File size: 31,769 Bytes
ac2f8e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 |
"""Implements "A Fast Linear-Arithmetic Solver for DPLL(T)"
The LRASolver class defined in this file can be used
in conjunction with a SAT solver to check the
satisfiability of formulas involving inequalities.
Here's an example of how that would work:
Suppose you want to check the satisfiability of
the following formula:
>>> from sympy.core.relational import Eq
>>> from sympy.abc import x, y
>>> f = ((x > 0) | (x < 0)) & (Eq(x, 0) | Eq(y, 1)) & (~Eq(y, 1) | Eq(1, 2))
First a preprocessing step should be done on f. During preprocessing,
f should be checked for any predicates such as `Q.prime` that can't be
handled. Also unequality like `~Eq(y, 1)` should be split.
I should mention that the paper says to split both equalities and
unequality, but this implementation only requires that unequality
be split.
>>> f = ((x > 0) | (x < 0)) & (Eq(x, 0) | Eq(y, 1)) & ((y < 1) | (y > 1) | Eq(1, 2))
Then an LRASolver instance needs to be initialized with this formula.
>>> from sympy.assumptions.cnf import CNF, EncodedCNF
>>> from sympy.assumptions.ask import Q
>>> from sympy.logic.algorithms.lra_theory import LRASolver
>>> cnf = CNF.from_prop(f)
>>> enc = EncodedCNF()
>>> enc.add_from_cnf(cnf)
>>> lra, conflicts = LRASolver.from_encoded_cnf(enc)
Any immediate one-lital conflicts clauses will be detected here.
In this example, `~Eq(1, 2)` is one such conflict clause. We'll
want to add it to `f` so that the SAT solver is forced to
assign Eq(1, 2) to False.
>>> f = f & ~Eq(1, 2)
Now that the one-literal conflict clauses have been added
and an lra object has been initialized, we can pass `f`
to a SAT solver. The SAT solver will give us a satisfying
assignment such as:
(1 = 2): False
(y = 1): True
(y < 1): True
(y > 1): True
(x = 0): True
(x < 0): True
(x > 0): True
Next you would pass this assignment to the LRASolver
which will be able to determine that this particular
assignment is satisfiable or not.
Note that since EncodedCNF is inherently non-deterministic,
the int each predicate is encoded as is not consistent. As a
result, the code below likely does not reflect the assignment
given above.
>>> lra.assert_lit(-1) #doctest: +SKIP
>>> lra.assert_lit(2) #doctest: +SKIP
>>> lra.assert_lit(3) #doctest: +SKIP
>>> lra.assert_lit(4) #doctest: +SKIP
>>> lra.assert_lit(5) #doctest: +SKIP
>>> lra.assert_lit(6) #doctest: +SKIP
>>> lra.assert_lit(7) #doctest: +SKIP
>>> is_sat, conflict_or_assignment = lra.check()
As the particular assignment suggested is not satisfiable,
the LRASolver will return unsat and a conflict clause when
given that assignment. The conflict clause will always be
minimal, but there can be multiple minimal conflict clauses.
One possible conflict clause could be `~(x < 0) | ~(x > 0)`.
We would then add whatever conflict clause is given to
`f` to prevent the SAT solver from coming up with an
assignment with the same conflicting literals. In this case,
the conflict clause `~(x < 0) | ~(x > 0)` would prevent
any assignment where both (x < 0) and (x > 0) were both
true.
The SAT solver would then find another assignment
and we would check that assignment with the LRASolver
and so on. Eventually either a satisfying assignment
that the SAT solver and LRASolver agreed on would be found
or enough conflict clauses would be added so that the
boolean formula was unsatisfiable.
This implementation is based on [1]_, which includes a
detailed explanation of the algorithm and pseudocode
for the most important functions.
[1]_ also explains how backtracking and theory propagation
could be implemented to speed up the current implementation,
but these are not currently implemented.
TODO:
- Handle non-rational real numbers
- Handle positive and negative infinity
- Implement backtracking and theory proposition
- Simplify matrix by removing unused variables using Gaussian elimination
References
==========
.. [1] Dutertre, B., de Moura, L.:
A Fast Linear-Arithmetic Solver for DPLL(T)
https://link.springer.com/chapter/10.1007/11817963_11
"""
from sympy.solvers.solveset import linear_eq_to_matrix
from sympy.matrices.dense import eye
from sympy.assumptions import Predicate
from sympy.assumptions.assume import AppliedPredicate
from sympy.assumptions.ask import Q
from sympy.core import Dummy
from sympy.core.mul import Mul
from sympy.core.add import Add
from sympy.core.relational import Eq, Ne
from sympy.core.sympify import sympify
from sympy.core.singleton import S
from sympy.core.numbers import Rational, oo
from sympy.matrices.dense import Matrix
class UnhandledInput(Exception):
"""
Raised while creating an LRASolver if non-linearity
or non-rational numbers are present.
"""
# predicates that LRASolver understands and makes use of
ALLOWED_PRED = {Q.eq, Q.gt, Q.lt, Q.le, Q.ge}
# if true ~Q.gt(x, y) implies Q.le(x, y)
HANDLE_NEGATION = True
class LRASolver():
"""
Linear Arithmetic Solver for DPLL(T) implemented with an algorithm based on
the Dual Simplex method. Uses Bland's pivoting rule to avoid cycling.
References
==========
.. [1] Dutertre, B., de Moura, L.:
A Fast Linear-Arithmetic Solver for DPLL(T)
https://link.springer.com/chapter/10.1007/11817963_11
"""
def __init__(self, A, slack_variables, nonslack_variables, enc_to_boundary, s_subs, testing_mode):
"""
Use the "from_encoded_cnf" method to create a new LRASolver.
"""
self.run_checks = testing_mode
self.s_subs = s_subs # used only for test_lra_theory.test_random_problems
if any(not isinstance(a, Rational) for a in A):
raise UnhandledInput("Non-rational numbers are not handled")
if any(not isinstance(b.bound, Rational) for b in enc_to_boundary.values()):
raise UnhandledInput("Non-rational numbers are not handled")
m, n = len(slack_variables), len(slack_variables)+len(nonslack_variables)
if m != 0:
assert A.shape == (m, n)
if self.run_checks:
assert A[:, n-m:] == -eye(m)
self.enc_to_boundary = enc_to_boundary # mapping of int to Boundary objects
self.boundary_to_enc = {value: key for key, value in enc_to_boundary.items()}
self.A = A
self.slack = slack_variables
self.nonslack = nonslack_variables
self.all_var = nonslack_variables + slack_variables
self.slack_set = set(slack_variables)
self.is_sat = True # While True, all constraints asserted so far are satisfiable
self.result = None # always one of: (True, assignment), (False, conflict clause), None
@staticmethod
def from_encoded_cnf(encoded_cnf, testing_mode=False):
"""
Creates an LRASolver from an EncodedCNF object
and a list of conflict clauses for propositions
that can be simplified to True or False.
Parameters
==========
encoded_cnf : EncodedCNF
testing_mode : bool
Setting testing_mode to True enables some slow assert statements
and sorting to reduce nonterministic behavior.
Returns
=======
(lra, conflicts)
lra : LRASolver
conflicts : list
Contains a one-literal conflict clause for each proposition
that can be simplified to True or False.
Example
=======
>>> from sympy.core.relational import Eq
>>> from sympy.assumptions.cnf import CNF, EncodedCNF
>>> from sympy.assumptions.ask import Q
>>> from sympy.logic.algorithms.lra_theory import LRASolver
>>> from sympy.abc import x, y, z
>>> phi = (x >= 0) & ((x + y <= 2) | (x + 2 * y - z >= 6))
>>> phi = phi & (Eq(x + y, 2) | (x + 2 * y - z > 4))
>>> phi = phi & Q.gt(2, 1)
>>> cnf = CNF.from_prop(phi)
>>> enc = EncodedCNF()
>>> enc.from_cnf(cnf)
>>> lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True)
>>> lra #doctest: +SKIP
<sympy.logic.algorithms.lra_theory.LRASolver object at 0x7fdcb0e15b70>
>>> conflicts #doctest: +SKIP
[[4]]
"""
# This function has three main jobs:
# - raise errors if the input formula is not handled
# - preprocesses the formula into a matrix and single variable constraints
# - create one-literal conflict clauses from predicates that are always True
# or always False such as Q.gt(3, 2)
#
# See the preprocessing section of "A Fast Linear-Arithmetic Solver for DPLL(T)"
# for an explanation of how the formula is converted into a matrix
# and a set of single variable constraints.
encoding = {} # maps int to boundary
A = []
basic = []
s_count = 0
s_subs = {}
nonbasic = []
if testing_mode:
# sort to reduce nondeterminism
encoded_cnf_items = sorted(encoded_cnf.encoding.items(), key=lambda x: str(x))
else:
encoded_cnf_items = encoded_cnf.encoding.items()
empty_var = Dummy()
var_to_lra_var = {}
conflicts = []
for prop, enc in encoded_cnf_items:
if isinstance(prop, Predicate):
prop = prop(empty_var)
if not isinstance(prop, AppliedPredicate):
if prop == True:
conflicts.append([enc])
continue
if prop == False:
conflicts.append([-enc])
continue
raise ValueError(f"Unhandled Predicate: {prop}")
assert prop.function in ALLOWED_PRED
if prop.lhs == S.NaN or prop.rhs == S.NaN:
raise ValueError(f"{prop} contains nan")
if prop.lhs.is_imaginary or prop.rhs.is_imaginary:
raise UnhandledInput(f"{prop} contains an imaginary component")
if prop.lhs == oo or prop.rhs == oo:
raise UnhandledInput(f"{prop} contains infinity")
prop = _eval_binrel(prop) # simplify variable-less quantities to True / False if possible
if prop == True:
conflicts.append([enc])
continue
elif prop == False:
conflicts.append([-enc])
continue
elif prop is None:
raise UnhandledInput(f"{prop} could not be simplified")
expr = prop.lhs - prop.rhs
if prop.function in [Q.ge, Q.gt]:
expr = -expr
# expr should be less than (or equal to) 0
# otherwise prop is False
if prop.function in [Q.le, Q.ge]:
bool = (expr <= 0)
elif prop.function in [Q.lt, Q.gt]:
bool = (expr < 0)
else:
assert prop.function == Q.eq
bool = Eq(expr, 0)
if bool == True:
conflicts.append([enc])
continue
elif bool == False:
conflicts.append([-enc])
continue
vars, const = _sep_const_terms(expr) # example: (2x + 3y + 2) --> (2x + 3y), (2)
vars, var_coeff = _sep_const_coeff(vars) # examples: (2x) --> (x, 2); (2x + 3y) --> (2x + 3y), (1)
const = const / var_coeff
terms = _list_terms(vars) # example: (2x + 3y) --> [2x, 3y]
for term in terms:
term, _ = _sep_const_coeff(term)
assert len(term.free_symbols) > 0
if term not in var_to_lra_var:
var_to_lra_var[term] = LRAVariable(term)
nonbasic.append(term)
if len(terms) > 1:
if vars not in s_subs:
s_count += 1
d = Dummy(f"s{s_count}")
var_to_lra_var[d] = LRAVariable(d)
basic.append(d)
s_subs[vars] = d
A.append(vars - d)
var = s_subs[vars]
else:
var = terms[0]
assert var_coeff != 0
equality = prop.function == Q.eq
upper = var_coeff > 0 if not equality else None
strict = prop.function in [Q.gt, Q.lt]
b = Boundary(var_to_lra_var[var], -const, upper, equality, strict)
encoding[enc] = b
fs = [v.free_symbols for v in nonbasic + basic]
assert all(len(syms) > 0 for syms in fs)
fs_count = sum(len(syms) for syms in fs)
if len(fs) > 0 and len(set.union(*fs)) < fs_count:
raise UnhandledInput("Nonlinearity is not handled")
A, _ = linear_eq_to_matrix(A, nonbasic + basic)
nonbasic = [var_to_lra_var[nb] for nb in nonbasic]
basic = [var_to_lra_var[b] for b in basic]
for idx, var in enumerate(nonbasic + basic):
var.col_idx = idx
return LRASolver(A, basic, nonbasic, encoding, s_subs, testing_mode), conflicts
def reset_bounds(self):
"""
Resets the state of the LRASolver to before
anything was asserted.
"""
self.result = None
for var in self.all_var:
var.lower = LRARational(-float("inf"), 0)
var.lower_from_eq = False
var.lower_from_neg = False
var.upper = LRARational(float("inf"), 0)
var.upper_from_eq= False
var.lower_from_neg = False
var.assign = LRARational(0, 0)
def assert_lit(self, enc_constraint):
"""
Assert a literal representing a constraint
and update the internal state accordingly.
Note that due to peculiarities of this implementation
asserting ~(x > 0) will assert (x <= 0) but asserting
~Eq(x, 0) will not do anything.
Parameters
==========
enc_constraint : int
A mapping of encodings to constraints
can be found in `self.enc_to_boundary`.
Returns
=======
None or (False, explanation)
explanation : set of ints
A conflict clause that "explains" why
the literals asserted so far are unsatisfiable.
"""
if abs(enc_constraint) not in self.enc_to_boundary:
return None
if not HANDLE_NEGATION and enc_constraint < 0:
return None
boundary = self.enc_to_boundary[abs(enc_constraint)]
sym, c, negated = boundary.var, boundary.bound, enc_constraint < 0
if boundary.equality and negated:
return None # negated equality is not handled and should only appear in conflict clauses
upper = boundary.upper != negated
if boundary.strict != negated:
delta = -1 if upper else 1
c = LRARational(c, delta)
else:
c = LRARational(c, 0)
if boundary.equality:
res1 = self._assert_lower(sym, c, from_equality=True, from_neg=negated)
if res1 and res1[0] == False:
res = res1
else:
res2 = self._assert_upper(sym, c, from_equality=True, from_neg=negated)
res = res2
elif upper:
res = self._assert_upper(sym, c, from_neg=negated)
else:
res = self._assert_lower(sym, c, from_neg=negated)
if self.is_sat and sym not in self.slack_set:
self.is_sat = res is None
else:
self.is_sat = False
return res
def _assert_upper(self, xi, ci, from_equality=False, from_neg=False):
"""
Adjusts the upper bound on variable xi if the new upper bound is
more limiting. The assignment of variable xi is adjusted to be
within the new bound if needed.
Also calls `self._update` to update the assignment for slack variables
to keep all equalities satisfied.
"""
if self.result:
assert self.result[0] != False
self.result = None
if ci >= xi.upper:
return None
if ci < xi.lower:
assert (xi.lower[1] >= 0) is True
assert (ci[1] <= 0) is True
lit1, neg1 = Boundary.from_lower(xi)
lit2 = Boundary(var=xi, const=ci[0], strict=ci[1] != 0, upper=True, equality=from_equality)
if from_neg:
lit2 = lit2.get_negated()
neg2 = -1 if from_neg else 1
conflict = [-neg1*self.boundary_to_enc[lit1], -neg2*self.boundary_to_enc[lit2]]
self.result = False, conflict
return self.result
xi.upper = ci
xi.upper_from_eq = from_equality
xi.upper_from_neg = from_neg
if xi in self.nonslack and xi.assign > ci:
self._update(xi, ci)
if self.run_checks and all(v.assign[0] != float("inf") and v.assign[0] != -float("inf")
for v in self.all_var):
M = self.A
X = Matrix([v.assign[0] for v in self.all_var])
assert all(abs(val) < 10 ** (-10) for val in M * X)
return None
def _assert_lower(self, xi, ci, from_equality=False, from_neg=False):
"""
Adjusts the lower bound on variable xi if the new lower bound is
more limiting. The assignment of variable xi is adjusted to be
within the new bound if needed.
Also calls `self._update` to update the assignment for slack variables
to keep all equalities satisfied.
"""
if self.result:
assert self.result[0] != False
self.result = None
if ci <= xi.lower:
return None
if ci > xi.upper:
assert (xi.upper[1] <= 0) is True
assert (ci[1] >= 0) is True
lit1, neg1 = Boundary.from_upper(xi)
lit2 = Boundary(var=xi, const=ci[0], strict=ci[1] != 0, upper=False, equality=from_equality)
if from_neg:
lit2 = lit2.get_negated()
neg2 = -1 if from_neg else 1
conflict = [-neg1*self.boundary_to_enc[lit1],-neg2*self.boundary_to_enc[lit2]]
self.result = False, conflict
return self.result
xi.lower = ci
xi.lower_from_eq = from_equality
xi.lower_from_neg = from_neg
if xi in self.nonslack and xi.assign < ci:
self._update(xi, ci)
if self.run_checks and all(v.assign[0] != float("inf") and v.assign[0] != -float("inf")
for v in self.all_var):
M = self.A
X = Matrix([v.assign[0] for v in self.all_var])
assert all(abs(val) < 10 ** (-10) for val in M * X)
return None
def _update(self, xi, v):
"""
Updates all slack variables that have equations that contain
variable xi so that they stay satisfied given xi is equal to v.
"""
i = xi.col_idx
for j, b in enumerate(self.slack):
aji = self.A[j, i]
b.assign = b.assign + (v - xi.assign)*aji
xi.assign = v
def check(self):
"""
Searches for an assignment that satisfies all constraints
or determines that no such assignment exists and gives
a minimal conflict clause that "explains" why the
constraints are unsatisfiable.
Returns
=======
(True, assignment) or (False, explanation)
assignment : dict of LRAVariables to values
Assigned values are tuples that represent a rational number
plus some infinatesimal delta.
explanation : set of ints
"""
if self.is_sat:
return True, {var: var.assign for var in self.all_var}
if self.result:
return self.result
from sympy.matrices.dense import Matrix
M = self.A.copy()
basic = {s: i for i, s in enumerate(self.slack)} # contains the row index associated with each basic variable
nonbasic = set(self.nonslack)
while True:
if self.run_checks:
# nonbasic variables must always be within bounds
assert all(((nb.assign >= nb.lower) == True) and ((nb.assign <= nb.upper) == True) for nb in nonbasic)
# assignments for x must always satisfy Ax = 0
# probably have to turn this off when dealing with strict ineq
if all(v.assign[0] != float("inf") and v.assign[0] != -float("inf")
for v in self.all_var):
X = Matrix([v.assign[0] for v in self.all_var])
assert all(abs(val) < 10**(-10) for val in M*X)
# check upper and lower match this format:
# x <= rat + delta iff x < rat
# x >= rat - delta iff x > rat
# this wouldn't make sense:
# x <= rat - delta
# x >= rat + delta
assert all(x.upper[1] <= 0 for x in self.all_var)
assert all(x.lower[1] >= 0 for x in self.all_var)
cand = [b for b in basic if b.assign < b.lower or b.assign > b.upper]
if len(cand) == 0:
return True, {var: var.assign for var in self.all_var}
xi = min(cand, key=lambda v: v.col_idx) # Bland's rule
i = basic[xi]
if xi.assign < xi.lower:
cand = [nb for nb in nonbasic
if (M[i, nb.col_idx] > 0 and nb.assign < nb.upper)
or (M[i, nb.col_idx] < 0 and nb.assign > nb.lower)]
if len(cand) == 0:
N_plus = [nb for nb in nonbasic if M[i, nb.col_idx] > 0]
N_minus = [nb for nb in nonbasic if M[i, nb.col_idx] < 0]
conflict = []
conflict += [Boundary.from_upper(nb) for nb in N_plus]
conflict += [Boundary.from_lower(nb) for nb in N_minus]
conflict.append(Boundary.from_lower(xi))
conflict = [-neg*self.boundary_to_enc[c] for c, neg in conflict]
return False, conflict
xj = min(cand, key=str)
M = self._pivot_and_update(M, basic, nonbasic, xi, xj, xi.lower)
if xi.assign > xi.upper:
cand = [nb for nb in nonbasic
if (M[i, nb.col_idx] < 0 and nb.assign < nb.upper)
or (M[i, nb.col_idx] > 0 and nb.assign > nb.lower)]
if len(cand) == 0:
N_plus = [nb for nb in nonbasic if M[i, nb.col_idx] > 0]
N_minus = [nb for nb in nonbasic if M[i, nb.col_idx] < 0]
conflict = []
conflict += [Boundary.from_upper(nb) for nb in N_minus]
conflict += [Boundary.from_lower(nb) for nb in N_plus]
conflict.append(Boundary.from_upper(xi))
conflict = [-neg*self.boundary_to_enc[c] for c, neg in conflict]
return False, conflict
xj = min(cand, key=lambda v: v.col_idx)
M = self._pivot_and_update(M, basic, nonbasic, xi, xj, xi.upper)
def _pivot_and_update(self, M, basic, nonbasic, xi, xj, v):
"""
Pivots basic variable xi with nonbasic variable xj,
and sets value of xi to v and adjusts the values of all basic variables
to keep equations satisfied.
"""
i, j = basic[xi], xj.col_idx
assert M[i, j] != 0
theta = (v - xi.assign)*(1/M[i, j])
xi.assign = v
xj.assign = xj.assign + theta
for xk in basic:
if xk != xi:
k = basic[xk]
akj = M[k, j]
xk.assign = xk.assign + theta*akj
# pivot
basic[xj] = basic[xi]
del basic[xi]
nonbasic.add(xi)
nonbasic.remove(xj)
return self._pivot(M, i, j)
@staticmethod
def _pivot(M, i, j):
"""
Performs a pivot operation about entry i, j of M by performing
a series of row operations on a copy of M and returning the result.
The original M is left unmodified.
Conceptually, M represents a system of equations and pivoting
can be thought of as rearranging equation i to be in terms of
variable j and then substituting in the rest of the equations
to get rid of other occurances of variable j.
Example
=======
>>> from sympy.matrices.dense import Matrix
>>> from sympy.logic.algorithms.lra_theory import LRASolver
>>> from sympy import var
>>> Matrix(3, 3, var('a:i'))
Matrix([
[a, b, c],
[d, e, f],
[g, h, i]])
This matrix is equivalent to:
0 = a*x + b*y + c*z
0 = d*x + e*y + f*z
0 = g*x + h*y + i*z
>>> LRASolver._pivot(_, 1, 0)
Matrix([
[ 0, -a*e/d + b, -a*f/d + c],
[-1, -e/d, -f/d],
[ 0, h - e*g/d, i - f*g/d]])
We rearrange equation 1 in terms of variable 0 (x)
and substitute to remove x from the other equations.
0 = 0 + (-a*e/d + b)*y + (-a*f/d + c)*z
0 = -x + (-e/d)*y + (-f/d)*z
0 = 0 + (h - e*g/d)*y + (i - f*g/d)*z
"""
_, _, Mij = M[i, :], M[:, j], M[i, j]
if Mij == 0:
raise ZeroDivisionError("Tried to pivot about zero-valued entry.")
A = M.copy()
A[i, :] = -A[i, :]/Mij
for row in range(M.shape[0]):
if row != i:
A[row, :] = A[row, :] + A[row, j] * A[i, :]
return A
def _sep_const_coeff(expr):
"""
Example
=======
>>> from sympy.logic.algorithms.lra_theory import _sep_const_coeff
>>> from sympy.abc import x, y
>>> _sep_const_coeff(2*x)
(x, 2)
>>> _sep_const_coeff(2*x + 3*y)
(2*x + 3*y, 1)
"""
if isinstance(expr, Add):
return expr, sympify(1)
if isinstance(expr, Mul):
coeffs = expr.args
else:
coeffs = [expr]
var, const = [], []
for c in coeffs:
c = sympify(c)
if len(c.free_symbols)==0:
const.append(c)
else:
var.append(c)
return Mul(*var), Mul(*const)
def _list_terms(expr):
if not isinstance(expr, Add):
return [expr]
return expr.args
def _sep_const_terms(expr):
"""
Example
=======
>>> from sympy.logic.algorithms.lra_theory import _sep_const_terms
>>> from sympy.abc import x, y
>>> _sep_const_terms(2*x + 3*y + 2)
(2*x + 3*y, 2)
"""
if isinstance(expr, Add):
terms = expr.args
else:
terms = [expr]
var, const = [], []
for t in terms:
if len(t.free_symbols) == 0:
const.append(t)
else:
var.append(t)
return sum(var), sum(const)
def _eval_binrel(binrel):
"""
Simplify binary relation to True / False if possible.
"""
if not (len(binrel.lhs.free_symbols) == 0 and len(binrel.rhs.free_symbols) == 0):
return binrel
if binrel.function == Q.lt:
res = binrel.lhs < binrel.rhs
elif binrel.function == Q.gt:
res = binrel.lhs > binrel.rhs
elif binrel.function == Q.le:
res = binrel.lhs <= binrel.rhs
elif binrel.function == Q.ge:
res = binrel.lhs >= binrel.rhs
elif binrel.function == Q.eq:
res = Eq(binrel.lhs, binrel.rhs)
elif binrel.function == Q.ne:
res = Ne(binrel.lhs, binrel.rhs)
if res == True or res == False:
return res
else:
return None
class Boundary:
"""
Represents an upper or lower bound or an equality between a symbol
and some constant.
"""
def __init__(self, var, const, upper, equality, strict=None):
if not equality in [True, False]:
assert equality in [True, False]
self.var = var
if isinstance(const, tuple):
s = const[1] != 0
if strict:
assert s == strict
self.bound = const[0]
self.strict = s
else:
self.bound = const
self.strict = strict
self.upper = upper if not equality else None
self.equality = equality
self.strict = strict
assert self.strict is not None
@staticmethod
def from_upper(var):
neg = -1 if var.upper_from_neg else 1
b = Boundary(var, var.upper[0], True, var.upper_from_eq, var.upper[1] != 0)
if neg < 0:
b = b.get_negated()
return b, neg
@staticmethod
def from_lower(var):
neg = -1 if var.lower_from_neg else 1
b = Boundary(var, var.lower[0], False, var.lower_from_eq, var.lower[1] != 0)
if neg < 0:
b = b.get_negated()
return b, neg
def get_negated(self):
return Boundary(self.var, self.bound, not self.upper, self.equality, not self.strict)
def get_inequality(self):
if self.equality:
return Eq(self.var.var, self.bound)
elif self.upper and self.strict:
return self.var.var < self.bound
elif not self.upper and self.strict:
return self.var.var > self.bound
elif self.upper:
return self.var.var <= self.bound
else:
return self.var.var >= self.bound
def __repr__(self):
return repr("Boundary(" + repr(self.get_inequality()) + ")")
def __eq__(self, other):
other = (other.var, other.bound, other.strict, other.upper, other.equality)
return (self.var, self.bound, self.strict, self.upper, self.equality) == other
def __hash__(self):
return hash((self.var, self.bound, self.strict, self.upper, self.equality))
class LRARational():
"""
Represents a rational plus or minus some amount
of arbitrary small deltas.
"""
def __init__(self, rational, delta):
self.value = (rational, delta)
def __lt__(self, other):
return self.value < other.value
def __le__(self, other):
return self.value <= other.value
def __eq__(self, other):
return self.value == other.value
def __add__(self, other):
return LRARational(self.value[0] + other.value[0], self.value[1] + other.value[1])
def __sub__(self, other):
return LRARational(self.value[0] - other.value[0], self.value[1] - other.value[1])
def __mul__(self, other):
assert not isinstance(other, LRARational)
return LRARational(self.value[0] * other, self.value[1] * other)
def __getitem__(self, index):
return self.value[index]
def __repr__(self):
return repr(self.value)
class LRAVariable():
"""
Object to keep track of upper and lower bounds
on `self.var`.
"""
def __init__(self, var):
self.upper = LRARational(float("inf"), 0)
self.upper_from_eq = False
self.upper_from_neg = False
self.lower = LRARational(-float("inf"), 0)
self.lower_from_eq = False
self.lower_from_neg = False
self.assign = LRARational(0,0)
self.var = var
self.col_idx = None
def __repr__(self):
return repr(self.var)
def __eq__(self, other):
if not isinstance(other, LRAVariable):
return False
return other.var == self.var
def __hash__(self):
return hash(self.var)
|