File size: 6,991 Bytes
2902979
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from sympy.core.numbers import (I, Rational, oo, pi, zoo)
from sympy.core.singleton import S
from sympy.core.symbol import (Dummy, Symbol)
from sympy.functions.elementary.hyperbolic import atanh
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (sin, tan)
from sympy.functions.special.gamma_functions import gamma
from sympy.functions.special.hyper import (hyper, meijerg)
from sympy.integrals.integrals import Integral
from sympy.series.order import O
from sympy.functions.special.elliptic_integrals import (elliptic_k as K,
    elliptic_f as F, elliptic_e as E, elliptic_pi as P)
from sympy.core.random import (test_derivative_numerically as td,
                                      random_complex_number as randcplx,
                                      verify_numerically as tn)
from sympy.abc import z, m, n

i = Symbol('i', integer=True)
j = Symbol('k', integer=True, positive=True)
t = Dummy('t')

def test_K():
    assert K(0) == pi/2
    assert K(S.Half) == 8*pi**Rational(3, 2)/gamma(Rational(-1, 4))**2
    assert K(1) is zoo
    assert K(-1) == gamma(Rational(1, 4))**2/(4*sqrt(2*pi))
    assert K(oo) == 0
    assert K(-oo) == 0
    assert K(I*oo) == 0
    assert K(-I*oo) == 0
    assert K(zoo) == 0

    assert K(z).diff(z) == (E(z) - (1 - z)*K(z))/(2*z*(1 - z))
    assert td(K(z), z)

    zi = Symbol('z', real=False)
    assert K(zi).conjugate() == K(zi.conjugate())
    zr = Symbol('z', negative=True)
    assert K(zr).conjugate() == K(zr)

    assert K(z).rewrite(hyper) == \
        (pi/2)*hyper((S.Half, S.Half), (S.One,), z)
    assert tn(K(z), (pi/2)*hyper((S.Half, S.Half), (S.One,), z))
    assert K(z).rewrite(meijerg) == \
        meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2
    assert tn(K(z), meijerg(((S.Half, S.Half), []), ((S.Zero,), (S.Zero,)), -z)/2)

    assert K(z).series(z) == pi/2 + pi*z/8 + 9*pi*z**2/128 + \
        25*pi*z**3/512 + 1225*pi*z**4/32768 + 3969*pi*z**5/131072 + O(z**6)

    assert K(m).rewrite(Integral).dummy_eq(
        Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, pi/2)))

def test_F():
    assert F(z, 0) == z
    assert F(0, m) == 0
    assert F(pi*i/2, m) == i*K(m)
    assert F(z, oo) == 0
    assert F(z, -oo) == 0

    assert F(-z, m) == -F(z, m)

    assert F(z, m).diff(z) == 1/sqrt(1 - m*sin(z)**2)
    assert F(z, m).diff(m) == E(z, m)/(2*m*(1 - m)) - F(z, m)/(2*m) - \
        sin(2*z)/(4*(1 - m)*sqrt(1 - m*sin(z)**2))
    r = randcplx()
    assert td(F(z, r), z)
    assert td(F(r, m), m)

    mi = Symbol('m', real=False)
    assert F(z, mi).conjugate() == F(z.conjugate(), mi.conjugate())
    mr = Symbol('m', negative=True)
    assert F(z, mr).conjugate() == F(z.conjugate(), mr)

    assert F(z, m).series(z) == \
        z + z**5*(3*m**2/40 - m/30) + m*z**3/6 + O(z**6)

    assert F(z, m).rewrite(Integral).dummy_eq(
        Integral(1/sqrt(1 - m*sin(t)**2), (t, 0, z)))

def test_E():
    assert E(z, 0) == z
    assert E(0, m) == 0
    assert E(i*pi/2, m) == i*E(m)
    assert E(z, oo) is zoo
    assert E(z, -oo) is zoo
    assert E(0) == pi/2
    assert E(1) == 1
    assert E(oo) == I*oo
    assert E(-oo) is oo
    assert E(zoo) is zoo

    assert E(-z, m) == -E(z, m)

    assert E(z, m).diff(z) == sqrt(1 - m*sin(z)**2)
    assert E(z, m).diff(m) == (E(z, m) - F(z, m))/(2*m)
    assert E(z).diff(z) == (E(z) - K(z))/(2*z)
    r = randcplx()
    assert td(E(r, m), m)
    assert td(E(z, r), z)
    assert td(E(z), z)

    mi = Symbol('m', real=False)
    assert E(z, mi).conjugate() == E(z.conjugate(), mi.conjugate())
    assert E(mi).conjugate() == E(mi.conjugate())
    mr = Symbol('m', negative=True)
    assert E(z, mr).conjugate() == E(z.conjugate(), mr)
    assert E(mr).conjugate() == E(mr)

    assert E(z).rewrite(hyper) == (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), z)
    assert tn(E(z), (pi/2)*hyper((Rational(-1, 2), S.Half), (S.One,), z))
    assert E(z).rewrite(meijerg) == \
        -meijerg(((S.Half, Rational(3, 2)), []), ((S.Zero,), (S.Zero,)), -z)/4
    assert tn(E(z), -meijerg(((S.Half, Rational(3, 2)), []), ((S.Zero,), (S.Zero,)), -z)/4)

    assert E(z, m).series(z) == \
        z + z**5*(-m**2/40 + m/30) - m*z**3/6 + O(z**6)
    assert E(z).series(z) == pi/2 - pi*z/8 - 3*pi*z**2/128 - \
        5*pi*z**3/512 - 175*pi*z**4/32768 - 441*pi*z**5/131072 + O(z**6)
    assert E(4*z/(z+1)).series(z) == \
        pi/2 - pi*z/2 + pi*z**2/8 - 3*pi*z**3/8 - 15*pi*z**4/128 - 93*pi*z**5/128 + O(z**6)

    assert E(z, m).rewrite(Integral).dummy_eq(
        Integral(sqrt(1 - m*sin(t)**2), (t, 0, z)))
    assert E(m).rewrite(Integral).dummy_eq(
        Integral(sqrt(1 - m*sin(t)**2), (t, 0, pi/2)))

def test_P():
    assert P(0, z, m) == F(z, m)
    assert P(1, z, m) == F(z, m) + \
        (sqrt(1 - m*sin(z)**2)*tan(z) - E(z, m))/(1 - m)
    assert P(n, i*pi/2, m) == i*P(n, m)
    assert P(n, z, 0) == atanh(sqrt(n - 1)*tan(z))/sqrt(n - 1)
    assert P(n, z, n) == F(z, n) - P(1, z, n) + tan(z)/sqrt(1 - n*sin(z)**2)
    assert P(oo, z, m) == 0
    assert P(-oo, z, m) == 0
    assert P(n, z, oo) == 0
    assert P(n, z, -oo) == 0
    assert P(0, m) == K(m)
    assert P(1, m) is zoo
    assert P(n, 0) == pi/(2*sqrt(1 - n))
    assert P(2, 1) is -oo
    assert P(-1, 1) is oo
    assert P(n, n) == E(n)/(1 - n)

    assert P(n, -z, m) == -P(n, z, m)

    ni, mi = Symbol('n', real=False), Symbol('m', real=False)
    assert P(ni, z, mi).conjugate() == \
        P(ni.conjugate(), z.conjugate(), mi.conjugate())
    nr, mr = Symbol('n', negative=True), \
        Symbol('m', negative=True)
    assert P(nr, z, mr).conjugate() == P(nr, z.conjugate(), mr)
    assert P(n, m).conjugate() == P(n.conjugate(), m.conjugate())

    assert P(n, z, m).diff(n) == (E(z, m) + (m - n)*F(z, m)/n +
        (n**2 - m)*P(n, z, m)/n - n*sqrt(1 -
            m*sin(z)**2)*sin(2*z)/(2*(1 - n*sin(z)**2)))/(2*(m - n)*(n - 1))
    assert P(n, z, m).diff(z) == 1/(sqrt(1 - m*sin(z)**2)*(1 - n*sin(z)**2))
    assert P(n, z, m).diff(m) == (E(z, m)/(m - 1) + P(n, z, m) -
        m*sin(2*z)/(2*(m - 1)*sqrt(1 - m*sin(z)**2)))/(2*(n - m))
    assert P(n, m).diff(n) == (E(m) + (m - n)*K(m)/n +
        (n**2 - m)*P(n, m)/n)/(2*(m - n)*(n - 1))
    assert P(n, m).diff(m) == (E(m)/(m - 1) + P(n, m))/(2*(n - m))

    # These tests fail due to
    # https://github.com/fredrik-johansson/mpmath/issues/571#issuecomment-777201962
    # https://github.com/sympy/sympy/issues/20933#issuecomment-777080385
    #
    # rx, ry = randcplx(), randcplx()
    # assert td(P(n, rx, ry), n)
    # assert td(P(rx, z, ry), z)
    # assert td(P(rx, ry, m), m)

    assert P(n, z, m).series(z) == z + z**3*(m/6 + n/3) + \
        z**5*(3*m**2/40 + m*n/10 - m/30 + n**2/5 - n/15) + O(z**6)

    assert P(n, z, m).rewrite(Integral).dummy_eq(
        Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, z)))
    assert P(n, m).rewrite(Integral).dummy_eq(
        Integral(1/((1 - n*sin(t)**2)*sqrt(1 - m*sin(t)**2)), (t, 0, pi/2)))