File size: 39,796 Bytes
f7f4f4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
"""

Set operations for arrays based on sorting.



Notes

-----



For floating point arrays, inaccurate results may appear due to usual round-off

and floating point comparison issues.



Speed could be gained in some operations by an implementation of

`numpy.sort`, that can provide directly the permutation vectors, thus avoiding

calls to `numpy.argsort`.



Original author: Robert Cimrman



"""
import functools
import warnings
from typing import NamedTuple

import numpy as np
from numpy._core import overrides
from numpy._core._multiarray_umath import _array_converter


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy')


__all__ = [
    "ediff1d", "in1d", "intersect1d", "isin", "setdiff1d", "setxor1d",
    "union1d", "unique", "unique_all", "unique_counts", "unique_inverse",
    "unique_values"
]


def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):
    return (ary, to_end, to_begin)


@array_function_dispatch(_ediff1d_dispatcher)
def ediff1d(ary, to_end=None, to_begin=None):
    """

    The differences between consecutive elements of an array.



    Parameters

    ----------

    ary : array_like

        If necessary, will be flattened before the differences are taken.

    to_end : array_like, optional

        Number(s) to append at the end of the returned differences.

    to_begin : array_like, optional

        Number(s) to prepend at the beginning of the returned differences.



    Returns

    -------

    ediff1d : ndarray

        The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.



    See Also

    --------

    diff, gradient



    Notes

    -----

    When applied to masked arrays, this function drops the mask information

    if the `to_begin` and/or `to_end` parameters are used.



    Examples

    --------

    >>> x = np.array([1, 2, 4, 7, 0])

    >>> np.ediff1d(x)

    array([ 1,  2,  3, -7])



    >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))

    array([-99,   1,   2, ...,  -7,  88,  99])



    The returned array is always 1D.



    >>> y = [[1, 2, 4], [1, 6, 24]]

    >>> np.ediff1d(y)

    array([ 1,  2, -3,  5, 18])



    """
    conv = _array_converter(ary)
    # Convert to (any) array and ravel:
    ary = conv[0].ravel()

    # enforce that the dtype of `ary` is used for the output
    dtype_req = ary.dtype

    # fast track default case
    if to_begin is None and to_end is None:
        return ary[1:] - ary[:-1]

    if to_begin is None:
        l_begin = 0
    else:
        to_begin = np.asanyarray(to_begin)
        if not np.can_cast(to_begin, dtype_req, casting="same_kind"):
            raise TypeError("dtype of `to_begin` must be compatible "
                            "with input `ary` under the `same_kind` rule.")

        to_begin = to_begin.ravel()
        l_begin = len(to_begin)

    if to_end is None:
        l_end = 0
    else:
        to_end = np.asanyarray(to_end)
        if not np.can_cast(to_end, dtype_req, casting="same_kind"):
            raise TypeError("dtype of `to_end` must be compatible "
                            "with input `ary` under the `same_kind` rule.")

        to_end = to_end.ravel()
        l_end = len(to_end)

    # do the calculation in place and copy to_begin and to_end
    l_diff = max(len(ary) - 1, 0)
    result = np.empty_like(ary, shape=l_diff + l_begin + l_end)

    if l_begin > 0:
        result[:l_begin] = to_begin
    if l_end > 0:
        result[l_begin + l_diff:] = to_end
    np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff])

    return conv.wrap(result)


def _unpack_tuple(x):
    """ Unpacks one-element tuples for use as return values """
    if len(x) == 1:
        return x[0]
    else:
        return x


def _unique_dispatcher(ar, return_index=None, return_inverse=None,

                       return_counts=None, axis=None, *, equal_nan=None):
    return (ar,)


@array_function_dispatch(_unique_dispatcher)
def unique(ar, return_index=False, return_inverse=False,

           return_counts=False, axis=None, *, equal_nan=True):
    """

    Find the unique elements of an array.



    Returns the sorted unique elements of an array. There are three optional

    outputs in addition to the unique elements:



    * the indices of the input array that give the unique values

    * the indices of the unique array that reconstruct the input array

    * the number of times each unique value comes up in the input array



    Parameters

    ----------

    ar : array_like

        Input array. Unless `axis` is specified, this will be flattened if it

        is not already 1-D.

    return_index : bool, optional

        If True, also return the indices of `ar` (along the specified axis,

        if provided, or in the flattened array) that result in the unique array.

    return_inverse : bool, optional

        If True, also return the indices of the unique array (for the specified

        axis, if provided) that can be used to reconstruct `ar`.

    return_counts : bool, optional

        If True, also return the number of times each unique item appears

        in `ar`.

    axis : int or None, optional

        The axis to operate on. If None, `ar` will be flattened. If an integer,

        the subarrays indexed by the given axis will be flattened and treated

        as the elements of a 1-D array with the dimension of the given axis,

        see the notes for more details.  Object arrays or structured arrays

        that contain objects are not supported if the `axis` kwarg is used. The

        default is None.



        .. versionadded:: 1.13.0



    equal_nan : bool, optional

        If True, collapses multiple NaN values in the return array into one.



        .. versionadded:: 1.24



    Returns

    -------

    unique : ndarray

        The sorted unique values.

    unique_indices : ndarray, optional

        The indices of the first occurrences of the unique values in the

        original array. Only provided if `return_index` is True.

    unique_inverse : ndarray, optional

        The indices to reconstruct the original array from the

        unique array. Only provided if `return_inverse` is True.

    unique_counts : ndarray, optional

        The number of times each of the unique values comes up in the

        original array. Only provided if `return_counts` is True.



        .. versionadded:: 1.9.0



    See Also

    --------

    repeat : Repeat elements of an array.



    Notes

    -----

    When an axis is specified the subarrays indexed by the axis are sorted.

    This is done by making the specified axis the first dimension of the array

    (move the axis to the first dimension to keep the order of the other axes)

    and then flattening the subarrays in C order. The flattened subarrays are

    then viewed as a structured type with each element given a label, with the

    effect that we end up with a 1-D array of structured types that can be

    treated in the same way as any other 1-D array. The result is that the

    flattened subarrays are sorted in lexicographic order starting with the

    first element.



    .. versionchanged: 1.21

        If nan values are in the input array, a single nan is put

        to the end of the sorted unique values.



        Also for complex arrays all NaN values are considered equivalent

        (no matter whether the NaN is in the real or imaginary part).

        As the representant for the returned array the smallest one in the

        lexicographical order is chosen - see np.sort for how the lexicographical

        order is defined for complex arrays.



    .. versionchanged: 2.0

        For multi-dimensional inputs, ``unique_inverse`` is reshaped

        such that the input can be reconstructed using

        ``np.take(unique, unique_inverse, axis=axis)``. The result is

        now not 1-dimensional when ``axis=None``.



        Note that in NumPy 2.0.0 a higher dimensional array was returned also

        when ``axis`` was not ``None``.  This was reverted, but

        ``inverse.reshape(-1)`` can be used to ensure compatibility with both

        versions.



    Examples

    --------

    >>> np.unique([1, 1, 2, 2, 3, 3])

    array([1, 2, 3])

    >>> a = np.array([[1, 1], [2, 3]])

    >>> np.unique(a)

    array([1, 2, 3])



    Return the unique rows of a 2D array



    >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])

    >>> np.unique(a, axis=0)

    array([[1, 0, 0], [2, 3, 4]])



    Return the indices of the original array that give the unique values:



    >>> a = np.array(['a', 'b', 'b', 'c', 'a'])

    >>> u, indices = np.unique(a, return_index=True)

    >>> u

    array(['a', 'b', 'c'], dtype='<U1')

    >>> indices

    array([0, 1, 3])

    >>> a[indices]

    array(['a', 'b', 'c'], dtype='<U1')



    Reconstruct the input array from the unique values and inverse:



    >>> a = np.array([1, 2, 6, 4, 2, 3, 2])

    >>> u, indices = np.unique(a, return_inverse=True)

    >>> u

    array([1, 2, 3, 4, 6])

    >>> indices

    array([0, 1, 4, 3, 1, 2, 1])

    >>> u[indices]

    array([1, 2, 6, 4, 2, 3, 2])



    Reconstruct the input values from the unique values and counts:



    >>> a = np.array([1, 2, 6, 4, 2, 3, 2])

    >>> values, counts = np.unique(a, return_counts=True)

    >>> values

    array([1, 2, 3, 4, 6])

    >>> counts

    array([1, 3, 1, 1, 1])

    >>> np.repeat(values, counts)

    array([1, 2, 2, 2, 3, 4, 6])    # original order not preserved



    """
    ar = np.asanyarray(ar)
    if axis is None:
        ret = _unique1d(ar, return_index, return_inverse, return_counts, 
                        equal_nan=equal_nan, inverse_shape=ar.shape, axis=None)
        return _unpack_tuple(ret)

    # axis was specified and not None
    try:
        ar = np.moveaxis(ar, axis, 0)
    except np.exceptions.AxisError:
        # this removes the "axis1" or "axis2" prefix from the error message
        raise np.exceptions.AxisError(axis, ar.ndim) from None
    inverse_shape = [1] * ar.ndim
    inverse_shape[axis] = ar.shape[0]

    # Must reshape to a contiguous 2D array for this to work...
    orig_shape, orig_dtype = ar.shape, ar.dtype
    ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp))
    ar = np.ascontiguousarray(ar)
    dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])]

    # At this point, `ar` has shape `(n, m)`, and `dtype` is a structured
    # data type with `m` fields where each field has the data type of `ar`.
    # In the following, we create the array `consolidated`, which has
    # shape `(n,)` with data type `dtype`.
    try:
        if ar.shape[1] > 0:
            consolidated = ar.view(dtype)
        else:
            # If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is
            # a data type with itemsize 0, and the call `ar.view(dtype)` will
            # fail.  Instead, we'll use `np.empty` to explicitly create the
            # array with shape `(len(ar),)`.  Because `dtype` in this case has
            # itemsize 0, the total size of the result is still 0 bytes.
            consolidated = np.empty(len(ar), dtype=dtype)
    except TypeError as e:
        # There's no good way to do this for object arrays, etc...
        msg = 'The axis argument to unique is not supported for dtype {dt}'
        raise TypeError(msg.format(dt=ar.dtype)) from e

    def reshape_uniq(uniq):
        n = len(uniq)
        uniq = uniq.view(orig_dtype)
        uniq = uniq.reshape(n, *orig_shape[1:])
        uniq = np.moveaxis(uniq, 0, axis)
        return uniq

    output = _unique1d(consolidated, return_index,
                       return_inverse, return_counts,
                       equal_nan=equal_nan, inverse_shape=inverse_shape,
                       axis=axis)
    output = (reshape_uniq(output[0]),) + output[1:]
    return _unpack_tuple(output)


def _unique1d(ar, return_index=False, return_inverse=False,

              return_counts=False, *, equal_nan=True, inverse_shape=None,

              axis=None):
    """

    Find the unique elements of an array, ignoring shape.

    """
    ar = np.asanyarray(ar).flatten()

    optional_indices = return_index or return_inverse

    if optional_indices:
        perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
        aux = ar[perm]
    else:
        ar.sort()
        aux = ar
    mask = np.empty(aux.shape, dtype=np.bool)
    mask[:1] = True
    if (equal_nan and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and
            np.isnan(aux[-1])):
        if aux.dtype.kind == "c":  # for complex all NaNs are considered equivalent
            aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left')
        else:
            aux_firstnan = np.searchsorted(aux, aux[-1], side='left')
        if aux_firstnan > 0:
            mask[1:aux_firstnan] = (
                aux[1:aux_firstnan] != aux[:aux_firstnan - 1])
        mask[aux_firstnan] = True
        mask[aux_firstnan + 1:] = False
    else:
        mask[1:] = aux[1:] != aux[:-1]

    ret = (aux[mask],)
    if return_index:
        ret += (perm[mask],)
    if return_inverse:
        imask = np.cumsum(mask) - 1
        inv_idx = np.empty(mask.shape, dtype=np.intp)
        inv_idx[perm] = imask
        ret += (inv_idx.reshape(inverse_shape) if axis is None else inv_idx,)
    if return_counts:
        idx = np.concatenate(np.nonzero(mask) + ([mask.size],))
        ret += (np.diff(idx),)
    return ret


# Array API set functions

class UniqueAllResult(NamedTuple):
    values: np.ndarray
    indices: np.ndarray
    inverse_indices: np.ndarray
    counts: np.ndarray


class UniqueCountsResult(NamedTuple):
    values: np.ndarray
    counts: np.ndarray


class UniqueInverseResult(NamedTuple):
    values: np.ndarray
    inverse_indices: np.ndarray


def _unique_all_dispatcher(x, /):
    return (x,)


@array_function_dispatch(_unique_all_dispatcher)
def unique_all(x):
    """

    Find the unique elements of an array, and counts, inverse and indices.



    This function is an Array API compatible alternative to:



    >>> x = np.array([1, 1, 2])

    >>> np.unique(x, return_index=True, return_inverse=True,

    ...           return_counts=True, equal_nan=False)

    (array([1, 2]), array([0, 2]), array([0, 0, 1]), array([2, 1]))



    Parameters

    ----------

    x : array_like

        Input array. It will be flattened if it is not already 1-D.



    Returns

    -------

    out : namedtuple

        The result containing:



        * values - The unique elements of an input array.

        * indices - The first occurring indices for each unique element.

        * inverse_indices - The indices from the set of unique elements

          that reconstruct `x`.

        * counts - The corresponding counts for each unique element.



    See Also

    --------

    unique : Find the unique elements of an array.



    """
    result = unique(
        x,
        return_index=True,
        return_inverse=True,
        return_counts=True,
        equal_nan=False
    )
    return UniqueAllResult(*result)


def _unique_counts_dispatcher(x, /):
    return (x,)


@array_function_dispatch(_unique_counts_dispatcher)
def unique_counts(x):
    """

    Find the unique elements and counts of an input array `x`.



    This function is an Array API compatible alternative to:



    >>> x = np.array([1, 1, 2])

    >>> np.unique(x, return_counts=True, equal_nan=False)

    (array([1, 2]), array([2, 1]))



    Parameters

    ----------

    x : array_like

        Input array. It will be flattened if it is not already 1-D.



    Returns

    -------

    out : namedtuple

        The result containing:



        * values - The unique elements of an input array.

        * counts - The corresponding counts for each unique element.



    See Also

    --------

    unique : Find the unique elements of an array.



    """
    result = unique(
        x,
        return_index=False,
        return_inverse=False,
        return_counts=True,
        equal_nan=False
    )
    return UniqueCountsResult(*result)


def _unique_inverse_dispatcher(x, /):
    return (x,)


@array_function_dispatch(_unique_inverse_dispatcher)
def unique_inverse(x):
    """

    Find the unique elements of `x` and indices to reconstruct `x`.



    This function is Array API compatible alternative to:



    >>> x = np.array([1, 1, 2])

    >>> np.unique(x, return_inverse=True, equal_nan=False)

    (array([1, 2]), array([0, 0, 1]))



    Parameters

    ----------

    x : array_like

        Input array. It will be flattened if it is not already 1-D.



    Returns

    -------

    out : namedtuple

        The result containing:



        * values - The unique elements of an input array.

        * inverse_indices - The indices from the set of unique elements

          that reconstruct `x`.



    See Also

    --------

    unique : Find the unique elements of an array.



    """
    result = unique(
        x,
        return_index=False,
        return_inverse=True,
        return_counts=False,
        equal_nan=False
    )
    return UniqueInverseResult(*result)


def _unique_values_dispatcher(x, /):
    return (x,)


@array_function_dispatch(_unique_values_dispatcher)
def unique_values(x):
    """

    Returns the unique elements of an input array `x`.



    This function is Array API compatible alternative to:



    >>> x = np.array([1, 1, 2])

    >>> np.unique(x, equal_nan=False)

    array([1, 2])



    Parameters

    ----------

    x : array_like

        Input array. It will be flattened if it is not already 1-D.



    Returns

    -------

    out : ndarray

        The unique elements of an input array.



    See Also

    --------

    unique : Find the unique elements of an array.



    """
    return unique(
        x,
        return_index=False,
        return_inverse=False,
        return_counts=False,
        equal_nan=False
    )


def _intersect1d_dispatcher(

        ar1, ar2, assume_unique=None, return_indices=None):
    return (ar1, ar2)


@array_function_dispatch(_intersect1d_dispatcher)
def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
    """

    Find the intersection of two arrays.



    Return the sorted, unique values that are in both of the input arrays.



    Parameters

    ----------

    ar1, ar2 : array_like

        Input arrays. Will be flattened if not already 1D.

    assume_unique : bool

        If True, the input arrays are both assumed to be unique, which

        can speed up the calculation.  If True but ``ar1`` or ``ar2`` are not

        unique, incorrect results and out-of-bounds indices could result.

        Default is False.

    return_indices : bool

        If True, the indices which correspond to the intersection of the two

        arrays are returned. The first instance of a value is used if there are

        multiple. Default is False.



        .. versionadded:: 1.15.0



    Returns

    -------

    intersect1d : ndarray

        Sorted 1D array of common and unique elements.

    comm1 : ndarray

        The indices of the first occurrences of the common values in `ar1`.

        Only provided if `return_indices` is True.

    comm2 : ndarray

        The indices of the first occurrences of the common values in `ar2`.

        Only provided if `return_indices` is True.



    Examples

    --------

    >>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])

    array([1, 3])



    To intersect more than two arrays, use functools.reduce:



    >>> from functools import reduce

    >>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))

    array([3])



    To return the indices of the values common to the input arrays

    along with the intersected values:



    >>> x = np.array([1, 1, 2, 3, 4])

    >>> y = np.array([2, 1, 4, 6])

    >>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)

    >>> x_ind, y_ind

    (array([0, 2, 4]), array([1, 0, 2]))

    >>> xy, x[x_ind], y[y_ind]

    (array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))



    """
    ar1 = np.asanyarray(ar1)
    ar2 = np.asanyarray(ar2)

    if not assume_unique:
        if return_indices:
            ar1, ind1 = unique(ar1, return_index=True)
            ar2, ind2 = unique(ar2, return_index=True)
        else:
            ar1 = unique(ar1)
            ar2 = unique(ar2)
    else:
        ar1 = ar1.ravel()
        ar2 = ar2.ravel()

    aux = np.concatenate((ar1, ar2))
    if return_indices:
        aux_sort_indices = np.argsort(aux, kind='mergesort')
        aux = aux[aux_sort_indices]
    else:
        aux.sort()

    mask = aux[1:] == aux[:-1]
    int1d = aux[:-1][mask]

    if return_indices:
        ar1_indices = aux_sort_indices[:-1][mask]
        ar2_indices = aux_sort_indices[1:][mask] - ar1.size
        if not assume_unique:
            ar1_indices = ind1[ar1_indices]
            ar2_indices = ind2[ar2_indices]

        return int1d, ar1_indices, ar2_indices
    else:
        return int1d


def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):
    return (ar1, ar2)


@array_function_dispatch(_setxor1d_dispatcher)
def setxor1d(ar1, ar2, assume_unique=False):
    """

    Find the set exclusive-or of two arrays.



    Return the sorted, unique values that are in only one (not both) of the

    input arrays.



    Parameters

    ----------

    ar1, ar2 : array_like

        Input arrays.

    assume_unique : bool

        If True, the input arrays are both assumed to be unique, which

        can speed up the calculation.  Default is False.



    Returns

    -------

    setxor1d : ndarray

        Sorted 1D array of unique values that are in only one of the input

        arrays.



    Examples

    --------

    >>> a = np.array([1, 2, 3, 2, 4])

    >>> b = np.array([2, 3, 5, 7, 5])

    >>> np.setxor1d(a,b)

    array([1, 4, 5, 7])



    """
    if not assume_unique:
        ar1 = unique(ar1)
        ar2 = unique(ar2)

    aux = np.concatenate((ar1, ar2))
    if aux.size == 0:
        return aux

    aux.sort()
    flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
    return aux[flag[1:] & flag[:-1]]


def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None, *,

                     kind=None):
    return (ar1, ar2)


@array_function_dispatch(_in1d_dispatcher)
def in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None):
    """

    Test whether each element of a 1-D array is also present in a second array.



    .. deprecated:: 2.0

        Use :func:`isin` instead of `in1d` for new code.



    Returns a boolean array the same length as `ar1` that is True

    where an element of `ar1` is in `ar2` and False otherwise.



    Parameters

    ----------

    ar1 : (M,) array_like

        Input array.

    ar2 : array_like

        The values against which to test each value of `ar1`.

    assume_unique : bool, optional

        If True, the input arrays are both assumed to be unique, which

        can speed up the calculation.  Default is False.

    invert : bool, optional

        If True, the values in the returned array are inverted (that is,

        False where an element of `ar1` is in `ar2` and True otherwise).

        Default is False. ``np.in1d(a, b, invert=True)`` is equivalent

        to (but is faster than) ``np.invert(in1d(a, b))``.

    kind : {None, 'sort', 'table'}, optional

        The algorithm to use. This will not affect the final result,

        but will affect the speed and memory use. The default, None,

        will select automatically based on memory considerations.



        * If 'sort', will use a mergesort-based approach. This will have

          a memory usage of roughly 6 times the sum of the sizes of

          `ar1` and `ar2`, not accounting for size of dtypes.

        * If 'table', will use a lookup table approach similar

          to a counting sort. This is only available for boolean and

          integer arrays. This will have a memory usage of the

          size of `ar1` plus the max-min value of `ar2`. `assume_unique`

          has no effect when the 'table' option is used.

        * If None, will automatically choose 'table' if

          the required memory allocation is less than or equal to

          6 times the sum of the sizes of `ar1` and `ar2`,

          otherwise will use 'sort'. This is done to not use

          a large amount of memory by default, even though

          'table' may be faster in most cases. If 'table' is chosen,

          `assume_unique` will have no effect.



        .. versionadded:: 1.8.0



    Returns

    -------

    in1d : (M,) ndarray, bool

        The values `ar1[in1d]` are in `ar2`.



    See Also

    --------

    isin                  : Version of this function that preserves the

                            shape of ar1.



    Notes

    -----

    `in1d` can be considered as an element-wise function version of the

    python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly

    equivalent to ``np.array([item in b for item in a])``.

    However, this idea fails if `ar2` is a set, or similar (non-sequence)

    container:  As ``ar2`` is converted to an array, in those cases

    ``asarray(ar2)`` is an object array rather than the expected array of

    contained values.



    Using ``kind='table'`` tends to be faster than `kind='sort'` if the

    following relationship is true:

    ``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``,

    but may use greater memory. The default value for `kind` will

    be automatically selected based only on memory usage, so one may

    manually set ``kind='table'`` if memory constraints can be relaxed.



    .. versionadded:: 1.4.0



    Examples

    --------

    >>> test = np.array([0, 1, 2, 5, 0])

    >>> states = [0, 2]

    >>> mask = np.in1d(test, states)

    >>> mask

    array([ True, False,  True, False,  True])

    >>> test[mask]

    array([0, 2, 0])

    >>> mask = np.in1d(test, states, invert=True)

    >>> mask

    array([False,  True, False,  True, False])

    >>> test[mask]

    array([1, 5])

    """

    # Deprecated in NumPy 2.0, 2023-08-18
    warnings.warn(
        "`in1d` is deprecated. Use `np.isin` instead.",
        DeprecationWarning,
        stacklevel=2
    )

    return _in1d(ar1, ar2, assume_unique, invert, kind=kind)


def _in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None):
    # Ravel both arrays, behavior for the first array could be different
    ar1 = np.asarray(ar1).ravel()
    ar2 = np.asarray(ar2).ravel()

    # Ensure that iteration through object arrays yields size-1 arrays
    if ar2.dtype == object:
        ar2 = ar2.reshape(-1, 1)

    if kind not in {None, 'sort', 'table'}:
        raise ValueError(
            f"Invalid kind: '{kind}'. Please use None, 'sort' or 'table'.")

    # Can use the table method if all arrays are integers or boolean:
    is_int_arrays = all(ar.dtype.kind in ("u", "i", "b") for ar in (ar1, ar2))
    use_table_method = is_int_arrays and kind in {None, 'table'}

    if use_table_method:
        if ar2.size == 0:
            if invert:
                return np.ones_like(ar1, dtype=bool)
            else:
                return np.zeros_like(ar1, dtype=bool)

        # Convert booleans to uint8 so we can use the fast integer algorithm
        if ar1.dtype == bool:
            ar1 = ar1.astype(np.uint8)
        if ar2.dtype == bool:
            ar2 = ar2.astype(np.uint8)

        ar2_min = int(np.min(ar2))
        ar2_max = int(np.max(ar2))

        ar2_range = ar2_max - ar2_min

        # Constraints on whether we can actually use the table method:
        #  1. Assert memory usage is not too large
        below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size)
        #  2. Check overflows for (ar2 - ar2_min); dtype=ar2.dtype
        range_safe_from_overflow = ar2_range <= np.iinfo(ar2.dtype).max

        # Optimal performance is for approximately
        # log10(size) > (log10(range) - 2.27) / 0.927.
        # However, here we set the requirement that by default
        # the intermediate array can only be 6x
        # the combined memory allocation of the original
        # arrays. See discussion on 
        # https://github.com/numpy/numpy/pull/12065.

        if (
            range_safe_from_overflow and 
            (below_memory_constraint or kind == 'table')
        ):

            if invert:
                outgoing_array = np.ones_like(ar1, dtype=bool)
            else:
                outgoing_array = np.zeros_like(ar1, dtype=bool)

            # Make elements 1 where the integer exists in ar2
            if invert:
                isin_helper_ar = np.ones(ar2_range + 1, dtype=bool)
                isin_helper_ar[ar2 - ar2_min] = 0
            else:
                isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool)
                isin_helper_ar[ar2 - ar2_min] = 1

            # Mask out elements we know won't work
            basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min)
            in_range_ar1 = ar1[basic_mask]
            if in_range_ar1.size == 0:
                # Nothing more to do, since all values are out of range.
                return outgoing_array

            # Unfortunately, ar2_min can be out of range for `intp` even
            # if the calculation result must fit in range (and be positive).
            # In that case, use ar2.dtype which must work for all unmasked
            # values.
            try:
                ar2_min = np.array(ar2_min, dtype=np.intp)
                dtype = np.intp
            except OverflowError:
                dtype = ar2.dtype

            out = np.empty_like(in_range_ar1, dtype=np.intp)
            outgoing_array[basic_mask] = isin_helper_ar[
                    np.subtract(in_range_ar1, ar2_min, dtype=dtype,
                                out=out, casting="unsafe")]

            return outgoing_array
        elif kind == 'table':  # not range_safe_from_overflow
            raise RuntimeError(
                "You have specified kind='table', "
                "but the range of values in `ar2` or `ar1` exceed the "
                "maximum integer of the datatype. "
                "Please set `kind` to None or 'sort'."
            )
    elif kind == 'table':
        raise ValueError(
            "The 'table' method is only "
            "supported for boolean or integer arrays. "
            "Please select 'sort' or None for kind."
        )


    # Check if one of the arrays may contain arbitrary objects
    contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject

    # This code is run when
    # a) the first condition is true, making the code significantly faster
    # b) the second condition is true (i.e. `ar1` or `ar2` may contain
    #    arbitrary objects), since then sorting is not guaranteed to work
    if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
        if invert:
            mask = np.ones(len(ar1), dtype=bool)
            for a in ar2:
                mask &= (ar1 != a)
        else:
            mask = np.zeros(len(ar1), dtype=bool)
            for a in ar2:
                mask |= (ar1 == a)
        return mask

    # Otherwise use sorting
    if not assume_unique:
        ar1, rev_idx = np.unique(ar1, return_inverse=True)
        ar2 = np.unique(ar2)

    ar = np.concatenate((ar1, ar2))
    # We need this to be a stable sort, so always use 'mergesort'
    # here. The values from the first array should always come before
    # the values from the second array.
    order = ar.argsort(kind='mergesort')
    sar = ar[order]
    if invert:
        bool_ar = (sar[1:] != sar[:-1])
    else:
        bool_ar = (sar[1:] == sar[:-1])
    flag = np.concatenate((bool_ar, [invert]))
    ret = np.empty(ar.shape, dtype=bool)
    ret[order] = flag

    if assume_unique:
        return ret[:len(ar1)]
    else:
        return ret[rev_idx]


def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None,

                     *, kind=None):
    return (element, test_elements)


@array_function_dispatch(_isin_dispatcher)
def isin(element, test_elements, assume_unique=False, invert=False, *,

         kind=None):
    """

    Calculates ``element in test_elements``, broadcasting over `element` only.

    Returns a boolean array of the same shape as `element` that is True

    where an element of `element` is in `test_elements` and False otherwise.



    Parameters

    ----------

    element : array_like

        Input array.

    test_elements : array_like

        The values against which to test each value of `element`.

        This argument is flattened if it is an array or array_like.

        See notes for behavior with non-array-like parameters.

    assume_unique : bool, optional

        If True, the input arrays are both assumed to be unique, which

        can speed up the calculation.  Default is False.

    invert : bool, optional

        If True, the values in the returned array are inverted, as if

        calculating `element not in test_elements`. Default is False.

        ``np.isin(a, b, invert=True)`` is equivalent to (but faster

        than) ``np.invert(np.isin(a, b))``.

    kind : {None, 'sort', 'table'}, optional

        The algorithm to use. This will not affect the final result,

        but will affect the speed and memory use. The default, None,

        will select automatically based on memory considerations.



        * If 'sort', will use a mergesort-based approach. This will have

          a memory usage of roughly 6 times the sum of the sizes of

          `element` and `test_elements`, not accounting for size of dtypes.

        * If 'table', will use a lookup table approach similar

          to a counting sort. This is only available for boolean and

          integer arrays. This will have a memory usage of the

          size of `element` plus the max-min value of `test_elements`.

          `assume_unique` has no effect when the 'table' option is used.

        * If None, will automatically choose 'table' if

          the required memory allocation is less than or equal to

          6 times the sum of the sizes of `element` and `test_elements`,

          otherwise will use 'sort'. This is done to not use

          a large amount of memory by default, even though

          'table' may be faster in most cases. If 'table' is chosen,

          `assume_unique` will have no effect.





    Returns

    -------

    isin : ndarray, bool

        Has the same shape as `element`. The values `element[isin]`

        are in `test_elements`.



    Notes

    -----



    `isin` is an element-wise function version of the python keyword `in`.

    ``isin(a, b)`` is roughly equivalent to

    ``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences.



    `element` and `test_elements` are converted to arrays if they are not

    already. If `test_elements` is a set (or other non-sequence collection)

    it will be converted to an object array with one element, rather than an

    array of the values contained in `test_elements`. This is a consequence

    of the `array` constructor's way of handling non-sequence collections.

    Converting the set to a list usually gives the desired behavior.



    Using ``kind='table'`` tends to be faster than `kind='sort'` if the

    following relationship is true:

    ``log10(len(test_elements)) >

    (log10(max(test_elements)-min(test_elements)) - 2.27) / 0.927``,

    but may use greater memory. The default value for `kind` will

    be automatically selected based only on memory usage, so one may

    manually set ``kind='table'`` if memory constraints can be relaxed.



    .. versionadded:: 1.13.0



    Examples

    --------

    >>> element = 2*np.arange(4).reshape((2, 2))

    >>> element

    array([[0, 2],

           [4, 6]])

    >>> test_elements = [1, 2, 4, 8]

    >>> mask = np.isin(element, test_elements)

    >>> mask

    array([[False,  True],

           [ True, False]])

    >>> element[mask]

    array([2, 4])



    The indices of the matched values can be obtained with `nonzero`:



    >>> np.nonzero(mask)

    (array([0, 1]), array([1, 0]))



    The test can also be inverted:



    >>> mask = np.isin(element, test_elements, invert=True)

    >>> mask

    array([[ True, False],

           [False,  True]])

    >>> element[mask]

    array([0, 6])



    Because of how `array` handles sets, the following does not

    work as expected:



    >>> test_set = {1, 2, 4, 8}

    >>> np.isin(element, test_set)

    array([[False, False],

           [False, False]])



    Casting the set to a list gives the expected result:



    >>> np.isin(element, list(test_set))

    array([[False,  True],

           [ True, False]])

    """
    element = np.asarray(element)
    return _in1d(element, test_elements, assume_unique=assume_unique,
                 invert=invert, kind=kind).reshape(element.shape)


def _union1d_dispatcher(ar1, ar2):
    return (ar1, ar2)


@array_function_dispatch(_union1d_dispatcher)
def union1d(ar1, ar2):
    """

    Find the union of two arrays.



    Return the unique, sorted array of values that are in either of the two

    input arrays.



    Parameters

    ----------

    ar1, ar2 : array_like

        Input arrays. They are flattened if they are not already 1D.



    Returns

    -------

    union1d : ndarray

        Unique, sorted union of the input arrays.



    Examples

    --------

    >>> np.union1d([-1, 0, 1], [-2, 0, 2])

    array([-2, -1,  0,  1,  2])



    To find the union of more than two arrays, use functools.reduce:



    >>> from functools import reduce

    >>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))

    array([1, 2, 3, 4, 6])

    """
    return unique(np.concatenate((ar1, ar2), axis=None))


def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):
    return (ar1, ar2)


@array_function_dispatch(_setdiff1d_dispatcher)
def setdiff1d(ar1, ar2, assume_unique=False):
    """

    Find the set difference of two arrays.



    Return the unique values in `ar1` that are not in `ar2`.



    Parameters

    ----------

    ar1 : array_like

        Input array.

    ar2 : array_like

        Input comparison array.

    assume_unique : bool

        If True, the input arrays are both assumed to be unique, which

        can speed up the calculation.  Default is False.



    Returns

    -------

    setdiff1d : ndarray

        1D array of values in `ar1` that are not in `ar2`. The result

        is sorted when `assume_unique=False`, but otherwise only sorted

        if the input is sorted.



    Examples

    --------

    >>> a = np.array([1, 2, 3, 2, 4, 1])

    >>> b = np.array([3, 4, 5, 6])

    >>> np.setdiff1d(a, b)

    array([1, 2])



    """
    if assume_unique:
        ar1 = np.asarray(ar1).ravel()
    else:
        ar1 = unique(ar1)
        ar2 = unique(ar2)
    return ar1[_in1d(ar1, ar2, assume_unique=True, invert=True)]