File size: 10,203 Bytes
2902979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from sympy.core.singleton import S
from sympy.combinatorics.fp_groups import (FpGroup, low_index_subgroups,
                                   reidemeister_presentation, FpSubgroup,
                                           simplify_presentation)
from sympy.combinatorics.free_groups import (free_group, FreeGroup)

from sympy.testing.pytest import slow

"""
References
==========

[1] Holt, D., Eick, B., O'Brien, E.
"Handbook of Computational Group Theory"

[2] John J. Cannon; Lucien A. Dimino; George Havas; Jane M. Watson
Mathematics of Computation, Vol. 27, No. 123. (Jul., 1973), pp. 463-490.
"Implementation and Analysis of the Todd-Coxeter Algorithm"

[3] PROC. SECOND  INTERNAT. CONF. THEORY OF GROUPS, CANBERRA 1973,
pp. 347-356. "A Reidemeister-Schreier program" by George Havas.
http://staff.itee.uq.edu.au/havas/1973cdhw.pdf

"""

def test_low_index_subgroups():
    F, x, y = free_group("x, y")

    # Example 5.10 from [1] Pg. 194
    f = FpGroup(F, [x**2, y**3, (x*y)**4])
    L = low_index_subgroups(f, 4)
    t1 = [[[0, 0, 0, 0]],
          [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]],
          [[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]],
          [[1, 1, 0, 0], [0, 0, 1, 1]]]
    for i in range(len(t1)):
        assert L[i].table == t1[i]

    f = FpGroup(F, [x**2, y**3, (x*y)**7])
    L = low_index_subgroups(f, 15)
    t2 = [[[0, 0, 0, 0]],
           [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
            [4, 4, 5, 3], [6, 6, 3, 4], [5, 5, 6, 6]],
           [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
            [6, 6, 5, 3], [5, 5, 3, 4], [4, 4, 6, 6]],
           [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
            [6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
            [11, 11, 9, 6], [9, 9, 6, 8], [12, 12, 11, 7], [8, 8, 7, 10],
            [10, 10, 13, 14], [14, 14, 14, 12], [13, 13, 12, 13]],
           [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
            [6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
            [11, 11, 9, 6], [12, 12, 6, 8], [10, 10, 11, 7], [8, 8, 7, 10],
            [9, 9, 13, 14], [14, 14, 14, 12], [13, 13, 12, 13]],
           [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5],
            [6, 6, 5, 3], [7, 7, 3, 4], [4, 4, 8, 9], [5, 5, 10, 11],
            [11, 11, 9, 6], [12, 12, 6, 8], [13, 13, 11, 7], [8, 8, 7, 10],
            [9, 9, 12, 12], [10, 10, 13, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 3, 3], [2, 2, 5, 6]
            , [7, 7, 6, 4], [8, 8, 4, 5], [5, 5, 8, 9], [6, 6, 9, 7],
            [10, 10, 7, 8], [9, 9, 11, 12], [11, 11, 12, 10], [13, 13, 10, 11],
            [12, 12, 13, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 3, 3], [2, 2, 5, 6]
            , [7, 7, 6, 4], [8, 8, 4, 5], [5, 5, 8, 9], [6, 6, 9, 7],
            [10, 10, 7, 8], [9, 9, 11, 12], [13, 13, 12, 10], [12, 12, 10, 11],
            [11, 11, 13, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 4, 4]
            , [7, 7, 6, 3], [8, 8, 3, 5], [5, 5, 8, 9], [6, 6, 9, 7],
            [10, 10, 7, 8], [9, 9, 11, 12], [13, 13, 12, 10], [12, 12, 10, 11],
            [11, 11, 13, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
            , [5, 5, 6, 3], [9, 9, 3, 5], [10, 10, 8, 4], [8, 8, 4, 7],
            [6, 6, 10, 11], [7, 7, 11, 9], [12, 12, 9, 10], [11, 11, 13, 14],
            [14, 14, 14, 12], [13, 13, 12, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
            , [6, 6, 6, 3], [5, 5, 3, 5], [8, 8, 8, 4], [7, 7, 4, 7]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
            , [9, 9, 6, 3], [6, 6, 3, 5], [10, 10, 8, 4], [11, 11, 4, 7],
            [5, 5, 10, 12], [7, 7, 12, 9], [8, 8, 11, 11], [13, 13, 9, 10],
            [12, 12, 13, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
            , [9, 9, 6, 3], [6, 6, 3, 5], [10, 10, 8, 4], [11, 11, 4, 7],
            [5, 5, 12, 11], [7, 7, 10, 10], [8, 8, 9, 12], [13, 13, 11, 9],
            [12, 12, 13, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
            , [9, 9, 6, 3], [10, 10, 3, 5], [7, 7, 8, 4], [11, 11, 4, 7],
            [5, 5, 9, 9], [6, 6, 11, 12], [8, 8, 12, 10], [13, 13, 10, 11],
            [12, 12, 13, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
            , [9, 9, 6, 3], [10, 10, 3, 5], [7, 7, 8, 4], [11, 11, 4, 7],
            [5, 5, 12, 11], [6, 6, 10, 10], [8, 8, 9, 12], [13, 13, 11, 9],
            [12, 12, 13, 13]],
           [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8]
            , [9, 9, 6, 3], [10, 10, 3, 5], [11, 11, 8, 4], [12, 12, 4, 7],
            [5, 5, 9, 9], [6, 6, 12, 13], [7, 7, 11, 11], [8, 8, 13, 10],
            [13, 13, 10, 12]],
           [[1, 1, 0, 0], [0, 0, 2, 3], [4, 4, 3, 1], [5, 5, 1, 2], [2, 2, 4, 4]
            , [3, 3, 6, 7], [7, 7, 7, 5], [6, 6, 5, 6]]]
    for i  in range(len(t2)):
        assert L[i].table == t2[i]

    f = FpGroup(F, [x**2, y**3, (x*y)**7])
    L = low_index_subgroups(f, 10, [x])
    t3 = [[[0, 0, 0, 0]],
          [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5], [4, 4, 5, 3],
           [6, 6, 3, 4], [5, 5, 6, 6]],
          [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 4, 5], [6, 6, 5, 3],
           [5, 5, 3, 4], [4, 4, 6, 6]],
          [[0, 0, 1, 2], [3, 3, 2, 0], [4, 4, 0, 1], [1, 1, 5, 6], [2, 2, 7, 8],
           [6, 6, 6, 3], [5, 5, 3, 5], [8, 8, 8, 4], [7, 7, 4, 7]]]
    for i in range(len(t3)):
        assert L[i].table == t3[i]


def test_subgroup_presentations():
    F, x, y = free_group("x, y")
    f = FpGroup(F, [x**3, y**5, (x*y)**2])
    H = [x*y, x**-1*y**-1*x*y*x]
    p1 = reidemeister_presentation(f, H)
    assert str(p1) == "((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))"

    H = f.subgroup(H)
    assert (H.generators, H.relators) == p1

    f = FpGroup(F, [x**3, y**3, (x*y)**3])
    H = [x*y, x*y**-1]
    p2 = reidemeister_presentation(f, H)
    assert str(p2) == "((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))"

    f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])
    H = [x]
    p3 = reidemeister_presentation(f, H)
    assert str(p3) == "((x_0,), (x_0**4,))"

    f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])
    H = [x]
    p4 = reidemeister_presentation(f, H)
    assert str(p4) == "((x_0,), (x_0**6,))"

    # this presentation can be improved, the most simplified form
    # of presentation is <a, b | a^11, b^2, (a*b)^3, (a^4*b*a^-5*b)^2>
    # See [2] Pg 474 group PSL_2(11)
    # This is the group PSL_2(11)
    F, a, b, c = free_group("a, b, c")
    f = FpGroup(F, [a**11, b**5, c**4, (b*c**2)**2, (a*b*c)**3, (a**4*c**2)**3, b**2*c**-1*b**-1*c, a**4*b**-1*a**-1*b])
    H = [a, b, c**2]
    gens, rels = reidemeister_presentation(f, H)
    assert str(gens) == "(b_1, c_3)"
    assert len(rels) == 18


@slow
def test_order():
    F, x, y = free_group("x, y")
    f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
    assert f.order() == 8

    f = FpGroup(F, [x*y*x**-1*y**-1, y**2])
    assert f.order() is S.Infinity

    F, a, b, c = free_group("a, b, c")
    f = FpGroup(F, [a**250, b**2, c*b*c**-1*b, c**4, c**-1*a**-1*c*a, a**-1*b**-1*a*b])
    assert f.order() == 2000

    F, x = free_group("x")
    f = FpGroup(F, [])
    assert f.order() is S.Infinity

    f = FpGroup(free_group('')[0], [])
    assert f.order() == 1

def test_fp_subgroup():
    def _test_subgroup(K, T, S):
        _gens = T(K.generators)
        assert all(elem in S for elem in _gens)
        assert T.is_injective()
        assert T.image().order() == S.order()
    F, x, y = free_group("x, y")
    f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
    S = FpSubgroup(f, [x*y])
    assert (x*y)**-3 in S
    K, T = f.subgroup([x*y], homomorphism=True)
    assert T(K.generators) == [y*x**-1]
    _test_subgroup(K, T, S)

    S = FpSubgroup(f, [x**-1*y*x])
    assert x**-1*y**4*x in S
    assert x**-1*y**4*x**2 not in S
    K, T = f.subgroup([x**-1*y*x], homomorphism=True)
    assert T(K.generators[0]**3) == y**3
    _test_subgroup(K, T, S)

    f = FpGroup(F, [x**3, y**5, (x*y)**2])
    H = [x*y, x**-1*y**-1*x*y*x]
    K, T = f.subgroup(H, homomorphism=True)
    S = FpSubgroup(f, H)
    _test_subgroup(K, T, S)

def test_permutation_methods():
    F, x, y = free_group("x, y")
    # DihedralGroup(8)
    G = FpGroup(F, [x**2, y**8, x*y*x**-1*y])
    T = G._to_perm_group()[1]
    assert T.is_isomorphism()
    assert G.center() == [y**4]

    # DiheadralGroup(4)
    G = FpGroup(F, [x**2, y**4, x*y*x**-1*y])
    S = FpSubgroup(G, G.normal_closure([x]))
    assert x in S
    assert y**-1*x*y in S

    # Z_5xZ_4
    G = FpGroup(F, [x*y*x**-1*y**-1, y**5, x**4])
    assert G.is_abelian
    assert G.is_solvable

    # AlternatingGroup(5)
    G = FpGroup(F, [x**3, y**2, (x*y)**5])
    assert not G.is_solvable

    # AlternatingGroup(4)
    G = FpGroup(F, [x**3, y**2, (x*y)**3])
    assert len(G.derived_series()) == 3
    S = FpSubgroup(G, G.derived_subgroup())
    assert S.order() == 4


def test_simplify_presentation():
    # ref #16083
    G = simplify_presentation(FpGroup(FreeGroup([]), []))
    assert not G.generators
    assert not G.relators

    # CyclicGroup(3)
    # The second generator in <x, y | x^2, x^5, y^3> is trivial due to relators {x^2, x^5}
    F, x, y = free_group("x, y")
    G = simplify_presentation(FpGroup(F, [x**2, x**5, y**3]))
    assert x in G.relators

def test_cyclic():
    F, x, y = free_group("x, y")
    f = FpGroup(F, [x*y, x**-1*y**-1*x*y*x])
    assert f.is_cyclic
    f = FpGroup(F, [x*y, x*y**-1])
    assert f.is_cyclic
    f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
    assert not f.is_cyclic


def test_abelian_invariants():
    F, x, y = free_group("x, y")
    f = FpGroup(F, [x*y, x**-1*y**-1*x*y*x])
    assert f.abelian_invariants() == []
    f = FpGroup(F, [x*y, x*y**-1])
    assert f.abelian_invariants() == [2]
    f = FpGroup(F, [x**4, y**2, x*y*x**-1*y])
    assert f.abelian_invariants() == [2, 4]