File size: 6,411 Bytes
2902979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from sympy.combinatorics.free_groups import free_group, FreeGroup
from sympy.core import Symbol
from sympy.testing.pytest import raises
from sympy.core.numbers import oo

F, x, y, z = free_group("x, y, z")


def test_FreeGroup__init__():
    x, y, z = map(Symbol, "xyz")

    assert len(FreeGroup("x, y, z").generators) == 3
    assert len(FreeGroup(x).generators) == 1
    assert len(FreeGroup(("x", "y", "z"))) == 3
    assert len(FreeGroup((x, y, z)).generators) == 3


def test_FreeGroup__getnewargs__():
    x, y, z = map(Symbol, "xyz")
    assert FreeGroup("x, y, z").__getnewargs__() == ((x, y, z),)


def test_free_group():
    G, a, b, c = free_group("a, b, c")
    assert F.generators == (x, y, z)
    assert x*z**2 in F
    assert x in F
    assert y*z**-1 in F
    assert (y*z)**0 in F
    assert a not in F
    assert a**0 not in F
    assert len(F) == 3
    assert str(F) == '<free group on the generators (x, y, z)>'
    assert not F == G
    assert F.order() is oo
    assert F.is_abelian == False
    assert F.center() == {F.identity}

    (e,) = free_group("")
    assert e.order() == 1
    assert e.generators == ()
    assert e.elements == {e.identity}
    assert e.is_abelian == True


def test_FreeGroup__hash__():
    assert hash(F)


def test_FreeGroup__eq__():
    assert free_group("x, y, z")[0] == free_group("x, y, z")[0]
    assert free_group("x, y, z")[0] is free_group("x, y, z")[0]

    assert free_group("x, y, z")[0] != free_group("a, x, y")[0]
    assert free_group("x, y, z")[0] is not free_group("a, x, y")[0]

    assert free_group("x, y")[0] != free_group("x, y, z")[0]
    assert free_group("x, y")[0] is not free_group("x, y, z")[0]

    assert free_group("x, y, z")[0] != free_group("x, y")[0]
    assert free_group("x, y, z")[0] is not free_group("x, y")[0]


def test_FreeGroup__getitem__():
    assert F[0:] == FreeGroup("x, y, z")
    assert F[1:] == FreeGroup("y, z")
    assert F[2:] == FreeGroup("z")


def test_FreeGroupElm__hash__():
    assert hash(x*y*z)


def test_FreeGroupElm_copy():
    f = x*y*z**3
    g = f.copy()
    h = x*y*z**7

    assert f == g
    assert f != h


def test_FreeGroupElm_inverse():
    assert x.inverse() == x**-1
    assert (x*y).inverse() == y**-1*x**-1
    assert (y*x*y**-1).inverse() == y*x**-1*y**-1
    assert (y**2*x**-1).inverse() == x*y**-2


def test_FreeGroupElm_type_error():
    raises(TypeError, lambda: 2/x)
    raises(TypeError, lambda: x**2 + y**2)
    raises(TypeError, lambda: x/2)


def test_FreeGroupElm_methods():
    assert (x**0).order() == 1
    assert (y**2).order() is oo
    assert (x**-1*y).commutator(x) == y**-1*x**-1*y*x
    assert len(x**2*y**-1) == 3
    assert len(x**-1*y**3*z) == 5


def test_FreeGroupElm_eliminate_word():
    w = x**5*y*x**2*y**-4*x
    assert w.eliminate_word( x, x**2 ) == x**10*y*x**4*y**-4*x**2
    w3 = x**2*y**3*x**-1*y
    assert w3.eliminate_word(x, x**2) == x**4*y**3*x**-2*y
    assert w3.eliminate_word(x, y) == y**5
    assert w3.eliminate_word(x, y**4) == y**8
    assert w3.eliminate_word(y, x**-1) == x**-3
    assert w3.eliminate_word(x, y*z) == y*z*y*z*y**3*z**-1
    assert (y**-3).eliminate_word(y, x**-1*z**-1) == z*x*z*x*z*x
    #assert w3.eliminate_word(x, y*x) == y*x*y*x**2*y*x*y*x*y*x*z**3
    #assert w3.eliminate_word(x, x*y) == x*y*x**2*y*x*y*x*y*x*y*z**3


def test_FreeGroupElm_array_form():
    assert (x*z).array_form == ((Symbol('x'), 1), (Symbol('z'), 1))
    assert (x**2*z*y*x**-2).array_form == \
        ((Symbol('x'), 2), (Symbol('z'), 1), (Symbol('y'), 1), (Symbol('x'), -2))
    assert (x**-2*y**-1).array_form == ((Symbol('x'), -2), (Symbol('y'), -1))


def test_FreeGroupElm_letter_form():
    assert (x**3).letter_form == (Symbol('x'), Symbol('x'), Symbol('x'))
    assert (x**2*z**-2*x).letter_form == \
        (Symbol('x'), Symbol('x'), -Symbol('z'), -Symbol('z'), Symbol('x'))


def test_FreeGroupElm_ext_rep():
    assert (x**2*z**-2*x).ext_rep == \
        (Symbol('x'), 2, Symbol('z'), -2, Symbol('x'), 1)
    assert (x**-2*y**-1).ext_rep == (Symbol('x'), -2, Symbol('y'), -1)
    assert (x*z).ext_rep == (Symbol('x'), 1, Symbol('z'), 1)


def test_FreeGroupElm__mul__pow__():
    x1 = x.group.dtype(((Symbol('x'), 1),))
    assert x**2 == x1*x

    assert (x**2*y*x**-2)**4 == x**2*y**4*x**-2
    assert (x**2)**2 == x**4
    assert (x**-1)**-1 == x
    assert (x**-1)**0 == F.identity
    assert (y**2)**-2 == y**-4

    assert x**2*x**-1 == x
    assert x**2*y**2*y**-1 == x**2*y
    assert x*x**-1 == F.identity

    assert x/x == F.identity
    assert x/x**2 == x**-1
    assert (x**2*y)/(x**2*y**-1) == x**2*y**2*x**-2
    assert (x**2*y)/(y**-1*x**2) == x**2*y*x**-2*y

    assert x*(x**-1*y*z*y**-1) == y*z*y**-1
    assert x**2*(x**-2*y**-1*z**2*y) == y**-1*z**2*y

    a = F.identity
    for n in range(10):
        assert a == x**n
        assert a**-1 == x**-n
        a *= x


def test_FreeGroupElm__len__():
    assert len(x**5*y*x**2*y**-4*x) == 13
    assert len(x**17) == 17
    assert len(y**0) == 0


def test_FreeGroupElm_comparison():
    assert not (x*y == y*x)
    assert x**0 == y**0

    assert x**2 < y**3
    assert not x**3 < y**2
    assert x*y < x**2*y
    assert x**2*y**2 < y**4
    assert not y**4 < y**-4
    assert not y**4 < x**-4
    assert y**-2 < y**2

    assert x**2 <= y**2
    assert x**2 <= x**2

    assert not y*z > z*y
    assert x > x**-1

    assert not x**2 >= y**2


def test_FreeGroupElm_syllables():
    w = x**5*y*x**2*y**-4*x
    assert w.number_syllables() == 5
    assert w.exponent_syllable(2) == 2
    assert w.generator_syllable(3) == Symbol('y')
    assert w.sub_syllables(1, 2) == y
    assert w.sub_syllables(3, 3) == F.identity


def test_FreeGroup_exponents():
    w1 = x**2*y**3
    assert w1.exponent_sum(x) == 2
    assert w1.exponent_sum(x**-1) == -2
    assert w1.generator_count(x) == 2

    w2 = x**2*y**4*x**-3
    assert w2.exponent_sum(x) == -1
    assert w2.generator_count(x) == 5


def test_FreeGroup_generators():
    assert (x**2*y**4*z**-1).contains_generators() == {x, y, z}
    assert (x**-1*y**3).contains_generators() == {x, y}


def test_FreeGroupElm_words():
    w = x**5*y*x**2*y**-4*x
    assert w.subword(2, 6) == x**3*y
    assert w.subword(3, 2) == F.identity
    assert w.subword(6, 10) == x**2*y**-2

    assert w.substituted_word(0, 7, y**-1) == y**-1*x*y**-4*x
    assert w.substituted_word(0, 7, y**2*x) == y**2*x**2*y**-4*x