File size: 54,465 Bytes
6525fa6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 |
"""
=================================
Travelling Salesman Problem (TSP)
=================================
Implementation of approximate algorithms
for solving and approximating the TSP problem.
Categories of algorithms which are implemented:
- Christofides (provides a 3/2-approximation of TSP)
- Greedy
- Simulated Annealing (SA)
- Threshold Accepting (TA)
- Asadpour Asymmetric Traveling Salesman Algorithm
The Travelling Salesman Problem tries to find, given the weight
(distance) between all points where a salesman has to visit, the
route so that:
- The total distance (cost) which the salesman travels is minimized.
- The salesman returns to the starting point.
- Note that for a complete graph, the salesman visits each point once.
The function `travelling_salesman_problem` allows for incomplete
graphs by finding all-pairs shortest paths, effectively converting
the problem to a complete graph problem. It calls one of the
approximate methods on that problem and then converts the result
back to the original graph using the previously found shortest paths.
TSP is an NP-hard problem in combinatorial optimization,
important in operations research and theoretical computer science.
http://en.wikipedia.org/wiki/Travelling_salesman_problem
"""
import math
import networkx as nx
from networkx.algorithms.tree.mst import random_spanning_tree
from networkx.utils import not_implemented_for, pairwise, py_random_state
__all__ = [
"traveling_salesman_problem",
"christofides",
"asadpour_atsp",
"greedy_tsp",
"simulated_annealing_tsp",
"threshold_accepting_tsp",
]
def swap_two_nodes(soln, seed):
"""Swap two nodes in `soln` to give a neighbor solution.
Parameters
----------
soln : list of nodes
Current cycle of nodes
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
list
The solution after move is applied. (A neighbor solution.)
Notes
-----
This function assumes that the incoming list `soln` is a cycle
(that the first and last element are the same) and also that
we don't want any move to change the first node in the list
(and thus not the last node either).
The input list is changed as well as returned. Make a copy if needed.
See Also
--------
move_one_node
"""
a, b = seed.sample(range(1, len(soln) - 1), k=2)
soln[a], soln[b] = soln[b], soln[a]
return soln
def move_one_node(soln, seed):
"""Move one node to another position to give a neighbor solution.
The node to move and the position to move to are chosen randomly.
The first and last nodes are left untouched as soln must be a cycle
starting at that node.
Parameters
----------
soln : list of nodes
Current cycle of nodes
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
list
The solution after move is applied. (A neighbor solution.)
Notes
-----
This function assumes that the incoming list `soln` is a cycle
(that the first and last element are the same) and also that
we don't want any move to change the first node in the list
(and thus not the last node either).
The input list is changed as well as returned. Make a copy if needed.
See Also
--------
swap_two_nodes
"""
a, b = seed.sample(range(1, len(soln) - 1), k=2)
soln.insert(b, soln.pop(a))
return soln
@not_implemented_for("directed")
@nx._dispatch(edge_attrs="weight")
def christofides(G, weight="weight", tree=None):
"""Approximate a solution of the traveling salesman problem
Compute a 3/2-approximation of the traveling salesman problem
in a complete undirected graph using Christofides [1]_ algorithm.
Parameters
----------
G : Graph
`G` should be a complete weighted undirected graph.
The distance between all pairs of nodes should be included.
weight : string, optional (default="weight")
Edge data key corresponding to the edge weight.
If any edge does not have this attribute the weight is set to 1.
tree : NetworkX graph or None (default: None)
A minimum spanning tree of G. Or, if None, the minimum spanning
tree is computed using :func:`networkx.minimum_spanning_tree`
Returns
-------
list
List of nodes in `G` along a cycle with a 3/2-approximation of
the minimal Hamiltonian cycle.
References
----------
.. [1] Christofides, Nicos. "Worst-case analysis of a new heuristic for
the travelling salesman problem." No. RR-388. Carnegie-Mellon Univ
Pittsburgh Pa Management Sciences Research Group, 1976.
"""
# Remove selfloops if necessary
loop_nodes = nx.nodes_with_selfloops(G)
try:
node = next(loop_nodes)
except StopIteration:
pass
else:
G = G.copy()
G.remove_edge(node, node)
G.remove_edges_from((n, n) for n in loop_nodes)
# Check that G is a complete graph
N = len(G) - 1
# This check ignores selfloops which is what we want here.
if any(len(nbrdict) != N for n, nbrdict in G.adj.items()):
raise nx.NetworkXError("G must be a complete graph.")
if tree is None:
tree = nx.minimum_spanning_tree(G, weight=weight)
L = G.copy()
L.remove_nodes_from([v for v, degree in tree.degree if not (degree % 2)])
MG = nx.MultiGraph()
MG.add_edges_from(tree.edges)
edges = nx.min_weight_matching(L, weight=weight)
MG.add_edges_from(edges)
return _shortcutting(nx.eulerian_circuit(MG))
def _shortcutting(circuit):
"""Remove duplicate nodes in the path"""
nodes = []
for u, v in circuit:
if v in nodes:
continue
if not nodes:
nodes.append(u)
nodes.append(v)
nodes.append(nodes[0])
return nodes
@nx._dispatch(edge_attrs="weight")
def traveling_salesman_problem(G, weight="weight", nodes=None, cycle=True, method=None):
"""Find the shortest path in `G` connecting specified nodes
This function allows approximate solution to the traveling salesman
problem on networks that are not complete graphs and/or where the
salesman does not need to visit all nodes.
This function proceeds in two steps. First, it creates a complete
graph using the all-pairs shortest_paths between nodes in `nodes`.
Edge weights in the new graph are the lengths of the paths
between each pair of nodes in the original graph.
Second, an algorithm (default: `christofides` for undirected and
`asadpour_atsp` for directed) is used to approximate the minimal Hamiltonian
cycle on this new graph. The available algorithms are:
- christofides
- greedy_tsp
- simulated_annealing_tsp
- threshold_accepting_tsp
- asadpour_atsp
Once the Hamiltonian Cycle is found, this function post-processes to
accommodate the structure of the original graph. If `cycle` is ``False``,
the biggest weight edge is removed to make a Hamiltonian path.
Then each edge on the new complete graph used for that analysis is
replaced by the shortest_path between those nodes on the original graph.
Parameters
----------
G : NetworkX graph
A possibly weighted graph
nodes : collection of nodes (default=G.nodes)
collection (list, set, etc.) of nodes to visit
weight : string, optional (default="weight")
Edge data key corresponding to the edge weight.
If any edge does not have this attribute the weight is set to 1.
cycle : bool (default: True)
Indicates whether a cycle should be returned, or a path.
Note: the cycle is the approximate minimal cycle.
The path simply removes the biggest edge in that cycle.
method : function (default: None)
A function that returns a cycle on all nodes and approximates
the solution to the traveling salesman problem on a complete
graph. The returned cycle is then used to find a corresponding
solution on `G`. `method` should be callable; take inputs
`G`, and `weight`; and return a list of nodes along the cycle.
Provided options include :func:`christofides`, :func:`greedy_tsp`,
:func:`simulated_annealing_tsp` and :func:`threshold_accepting_tsp`.
If `method is None`: use :func:`christofides` for undirected `G` and
:func:`threshold_accepting_tsp` for directed `G`.
To specify parameters for these provided functions, construct lambda
functions that state the specific value. `method` must have 2 inputs.
(See examples).
Returns
-------
list
List of nodes in `G` along a path with an approximation of the minimal
path through `nodes`.
Raises
------
NetworkXError
If `G` is a directed graph it has to be strongly connected or the
complete version cannot be generated.
Examples
--------
>>> tsp = nx.approximation.traveling_salesman_problem
>>> G = nx.cycle_graph(9)
>>> G[4][5]["weight"] = 5 # all other weights are 1
>>> tsp(G, nodes=[3, 6])
[3, 2, 1, 0, 8, 7, 6, 7, 8, 0, 1, 2, 3]
>>> path = tsp(G, cycle=False)
>>> path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4])
True
Build (curry) your own function to provide parameter values to the methods.
>>> SA_tsp = nx.approximation.simulated_annealing_tsp
>>> method = lambda G, wt: SA_tsp(G, "greedy", weight=wt, temp=500)
>>> path = tsp(G, cycle=False, method=method)
>>> path in ([4, 3, 2, 1, 0, 8, 7, 6, 5], [5, 6, 7, 8, 0, 1, 2, 3, 4])
True
"""
if method is None:
if G.is_directed():
method = asadpour_atsp
else:
method = christofides
if nodes is None:
nodes = list(G.nodes)
dist = {}
path = {}
for n, (d, p) in nx.all_pairs_dijkstra(G, weight=weight):
dist[n] = d
path[n] = p
if G.is_directed():
# If the graph is not strongly connected, raise an exception
if not nx.is_strongly_connected(G):
raise nx.NetworkXError("G is not strongly connected")
GG = nx.DiGraph()
else:
GG = nx.Graph()
for u in nodes:
for v in nodes:
if u == v:
continue
GG.add_edge(u, v, weight=dist[u][v])
best_GG = method(GG, weight)
if not cycle:
# find and remove the biggest edge
(u, v) = max(pairwise(best_GG), key=lambda x: dist[x[0]][x[1]])
pos = best_GG.index(u) + 1
while best_GG[pos] != v:
pos = best_GG[pos:].index(u) + 1
best_GG = best_GG[pos:-1] + best_GG[:pos]
best_path = []
for u, v in pairwise(best_GG):
best_path.extend(path[u][v][:-1])
best_path.append(v)
return best_path
@not_implemented_for("undirected")
@py_random_state(2)
@nx._dispatch(edge_attrs="weight")
def asadpour_atsp(G, weight="weight", seed=None, source=None):
"""
Returns an approximate solution to the traveling salesman problem.
This approximate solution is one of the best known approximations for the
asymmetric traveling salesman problem developed by Asadpour et al,
[1]_. The algorithm first solves the Held-Karp relaxation to find a lower
bound for the weight of the cycle. Next, it constructs an exponential
distribution of undirected spanning trees where the probability of an
edge being in the tree corresponds to the weight of that edge using a
maximum entropy rounding scheme. Next we sample that distribution
$2 \\lceil \\ln n \\rceil$ times and save the minimum sampled tree once the
direction of the arcs is added back to the edges. Finally, we augment
then short circuit that graph to find the approximate tour for the
salesman.
Parameters
----------
G : nx.DiGraph
The graph should be a complete weighted directed graph. The
distance between all paris of nodes should be included and the triangle
inequality should hold. That is, the direct edge between any two nodes
should be the path of least cost.
weight : string, optional (default="weight")
Edge data key corresponding to the edge weight.
If any edge does not have this attribute the weight is set to 1.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
source : node label (default=`None`)
If given, return the cycle starting and ending at the given node.
Returns
-------
cycle : list of nodes
Returns the cycle (list of nodes) that a salesman can follow to minimize
the total weight of the trip.
Raises
------
NetworkXError
If `G` is not complete or has less than two nodes, the algorithm raises
an exception.
NetworkXError
If `source` is not `None` and is not a node in `G`, the algorithm raises
an exception.
NetworkXNotImplemented
If `G` is an undirected graph.
References
----------
.. [1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi,
An o(log n/log log n)-approximation algorithm for the asymmetric
traveling salesman problem, Operations research, 65 (2017),
pp. 1043–1061
Examples
--------
>>> import networkx as nx
>>> import networkx.algorithms.approximation as approx
>>> G = nx.complete_graph(3, create_using=nx.DiGraph)
>>> nx.set_edge_attributes(G, {(0, 1): 2, (1, 2): 2, (2, 0): 2, (0, 2): 1, (2, 1): 1, (1, 0): 1}, "weight")
>>> tour = approx.asadpour_atsp(G,source=0)
>>> tour
[0, 2, 1, 0]
"""
from math import ceil, exp
from math import log as ln
# Check that G is a complete graph
N = len(G) - 1
if N < 2:
raise nx.NetworkXError("G must have at least two nodes")
# This check ignores selfloops which is what we want here.
if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()):
raise nx.NetworkXError("G is not a complete DiGraph")
# Check that the source vertex, if given, is in the graph
if source is not None and source not in G.nodes:
raise nx.NetworkXError("Given source node not in G.")
opt_hk, z_star = held_karp_ascent(G, weight)
# Test to see if the ascent method found an integer solution or a fractional
# solution. If it is integral then z_star is a nx.Graph, otherwise it is
# a dict
if not isinstance(z_star, dict):
# Here we are using the shortcutting method to go from the list of edges
# returned from eulerian_circuit to a list of nodes
return _shortcutting(nx.eulerian_circuit(z_star, source=source))
# Create the undirected support of z_star
z_support = nx.MultiGraph()
for u, v in z_star:
if (u, v) not in z_support.edges:
edge_weight = min(G[u][v][weight], G[v][u][weight])
z_support.add_edge(u, v, **{weight: edge_weight})
# Create the exponential distribution of spanning trees
gamma = spanning_tree_distribution(z_support, z_star)
# Write the lambda values to the edges of z_support
z_support = nx.Graph(z_support)
lambda_dict = {(u, v): exp(gamma[(u, v)]) for u, v in z_support.edges()}
nx.set_edge_attributes(z_support, lambda_dict, "weight")
del gamma, lambda_dict
# Sample 2 * ceil( ln(n) ) spanning trees and record the minimum one
minimum_sampled_tree = None
minimum_sampled_tree_weight = math.inf
for _ in range(2 * ceil(ln(G.number_of_nodes()))):
sampled_tree = random_spanning_tree(z_support, "weight", seed=seed)
sampled_tree_weight = sampled_tree.size(weight)
if sampled_tree_weight < minimum_sampled_tree_weight:
minimum_sampled_tree = sampled_tree.copy()
minimum_sampled_tree_weight = sampled_tree_weight
# Orient the edges in that tree to keep the cost of the tree the same.
t_star = nx.MultiDiGraph()
for u, v, d in minimum_sampled_tree.edges(data=weight):
if d == G[u][v][weight]:
t_star.add_edge(u, v, **{weight: d})
else:
t_star.add_edge(v, u, **{weight: d})
# Find the node demands needed to neutralize the flow of t_star in G
node_demands = {n: t_star.out_degree(n) - t_star.in_degree(n) for n in t_star}
nx.set_node_attributes(G, node_demands, "demand")
# Find the min_cost_flow
flow_dict = nx.min_cost_flow(G, "demand")
# Build the flow into t_star
for source, values in flow_dict.items():
for target in values:
if (source, target) not in t_star.edges and values[target] > 0:
# IF values[target] > 0 we have to add that many edges
for _ in range(values[target]):
t_star.add_edge(source, target)
# Return the shortcut eulerian circuit
circuit = nx.eulerian_circuit(t_star, source=source)
return _shortcutting(circuit)
@nx._dispatch(edge_attrs="weight")
def held_karp_ascent(G, weight="weight"):
"""
Minimizes the Held-Karp relaxation of the TSP for `G`
Solves the Held-Karp relaxation of the input complete digraph and scales
the output solution for use in the Asadpour [1]_ ASTP algorithm.
The Held-Karp relaxation defines the lower bound for solutions to the
ATSP, although it does return a fractional solution. This is used in the
Asadpour algorithm as an initial solution which is later rounded to a
integral tree within the spanning tree polytopes. This function solves
the relaxation with the branch and bound method in [2]_.
Parameters
----------
G : nx.DiGraph
The graph should be a complete weighted directed graph.
The distance between all paris of nodes should be included.
weight : string, optional (default="weight")
Edge data key corresponding to the edge weight.
If any edge does not have this attribute the weight is set to 1.
Returns
-------
OPT : float
The cost for the optimal solution to the Held-Karp relaxation
z : dict or nx.Graph
A symmetrized and scaled version of the optimal solution to the
Held-Karp relaxation for use in the Asadpour algorithm.
If an integral solution is found, then that is an optimal solution for
the ATSP problem and that is returned instead.
References
----------
.. [1] A. Asadpour, M. X. Goemans, A. Madry, S. O. Gharan, and A. Saberi,
An o(log n/log log n)-approximation algorithm for the asymmetric
traveling salesman problem, Operations research, 65 (2017),
pp. 1043–1061
.. [2] M. Held, R. M. Karp, The traveling-salesman problem and minimum
spanning trees, Operations Research, 1970-11-01, Vol. 18 (6),
pp.1138-1162
"""
import numpy as np
from scipy import optimize
def k_pi():
"""
Find the set of minimum 1-Arborescences for G at point pi.
Returns
-------
Set
The set of minimum 1-Arborescences
"""
# Create a copy of G without vertex 1.
G_1 = G.copy()
minimum_1_arborescences = set()
minimum_1_arborescence_weight = math.inf
# node is node '1' in the Held and Karp paper
n = next(G.__iter__())
G_1.remove_node(n)
# Iterate over the spanning arborescences of the graph until we know
# that we have found the minimum 1-arborescences. My proposed strategy
# is to find the most extensive root to connect to from 'node 1' and
# the least expensive one. We then iterate over arborescences until
# the cost of the basic arborescence is the cost of the minimum one
# plus the difference between the most and least expensive roots,
# that way the cost of connecting 'node 1' will by definition not by
# minimum
min_root = {"node": None, weight: math.inf}
max_root = {"node": None, weight: -math.inf}
for u, v, d in G.edges(n, data=True):
if d[weight] < min_root[weight]:
min_root = {"node": v, weight: d[weight]}
if d[weight] > max_root[weight]:
max_root = {"node": v, weight: d[weight]}
min_in_edge = min(G.in_edges(n, data=True), key=lambda x: x[2][weight])
min_root[weight] = min_root[weight] + min_in_edge[2][weight]
max_root[weight] = max_root[weight] + min_in_edge[2][weight]
min_arb_weight = math.inf
for arb in nx.ArborescenceIterator(G_1):
arb_weight = arb.size(weight)
if min_arb_weight == math.inf:
min_arb_weight = arb_weight
elif arb_weight > min_arb_weight + max_root[weight] - min_root[weight]:
break
# We have to pick the root node of the arborescence for the out
# edge of the first vertex as that is the only node without an
# edge directed into it.
for N, deg in arb.in_degree:
if deg == 0:
# root found
arb.add_edge(n, N, **{weight: G[n][N][weight]})
arb_weight += G[n][N][weight]
break
# We can pick the minimum weight in-edge for the vertex with
# a cycle. If there are multiple edges with the same, minimum
# weight, We need to add all of them.
#
# Delete the edge (N, v) so that we cannot pick it.
edge_data = G[N][n]
G.remove_edge(N, n)
min_weight = min(G.in_edges(n, data=weight), key=lambda x: x[2])[2]
min_edges = [
(u, v, d) for u, v, d in G.in_edges(n, data=weight) if d == min_weight
]
for u, v, d in min_edges:
new_arb = arb.copy()
new_arb.add_edge(u, v, **{weight: d})
new_arb_weight = arb_weight + d
# Check to see the weight of the arborescence, if it is a
# new minimum, clear all of the old potential minimum
# 1-arborescences and add this is the only one. If its
# weight is above the known minimum, do not add it.
if new_arb_weight < minimum_1_arborescence_weight:
minimum_1_arborescences.clear()
minimum_1_arborescence_weight = new_arb_weight
# We have a 1-arborescence, add it to the set
if new_arb_weight == minimum_1_arborescence_weight:
minimum_1_arborescences.add(new_arb)
G.add_edge(N, n, **edge_data)
return minimum_1_arborescences
def direction_of_ascent():
"""
Find the direction of ascent at point pi.
See [1]_ for more information.
Returns
-------
dict
A mapping from the nodes of the graph which represents the direction
of ascent.
References
----------
.. [1] M. Held, R. M. Karp, The traveling-salesman problem and minimum
spanning trees, Operations Research, 1970-11-01, Vol. 18 (6),
pp.1138-1162
"""
# 1. Set d equal to the zero n-vector.
d = {}
for n in G:
d[n] = 0
del n
# 2. Find a 1-Arborescence T^k such that k is in K(pi, d).
minimum_1_arborescences = k_pi()
while True:
# Reduce K(pi) to K(pi, d)
# Find the arborescence in K(pi) which increases the lest in
# direction d
min_k_d_weight = math.inf
min_k_d = None
for arborescence in minimum_1_arborescences:
weighted_cost = 0
for n, deg in arborescence.degree:
weighted_cost += d[n] * (deg - 2)
if weighted_cost < min_k_d_weight:
min_k_d_weight = weighted_cost
min_k_d = arborescence
# 3. If sum of d_i * v_{i, k} is greater than zero, terminate
if min_k_d_weight > 0:
return d, min_k_d
# 4. d_i = d_i + v_{i, k}
for n, deg in min_k_d.degree:
d[n] += deg - 2
# Check that we do not need to terminate because the direction
# of ascent does not exist. This is done with linear
# programming.
c = np.full(len(minimum_1_arborescences), -1, dtype=int)
a_eq = np.empty((len(G) + 1, len(minimum_1_arborescences)), dtype=int)
b_eq = np.zeros(len(G) + 1, dtype=int)
b_eq[len(G)] = 1
for arb_count, arborescence in enumerate(minimum_1_arborescences):
n_count = len(G) - 1
for n, deg in arborescence.degree:
a_eq[n_count][arb_count] = deg - 2
n_count -= 1
a_eq[len(G)][arb_count] = 1
program_result = optimize.linprog(c, A_eq=a_eq, b_eq=b_eq)
# If the constants exist, then the direction of ascent doesn't
if program_result.success:
# There is no direction of ascent
return None, minimum_1_arborescences
# 5. GO TO 2
def find_epsilon(k, d):
"""
Given the direction of ascent at pi, find the maximum distance we can go
in that direction.
Parameters
----------
k_xy : set
The set of 1-arborescences which have the minimum rate of increase
in the direction of ascent
d : dict
The direction of ascent
Returns
-------
float
The distance we can travel in direction `d`
"""
min_epsilon = math.inf
for e_u, e_v, e_w in G.edges(data=weight):
if (e_u, e_v) in k.edges:
continue
# Now, I have found a condition which MUST be true for the edges to
# be a valid substitute. The edge in the graph which is the
# substitute is the one with the same terminated end. This can be
# checked rather simply.
#
# Find the edge within k which is the substitute. Because k is a
# 1-arborescence, we know that they is only one such edges
# leading into every vertex.
if len(k.in_edges(e_v, data=weight)) > 1:
raise Exception
sub_u, sub_v, sub_w = next(k.in_edges(e_v, data=weight).__iter__())
k.add_edge(e_u, e_v, **{weight: e_w})
k.remove_edge(sub_u, sub_v)
if (
max(d for n, d in k.in_degree()) <= 1
and len(G) == k.number_of_edges()
and nx.is_weakly_connected(k)
):
# Ascent method calculation
if d[sub_u] == d[e_u] or sub_w == e_w:
# Revert to the original graph
k.remove_edge(e_u, e_v)
k.add_edge(sub_u, sub_v, **{weight: sub_w})
continue
epsilon = (sub_w - e_w) / (d[e_u] - d[sub_u])
if 0 < epsilon < min_epsilon:
min_epsilon = epsilon
# Revert to the original graph
k.remove_edge(e_u, e_v)
k.add_edge(sub_u, sub_v, **{weight: sub_w})
return min_epsilon
# I have to know that the elements in pi correspond to the correct elements
# in the direction of ascent, even if the node labels are not integers.
# Thus, I will use dictionaries to made that mapping.
pi_dict = {}
for n in G:
pi_dict[n] = 0
del n
original_edge_weights = {}
for u, v, d in G.edges(data=True):
original_edge_weights[(u, v)] = d[weight]
dir_ascent, k_d = direction_of_ascent()
while dir_ascent is not None:
max_distance = find_epsilon(k_d, dir_ascent)
for n, v in dir_ascent.items():
pi_dict[n] += max_distance * v
for u, v, d in G.edges(data=True):
d[weight] = original_edge_weights[(u, v)] + pi_dict[u]
dir_ascent, k_d = direction_of_ascent()
# k_d is no longer an individual 1-arborescence but rather a set of
# minimal 1-arborescences at the maximum point of the polytope and should
# be reflected as such
k_max = k_d
# Search for a cycle within k_max. If a cycle exists, return it as the
# solution
for k in k_max:
if len([n for n in k if k.degree(n) == 2]) == G.order():
# Tour found
return k.size(weight), k
# Write the original edge weights back to G and every member of k_max at
# the maximum point. Also average the number of times that edge appears in
# the set of minimal 1-arborescences.
x_star = {}
size_k_max = len(k_max)
for u, v, d in G.edges(data=True):
edge_count = 0
d[weight] = original_edge_weights[(u, v)]
for k in k_max:
if (u, v) in k.edges():
edge_count += 1
k[u][v][weight] = original_edge_weights[(u, v)]
x_star[(u, v)] = edge_count / size_k_max
# Now symmetrize the edges in x_star and scale them according to (5) in
# reference [1]
z_star = {}
scale_factor = (G.order() - 1) / G.order()
for u, v in x_star:
frequency = x_star[(u, v)] + x_star[(v, u)]
if frequency > 0:
z_star[(u, v)] = scale_factor * frequency
del x_star
# Return the optimal weight and the z dict
return next(k_max.__iter__()).size(weight), z_star
@nx._dispatch
def spanning_tree_distribution(G, z):
"""
Find the asadpour exponential distribution of spanning trees.
Solves the Maximum Entropy Convex Program in the Asadpour algorithm [1]_
using the approach in section 7 to build an exponential distribution of
undirected spanning trees.
This algorithm ensures that the probability of any edge in a spanning
tree is proportional to the sum of the probabilities of the tress
containing that edge over the sum of the probabilities of all spanning
trees of the graph.
Parameters
----------
G : nx.MultiGraph
The undirected support graph for the Held Karp relaxation
z : dict
The output of `held_karp_ascent()`, a scaled version of the Held-Karp
solution.
Returns
-------
gamma : dict
The probability distribution which approximately preserves the marginal
probabilities of `z`.
"""
from math import exp
from math import log as ln
def q(e):
"""
The value of q(e) is described in the Asadpour paper is "the
probability that edge e will be included in a spanning tree T that is
chosen with probability proportional to exp(gamma(T))" which
basically means that it is the total probability of the edge appearing
across the whole distribution.
Parameters
----------
e : tuple
The `(u, v)` tuple describing the edge we are interested in
Returns
-------
float
The probability that a spanning tree chosen according to the
current values of gamma will include edge `e`.
"""
# Create the laplacian matrices
for u, v, d in G.edges(data=True):
d[lambda_key] = exp(gamma[(u, v)])
G_Kirchhoff = nx.total_spanning_tree_weight(G, lambda_key)
G_e = nx.contracted_edge(G, e, self_loops=False)
G_e_Kirchhoff = nx.total_spanning_tree_weight(G_e, lambda_key)
# Multiply by the weight of the contracted edge since it is not included
# in the total weight of the contracted graph.
return exp(gamma[(e[0], e[1])]) * G_e_Kirchhoff / G_Kirchhoff
# initialize gamma to the zero dict
gamma = {}
for u, v, _ in G.edges:
gamma[(u, v)] = 0
# set epsilon
EPSILON = 0.2
# pick an edge attribute name that is unlikely to be in the graph
lambda_key = "spanning_tree_distribution's secret attribute name for lambda"
while True:
# We need to know that know that no values of q_e are greater than
# (1 + epsilon) * z_e, however changing one gamma value can increase the
# value of a different q_e, so we have to complete the for loop without
# changing anything for the condition to be meet
in_range_count = 0
# Search for an edge with q_e > (1 + epsilon) * z_e
for u, v in gamma:
e = (u, v)
q_e = q(e)
z_e = z[e]
if q_e > (1 + EPSILON) * z_e:
delta = ln(
(q_e * (1 - (1 + EPSILON / 2) * z_e))
/ ((1 - q_e) * (1 + EPSILON / 2) * z_e)
)
gamma[e] -= delta
# Check that delta had the desired effect
new_q_e = q(e)
desired_q_e = (1 + EPSILON / 2) * z_e
if round(new_q_e, 8) != round(desired_q_e, 8):
raise nx.NetworkXError(
f"Unable to modify probability for edge ({u}, {v})"
)
else:
in_range_count += 1
# Check if the for loop terminated without changing any gamma
if in_range_count == len(gamma):
break
# Remove the new edge attributes
for _, _, d in G.edges(data=True):
if lambda_key in d:
del d[lambda_key]
return gamma
@nx._dispatch(edge_attrs="weight")
def greedy_tsp(G, weight="weight", source=None):
"""Return a low cost cycle starting at `source` and its cost.
This approximates a solution to the traveling salesman problem.
It finds a cycle of all the nodes that a salesman can visit in order
to visit many nodes while minimizing total distance.
It uses a simple greedy algorithm.
In essence, this function returns a large cycle given a source point
for which the total cost of the cycle is minimized.
Parameters
----------
G : Graph
The Graph should be a complete weighted undirected graph.
The distance between all pairs of nodes should be included.
weight : string, optional (default="weight")
Edge data key corresponding to the edge weight.
If any edge does not have this attribute the weight is set to 1.
source : node, optional (default: first node in list(G))
Starting node. If None, defaults to ``next(iter(G))``
Returns
-------
cycle : list of nodes
Returns the cycle (list of nodes) that a salesman
can follow to minimize total weight of the trip.
Raises
------
NetworkXError
If `G` is not complete, the algorithm raises an exception.
Examples
--------
>>> from networkx.algorithms import approximation as approx
>>> G = nx.DiGraph()
>>> G.add_weighted_edges_from({
... ("A", "B", 3), ("A", "C", 17), ("A", "D", 14), ("B", "A", 3),
... ("B", "C", 12), ("B", "D", 16), ("C", "A", 13),("C", "B", 12),
... ("C", "D", 4), ("D", "A", 14), ("D", "B", 15), ("D", "C", 2)
... })
>>> cycle = approx.greedy_tsp(G, source="D")
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
>>> cycle
['D', 'C', 'B', 'A', 'D']
>>> cost
31
Notes
-----
This implementation of a greedy algorithm is based on the following:
- The algorithm adds a node to the solution at every iteration.
- The algorithm selects a node not already in the cycle whose connection
to the previous node adds the least cost to the cycle.
A greedy algorithm does not always give the best solution.
However, it can construct a first feasible solution which can
be passed as a parameter to an iterative improvement algorithm such
as Simulated Annealing, or Threshold Accepting.
Time complexity: It has a running time $O(|V|^2)$
"""
# Check that G is a complete graph
N = len(G) - 1
# This check ignores selfloops which is what we want here.
if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()):
raise nx.NetworkXError("G must be a complete graph.")
if source is None:
source = nx.utils.arbitrary_element(G)
if G.number_of_nodes() == 2:
neighbor = next(G.neighbors(source))
return [source, neighbor, source]
nodeset = set(G)
nodeset.remove(source)
cycle = [source]
next_node = source
while nodeset:
nbrdict = G[next_node]
next_node = min(nodeset, key=lambda n: nbrdict[n].get(weight, 1))
cycle.append(next_node)
nodeset.remove(next_node)
cycle.append(cycle[0])
return cycle
@py_random_state(9)
@nx._dispatch(edge_attrs="weight")
def simulated_annealing_tsp(
G,
init_cycle,
weight="weight",
source=None,
temp=100,
move="1-1",
max_iterations=10,
N_inner=100,
alpha=0.01,
seed=None,
):
"""Returns an approximate solution to the traveling salesman problem.
This function uses simulated annealing to approximate the minimal cost
cycle through the nodes. Starting from a suboptimal solution, simulated
annealing perturbs that solution, occasionally accepting changes that make
the solution worse to escape from a locally optimal solution. The chance
of accepting such changes decreases over the iterations to encourage
an optimal result. In summary, the function returns a cycle starting
at `source` for which the total cost is minimized. It also returns the cost.
The chance of accepting a proposed change is related to a parameter called
the temperature (annealing has a physical analogue of steel hardening
as it cools). As the temperature is reduced, the chance of moves that
increase cost goes down.
Parameters
----------
G : Graph
`G` should be a complete weighted graph.
The distance between all pairs of nodes should be included.
init_cycle : list of all nodes or "greedy"
The initial solution (a cycle through all nodes returning to the start).
This argument has no default to make you think about it.
If "greedy", use `greedy_tsp(G, weight)`.
Other common starting cycles are `list(G) + [next(iter(G))]` or the final
result of `simulated_annealing_tsp` when doing `threshold_accepting_tsp`.
weight : string, optional (default="weight")
Edge data key corresponding to the edge weight.
If any edge does not have this attribute the weight is set to 1.
source : node, optional (default: first node in list(G))
Starting node. If None, defaults to ``next(iter(G))``
temp : int, optional (default=100)
The algorithm's temperature parameter. It represents the initial
value of temperature
move : "1-1" or "1-0" or function, optional (default="1-1")
Indicator of what move to use when finding new trial solutions.
Strings indicate two special built-in moves:
- "1-1": 1-1 exchange which transposes the position
of two elements of the current solution.
The function called is :func:`swap_two_nodes`.
For example if we apply 1-1 exchange in the solution
``A = [3, 2, 1, 4, 3]``
we can get the following by the transposition of 1 and 4 elements:
``A' = [3, 2, 4, 1, 3]``
- "1-0": 1-0 exchange which moves an node in the solution
to a new position.
The function called is :func:`move_one_node`.
For example if we apply 1-0 exchange in the solution
``A = [3, 2, 1, 4, 3]``
we can transfer the fourth element to the second position:
``A' = [3, 4, 2, 1, 3]``
You may provide your own functions to enact a move from
one solution to a neighbor solution. The function must take
the solution as input along with a `seed` input to control
random number generation (see the `seed` input here).
Your function should maintain the solution as a cycle with
equal first and last node and all others appearing once.
Your function should return the new solution.
max_iterations : int, optional (default=10)
Declared done when this number of consecutive iterations of
the outer loop occurs without any change in the best cost solution.
N_inner : int, optional (default=100)
The number of iterations of the inner loop.
alpha : float between (0, 1), optional (default=0.01)
Percentage of temperature decrease in each iteration
of outer loop
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
cycle : list of nodes
Returns the cycle (list of nodes) that a salesman
can follow to minimize total weight of the trip.
Raises
------
NetworkXError
If `G` is not complete the algorithm raises an exception.
Examples
--------
>>> from networkx.algorithms import approximation as approx
>>> G = nx.DiGraph()
>>> G.add_weighted_edges_from({
... ("A", "B", 3), ("A", "C", 17), ("A", "D", 14), ("B", "A", 3),
... ("B", "C", 12), ("B", "D", 16), ("C", "A", 13),("C", "B", 12),
... ("C", "D", 4), ("D", "A", 14), ("D", "B", 15), ("D", "C", 2)
... })
>>> cycle = approx.simulated_annealing_tsp(G, "greedy", source="D")
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
>>> cycle
['D', 'C', 'B', 'A', 'D']
>>> cost
31
>>> incycle = ["D", "B", "A", "C", "D"]
>>> cycle = approx.simulated_annealing_tsp(G, incycle, source="D")
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
>>> cycle
['D', 'C', 'B', 'A', 'D']
>>> cost
31
Notes
-----
Simulated Annealing is a metaheuristic local search algorithm.
The main characteristic of this algorithm is that it accepts
even solutions which lead to the increase of the cost in order
to escape from low quality local optimal solutions.
This algorithm needs an initial solution. If not provided, it is
constructed by a simple greedy algorithm. At every iteration, the
algorithm selects thoughtfully a neighbor solution.
Consider $c(x)$ cost of current solution and $c(x')$ cost of a
neighbor solution.
If $c(x') - c(x) <= 0$ then the neighbor solution becomes the current
solution for the next iteration. Otherwise, the algorithm accepts
the neighbor solution with probability $p = exp - ([c(x') - c(x)] / temp)$.
Otherwise the current solution is retained.
`temp` is a parameter of the algorithm and represents temperature.
Time complexity:
For $N_i$ iterations of the inner loop and $N_o$ iterations of the
outer loop, this algorithm has running time $O(N_i * N_o * |V|)$.
For more information and how the algorithm is inspired see:
http://en.wikipedia.org/wiki/Simulated_annealing
"""
if move == "1-1":
move = swap_two_nodes
elif move == "1-0":
move = move_one_node
if init_cycle == "greedy":
# Construct an initial solution using a greedy algorithm.
cycle = greedy_tsp(G, weight=weight, source=source)
if G.number_of_nodes() == 2:
return cycle
else:
cycle = list(init_cycle)
if source is None:
source = cycle[0]
elif source != cycle[0]:
raise nx.NetworkXError("source must be first node in init_cycle")
if cycle[0] != cycle[-1]:
raise nx.NetworkXError("init_cycle must be a cycle. (return to start)")
if len(cycle) - 1 != len(G) or len(set(G.nbunch_iter(cycle))) != len(G):
raise nx.NetworkXError("init_cycle should be a cycle over all nodes in G.")
# Check that G is a complete graph
N = len(G) - 1
# This check ignores selfloops which is what we want here.
if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()):
raise nx.NetworkXError("G must be a complete graph.")
if G.number_of_nodes() == 2:
neighbor = next(G.neighbors(source))
return [source, neighbor, source]
# Find the cost of initial solution
cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(cycle))
count = 0
best_cycle = cycle.copy()
best_cost = cost
while count <= max_iterations and temp > 0:
count += 1
for i in range(N_inner):
adj_sol = move(cycle, seed)
adj_cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(adj_sol))
delta = adj_cost - cost
if delta <= 0:
# Set current solution the adjacent solution.
cycle = adj_sol
cost = adj_cost
if cost < best_cost:
count = 0
best_cycle = cycle.copy()
best_cost = cost
else:
# Accept even a worse solution with probability p.
p = math.exp(-delta / temp)
if p >= seed.random():
cycle = adj_sol
cost = adj_cost
temp -= temp * alpha
return best_cycle
@py_random_state(9)
@nx._dispatch(edge_attrs="weight")
def threshold_accepting_tsp(
G,
init_cycle,
weight="weight",
source=None,
threshold=1,
move="1-1",
max_iterations=10,
N_inner=100,
alpha=0.1,
seed=None,
):
"""Returns an approximate solution to the traveling salesman problem.
This function uses threshold accepting methods to approximate the minimal cost
cycle through the nodes. Starting from a suboptimal solution, threshold
accepting methods perturb that solution, accepting any changes that make
the solution no worse than increasing by a threshold amount. Improvements
in cost are accepted, but so are changes leading to small increases in cost.
This allows the solution to leave suboptimal local minima in solution space.
The threshold is decreased slowly as iterations proceed helping to ensure
an optimum. In summary, the function returns a cycle starting at `source`
for which the total cost is minimized.
Parameters
----------
G : Graph
`G` should be a complete weighted graph.
The distance between all pairs of nodes should be included.
init_cycle : list or "greedy"
The initial solution (a cycle through all nodes returning to the start).
This argument has no default to make you think about it.
If "greedy", use `greedy_tsp(G, weight)`.
Other common starting cycles are `list(G) + [next(iter(G))]` or the final
result of `simulated_annealing_tsp` when doing `threshold_accepting_tsp`.
weight : string, optional (default="weight")
Edge data key corresponding to the edge weight.
If any edge does not have this attribute the weight is set to 1.
source : node, optional (default: first node in list(G))
Starting node. If None, defaults to ``next(iter(G))``
threshold : int, optional (default=1)
The algorithm's threshold parameter. It represents the initial
threshold's value
move : "1-1" or "1-0" or function, optional (default="1-1")
Indicator of what move to use when finding new trial solutions.
Strings indicate two special built-in moves:
- "1-1": 1-1 exchange which transposes the position
of two elements of the current solution.
The function called is :func:`swap_two_nodes`.
For example if we apply 1-1 exchange in the solution
``A = [3, 2, 1, 4, 3]``
we can get the following by the transposition of 1 and 4 elements:
``A' = [3, 2, 4, 1, 3]``
- "1-0": 1-0 exchange which moves an node in the solution
to a new position.
The function called is :func:`move_one_node`.
For example if we apply 1-0 exchange in the solution
``A = [3, 2, 1, 4, 3]``
we can transfer the fourth element to the second position:
``A' = [3, 4, 2, 1, 3]``
You may provide your own functions to enact a move from
one solution to a neighbor solution. The function must take
the solution as input along with a `seed` input to control
random number generation (see the `seed` input here).
Your function should maintain the solution as a cycle with
equal first and last node and all others appearing once.
Your function should return the new solution.
max_iterations : int, optional (default=10)
Declared done when this number of consecutive iterations of
the outer loop occurs without any change in the best cost solution.
N_inner : int, optional (default=100)
The number of iterations of the inner loop.
alpha : float between (0, 1), optional (default=0.1)
Percentage of threshold decrease when there is at
least one acceptance of a neighbor solution.
If no inner loop moves are accepted the threshold remains unchanged.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
cycle : list of nodes
Returns the cycle (list of nodes) that a salesman
can follow to minimize total weight of the trip.
Raises
------
NetworkXError
If `G` is not complete the algorithm raises an exception.
Examples
--------
>>> from networkx.algorithms import approximation as approx
>>> G = nx.DiGraph()
>>> G.add_weighted_edges_from({
... ("A", "B", 3), ("A", "C", 17), ("A", "D", 14), ("B", "A", 3),
... ("B", "C", 12), ("B", "D", 16), ("C", "A", 13),("C", "B", 12),
... ("C", "D", 4), ("D", "A", 14), ("D", "B", 15), ("D", "C", 2)
... })
>>> cycle = approx.threshold_accepting_tsp(G, "greedy", source="D")
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
>>> cycle
['D', 'C', 'B', 'A', 'D']
>>> cost
31
>>> incycle = ["D", "B", "A", "C", "D"]
>>> cycle = approx.threshold_accepting_tsp(G, incycle, source="D")
>>> cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle))
>>> cycle
['D', 'C', 'B', 'A', 'D']
>>> cost
31
Notes
-----
Threshold Accepting is a metaheuristic local search algorithm.
The main characteristic of this algorithm is that it accepts
even solutions which lead to the increase of the cost in order
to escape from low quality local optimal solutions.
This algorithm needs an initial solution. This solution can be
constructed by a simple greedy algorithm. At every iteration, it
selects thoughtfully a neighbor solution.
Consider $c(x)$ cost of current solution and $c(x')$ cost of
neighbor solution.
If $c(x') - c(x) <= threshold$ then the neighbor solution becomes the current
solution for the next iteration, where the threshold is named threshold.
In comparison to the Simulated Annealing algorithm, the Threshold
Accepting algorithm does not accept very low quality solutions
(due to the presence of the threshold value). In the case of
Simulated Annealing, even a very low quality solution can
be accepted with probability $p$.
Time complexity:
It has a running time $O(m * n * |V|)$ where $m$ and $n$ are the number
of times the outer and inner loop run respectively.
For more information and how algorithm is inspired see:
https://doi.org/10.1016/0021-9991(90)90201-B
See Also
--------
simulated_annealing_tsp
"""
if move == "1-1":
move = swap_two_nodes
elif move == "1-0":
move = move_one_node
if init_cycle == "greedy":
# Construct an initial solution using a greedy algorithm.
cycle = greedy_tsp(G, weight=weight, source=source)
if G.number_of_nodes() == 2:
return cycle
else:
cycle = list(init_cycle)
if source is None:
source = cycle[0]
elif source != cycle[0]:
raise nx.NetworkXError("source must be first node in init_cycle")
if cycle[0] != cycle[-1]:
raise nx.NetworkXError("init_cycle must be a cycle. (return to start)")
if len(cycle) - 1 != len(G) or len(set(G.nbunch_iter(cycle))) != len(G):
raise nx.NetworkXError("init_cycle is not all and only nodes.")
# Check that G is a complete graph
N = len(G) - 1
# This check ignores selfloops which is what we want here.
if any(len(nbrdict) - (n in nbrdict) != N for n, nbrdict in G.adj.items()):
raise nx.NetworkXError("G must be a complete graph.")
if G.number_of_nodes() == 2:
neighbor = list(G.neighbors(source))[0]
return [source, neighbor, source]
# Find the cost of initial solution
cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(cycle))
count = 0
best_cycle = cycle.copy()
best_cost = cost
while count <= max_iterations:
count += 1
accepted = False
for i in range(N_inner):
adj_sol = move(cycle, seed)
adj_cost = sum(G[u][v].get(weight, 1) for u, v in pairwise(adj_sol))
delta = adj_cost - cost
if delta <= threshold:
accepted = True
# Set current solution the adjacent solution.
cycle = adj_sol
cost = adj_cost
if cost < best_cost:
count = 0
best_cycle = cycle.copy()
best_cost = cost
if accepted:
threshold -= threshold * alpha
return best_cycle
|