commutative is False
    assert Dagger(U).is_commutative is False


def test_identity():
    with warns_deprecated_sympy():
        I = IdentityOperator()
        O = Operator('O')
        x = Symbol("x")
        three = sympify(3)

        assert isinstance(I, IdentityOperator)
        assert isinstance(I, Operator)

        assert I * O == O
        assert O * I == O
        assert I * Dagger(O) == Dagger(O)
        assert Dagger(O) * I == Dagger(O)
        assert isinstance(I * I, IdentityOperator)
        assert three * I == three
        assert I * x == x
        assert I.inv() == I
        assert Dagger(I) == I
        assert qapply(I * O) == O
        assert qapply(O * I) == O

        for n in [2, 3, 5]:
            assert represent(IdentityOperator(n)) == eye(n)


def test_outer_product():
    k = Ket('k')
    b = Bra('b')
    op = OuterProduct(k, b)

    assert isinstance(op, OuterProduct)
    assert isinstance(op, Operator)

    assert op.ket == k
    assert op.bra == b
    assert op.label == (k, b)
    assert op.is_commutative is False

    op = k*b

    assert isinstance(op, OuterProduct)
    assert isinstance(op, Operator)

    assert op.ket == k
    assert op.bra == b
    assert op.label == (k, b)
    assert op.is_commutative is False

    op = 2*k*b

    assert op == Mul(Integer(2), k, b)

    op = 2*(k*b)

    assert op == Mul(Integer(2), OuterProduct(k, b))

    assert Dagger(k*b) == OuterProduct(Dagger(b), Dagger(k))
    assert Dagger(k*b).is_commutative is False

    #test the _eval_trace
    assert Tr(OuterProduct(JzKet(1, 1), JzBra(1, 1))).doit() == 1

    # test scaled kets and bras
    assert OuterProduct(2 * k, b) == 2 * OuterProduct(k, b)
    assert OuterProduct(k, 2 * b) == 2 * OuterProduct(k, b)

    # test sums of kets and bras
    k1, k2 = Ket('k1'), Ket('k2')
    b1, b2 = Bra('b1'), Bra('b2')
    assert (OuterProduct(k1 + k2, b1) ==
            OuterProduct(k1, b1) + OuterProduct(k2, b1))
    assert (OuterProduct(k1, b1 + b2) ==
            OuterProduct(k1, b1) + OuterProduct(k1, b2))
    assert (OuterProduct(1 * k1 + 2 * k2, 3 * b1 + 4 * b2) ==
            3 * OuterProduct(k1, b1) +
            4 * OuterProduct(k1, b2) +
            6 * OuterProduct(k2, b1) +
            8 * OuterProduct(k2, b2))


def test_operator_dagger():
    A = Operator('A')
    B = Operator('B')
    assert Dagger(A*B) == Dagger(B)*Dagger(A)
    assert Dagger(A + B) == Dagger(A) + Dagger(B)
    assert Dagger(A**2) == Dagger(A)**2


def test_differential_operator():
    x = Symbol('x')
    f = Function('f')
    d = DifferentialOperator(Derivative(f(x), x), f(x))
    g = Wavefunction(x**2, x)
    assert qapply(d*g) == Wavefunction(2*x, x)
    assert d.expr == Derivative(f(x), x)
    assert d.function == f(x)
    assert d.variables == (x,)
    assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 2), f(x))

    d = DifferentialOperator(Derivative(f(x), x, 2), f(x))
    g = Wavefunction(x**3, x)
    assert qapply(d*g) == Wavefunction(6*x, x)
    assert d.expr == Derivative(f(x), x, 2)
    assert d.function == f(x)
    assert d.variables == (x,)
    assert diff(d, x) == DifferentialOperator(Derivative(f(x), x, 3), f(x))

    d = DifferentialOperator(1/x*Derivative(f(x), x), f(x))
    assert d.expr == 1/x*Derivative(f(x), x)
    assert d.function == f(x)
    assert d.variables == (x,)
    assert diff(d, x) == \
        DifferentialOperator(Derivative(1/x*Derivative(f(x), x), x), f(x))
    assert qapply(d*g) == Wavefunction(3*x, x)

    # 2D cartesian Laplacian
    y = Symbol('y')
    d = DifferentialOperator(Derivative(f(x, y), x, 2) +
                             Derivative(f(x, y), y, 2), f(x, y))
    w = Wavefunction(x**3*y**2 + y**3*x**2, x, y)
    assert d.expr == Derivative(f(x, y), x, 2) + Derivative(f(x, y), y, 2)
    assert d.function == f(x, y)
    assert d.variables == (x, y)
    assert diff(d, x) == \
        DifferentialOperator(Derivative(d.expr, x), f(x, y))
    assert diff(d, y) == \
        DifferentialOperator(Derivative(d.expr, y), f(x, y))
    assert qapply(d*w) == Wavefunction(2*x**3 + 6*x*y**2 + 6*x**2*y + 2*y**3,
                                       x, y)

    # 2D polar Laplacian (th = theta)
    r, th = symbols('r th')
    d = DifferentialOperator(1/r*Derivative(r*Derivative(f(r, th), r), r) +
                             1/(r**2)*Derivative(f(r, th), th, 2), f(r, th))
    w = Wavefunction(r**2*sin(th), r, (th, 0, pi))
    assert d.expr == \
        1/r*Derivative(r*Derivative(f(r, th), r), r) + \
        1/(r**2)*Derivative(f(r, th), th, 2)
    assert d.function == f(r, th)
    assert d.variables == (r, th)
    assert diff(d, r) == \
        DifferentialOperator(Derivative(d.expr, r), f(r, th))
    assert diff(d, th) == \
        DifferentialOperator(Derivative(d.expr, th), f(r, th))
    assert qapply(d*w) == Wavefunction(3*sin(th), r, (th, 0, pi))


def test_eval_power():
    from sympy.core import Pow
    from sympy.core.expr import unchanged
    O = Operator('O')
    U = UnitaryOperator('U')
    H = HermitianOperator('H')
    assert O**-1 == O.inv() # same as doc test
    assert U**-1 == U.inv()
    assert H**-1 == H.inv()
    x = symbols("x", commutative = True)
    assert unchanged(Pow, H, x) # verify Pow(H,x)=="X^n"
    assert H**x == Pow(H, x)
    assert Pow(H,x) == Pow(H, x, evaluate=False) # Just check
    from sympy.physics.quantum.gate import XGate
    X = XGate(0) # is hermitian and unitary
    assert unchanged(Pow, X, x) # verify Pow(X,x)=="X^x"
    assert X**x == Pow(X, x)
    assert Pow(X, x, evaluate=False) == Pow(X, x) # Just check
    n = symbols("n", integer=True, even=True)
    assert X**n == 1
    n = symbols("n", integer=True, odd=True)
    assert X**n == X
    n = symbols("n", integer=True)
    assert unchanged(Pow, X, n) # verify Pow(X,n)=="X^n"
    assert X**n == Pow(X, n)
    assert Pow(X, n, evaluate=False)==Pow(X, n) # Just check
    assert X**4 == 1
    assert X**7 == X