File size: 16,834 Bytes
ac2f8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
from sympy.core.numbers import Rational, I, oo
from sympy.core.relational import Eq
from sympy.core.symbol import symbols
from sympy.core.singleton import S
from sympy.matrices.dense import Matrix
from sympy.matrices.dense import randMatrix
from sympy.assumptions.ask import Q
from sympy.logic.boolalg import And
from sympy.abc import x, y, z
from sympy.assumptions.cnf import CNF, EncodedCNF
from sympy.functions.elementary.trigonometric import cos
from sympy.external import import_module

from sympy.logic.algorithms.lra_theory import LRASolver, UnhandledInput, LRARational, HANDLE_NEGATION
from sympy.core.random import random, choice, randint
from sympy.core.sympify import sympify
from sympy.ntheory.generate import randprime
from sympy.core.relational import StrictLessThan, StrictGreaterThan
import itertools

from sympy.testing.pytest import raises, XFAIL, skip

def make_random_problem(num_variables=2, num_constraints=2, sparsity=.1, rational=True,
                        disable_strict = False, disable_nonstrict=False, disable_equality=False):
    def rand(sparsity=sparsity):
        if random() < sparsity:
            return sympify(0)
        if rational:
            int1, int2 = [randprime(0, 50) for _ in range(2)]
            return Rational(int1, int2) * choice([-1, 1])
        else:
            return randint(1, 10) * choice([-1, 1])

    variables = symbols('x1:%s' % (num_variables + 1))
    constraints = []
    for _ in range(num_constraints):
        lhs, rhs = sum(rand() * x for x in variables), rand(sparsity=0) # sparsity=0  bc of bug with smtlib_code
        options = []
        if not disable_equality:
            options += [Eq(lhs, rhs)]
        if not disable_nonstrict:
            options += [lhs <= rhs, lhs >= rhs]
        if not disable_strict:
            options += [lhs < rhs, lhs > rhs]

        constraints.append(choice(options))

    return constraints

def check_if_satisfiable_with_z3(constraints):
    from sympy.external.importtools import import_module
    from sympy.printing.smtlib import smtlib_code
    from sympy.logic.boolalg import And
    boolean_formula = And(*constraints)
    z3 = import_module("z3")
    if z3:
        smtlib_string = smtlib_code(boolean_formula)
        s = z3.Solver()
        s.from_string(smtlib_string)
        res = str(s.check())
        if res == 'sat':
            return True
        elif res == 'unsat':
            return False
        else:
            raise ValueError(f"z3 was not able to check the satisfiability of {boolean_formula}")

def find_rational_assignment(constr, assignment, iter=20):
    eps = sympify(1)

    for _ in range(iter):
        assign = {key: val[0] + val[1]*eps for key, val in assignment.items()}
        try:
            for cons in constr:
                assert cons.subs(assign) == True
            return assign
        except AssertionError:
            eps = eps/2

    return None

def boolean_formula_to_encoded_cnf(bf):
    cnf = CNF.from_prop(bf)
    enc = EncodedCNF()
    enc.from_cnf(cnf)
    return enc


def test_from_encoded_cnf():
    s1, s2 = symbols("s1 s2")

    # Test preprocessing
    # Example is from section 3 of paper.
    phi = (x >= 0) & ((x + y <= 2) | (x + 2 * y - z >= 6)) & (Eq(x + y, 2) | (x + 2 * y - z > 4))
    enc = boolean_formula_to_encoded_cnf(phi)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    assert lra.A.shape == (2, 5)
    assert str(lra.slack) == '[_s1, _s2]'
    assert str(lra.nonslack) == '[x, y, z]'
    assert lra.A == Matrix([[ 1,  1, 0, -1,  0],
                            [-1, -2, 1,  0, -1]])
    assert {(str(b.var), b.bound, b.upper, b.equality, b.strict) for b in lra.enc_to_boundary.values()} == {('_s1', 2, None, True, False),
    ('_s1', 2, True, False, False),
    ('_s2', -4, True, False, True),
    ('_s2', -6, True, False, False),
    ('x', 0, False, False, False)}


def test_problem():
    from sympy.logic.algorithms.lra_theory import LRASolver
    from sympy.assumptions.cnf import CNF, EncodedCNF
    cons = [-2 * x - 2 * y >= 7, -9 * y >= 7, -6 * y >= 5]
    cnf = CNF().from_prop(And(*cons))
    enc = EncodedCNF()
    enc.from_cnf(cnf)
    lra, _ = LRASolver.from_encoded_cnf(enc)
    lra.assert_lit(1)
    lra.assert_lit(2)
    lra.assert_lit(3)
    is_sat, assignment = lra.check()
    assert is_sat is True


def test_random_problems():
    z3 = import_module("z3")
    if z3 is None:
        skip("z3 is not installed")

    special_cases = []; x1, x2, x3 = symbols("x1 x2 x3")
    special_cases.append([x1 - 3 * x2 <= -5, 6 * x1 + 4 * x2 <= 0, -7 * x1 + 3 * x2 <= 3])
    special_cases.append([-3 * x1 >= 3, Eq(4 * x1, -1)])
    special_cases.append([-4 * x1 < 4, 6 * x1 <= -6])
    special_cases.append([-3 * x2 >= 7, 6 * x1 <= -5, -3 * x2 <= -4])
    special_cases.append([x + y >= 2, x + y <= 1])
    special_cases.append([x >= 0, x + y <= 2, x + 2 * y - z >= 6])  # from paper example
    special_cases.append([-2 * x1 - 2 * x2 >= 7, -9 * x1 >= 7, -6 * x1 >= 5])
    special_cases.append([2 * x1 > -3, -9 * x1 < -6, 9 * x1 <= 6])
    special_cases.append([-2*x1 < -4, 9*x1 > -9])
    special_cases.append([-6*x1 >= -1, -8*x1 + x2 >= 5, -8*x1 + 7*x2 < 4, x1 > 7])
    special_cases.append([Eq(x1, 2), Eq(5*x1, -2), Eq(-7*x2, -6), Eq(9*x1 + 10*x2, 9)])
    special_cases.append([Eq(3*x1, 6), Eq(x1 - 8*x2, -9), Eq(-7*x1 + 5*x2, 3), Eq(3*x2, 7)])
    special_cases.append([-4*x1 < 4, 6*x1 <= -6])
    special_cases.append([-3*x1 + 8*x2 >= -8, -10*x2 > 9, 8*x1 - 4*x2 < 8, 10*x1 - 9*x2 >= -9])
    special_cases.append([x1 + 5*x2 >= -6, 9*x1 - 3*x2 >= -9, 6*x1 + 6*x2 < -10, -3*x1 + 3*x2 < -7])
    special_cases.append([-9*x1 < 7, -5*x1 - 7*x2 < -1, 3*x1 + 7*x2 > 1, -6*x1 - 6*x2 > 9])
    special_cases.append([9*x1 - 6*x2 >= -7, 9*x1 + 4*x2 < -8, -7*x2 <= 1, 10*x2 <= -7])

    feasible_count = 0
    for i in range(50):
        if i % 8 == 0:
            constraints = make_random_problem(num_variables=1, num_constraints=2, rational=False)
        elif i % 8 == 1:
            constraints = make_random_problem(num_variables=2, num_constraints=4, rational=False, disable_equality=True,
                                              disable_nonstrict=True)
        elif i % 8 == 2:
            constraints = make_random_problem(num_variables=2, num_constraints=4, rational=False, disable_strict=True)
        elif i % 8 == 3:
            constraints = make_random_problem(num_variables=3, num_constraints=12, rational=False)
        else:
            constraints = make_random_problem(num_variables=3, num_constraints=6, rational=False)

        if i < len(special_cases):
            constraints = special_cases[i]

        if False in constraints or True in constraints:
            continue

        phi = And(*constraints)
        if phi == False:
            continue
        cnf = CNF.from_prop(phi); enc = EncodedCNF()
        enc.from_cnf(cnf)
        assert all(0 not in clause for clause in enc.data)

        lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
        s_subs = lra.s_subs

        lra.run_checks = True
        s_subs_rev = {value: key for key, value in s_subs.items()}
        lits = {lit for clause in enc.data for lit in clause}

        bounds = [(lra.enc_to_boundary[l], l) for l in lits if l in lra.enc_to_boundary]
        bounds = sorted(bounds, key=lambda x: (str(x[0].var), x[0].bound, str(x[0].upper))) # to remove nondeterminism

        for b, l in bounds:
            if lra.result and lra.result[0] == False:
                break
            lra.assert_lit(l)

        feasible = lra.check()

        if feasible[0] == True:
            feasible_count += 1
            assert check_if_satisfiable_with_z3(constraints) is True
            cons_funcs = [cons.func for cons in constraints]
            assignment = feasible[1]
            assignment = {key.var : value for key, value in assignment.items()}
            if not (StrictLessThan in cons_funcs or StrictGreaterThan in cons_funcs):
                assignment = {key: value[0] for key, value in assignment.items()}
                for cons in constraints:
                    assert cons.subs(assignment) == True

            else:
                rat_assignment = find_rational_assignment(constraints, assignment)
                assert rat_assignment is not None
        else:
            assert check_if_satisfiable_with_z3(constraints) is False

            conflict = feasible[1]
            assert len(conflict) >= 2
            conflict = {lra.enc_to_boundary[-l].get_inequality() for l in conflict}
            conflict = {clause.subs(s_subs_rev) for clause in conflict}
            assert check_if_satisfiable_with_z3(conflict) is False

            # check that conflict clause is probably minimal
            for subset in itertools.combinations(conflict, len(conflict)-1):
                assert check_if_satisfiable_with_z3(subset) is True


@XFAIL
def test_pos_neg_zero():
    bf = Q.positive(x) & Q.negative(x) & Q.zero(y)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for lit in enc.encoding.values():
        if lra.assert_lit(lit) is not None:
            break
    assert len(lra.enc_to_boundary) == 3
    assert lra.check()[0] == False

    bf = Q.positive(x) & Q.lt(x, -1)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for lit in enc.encoding.values():
        if lra.assert_lit(lit) is not None:
            break
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == False

    bf = Q.positive(x) & Q.zero(x)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for lit in enc.encoding.values():
        if lra.assert_lit(lit) is not None:
            break
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == False

    bf = Q.positive(x) & Q.zero(y)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for lit in enc.encoding.values():
        if lra.assert_lit(lit) is not None:
            break
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == True


@XFAIL
def test_pos_neg_infinite():
    bf = Q.positive_infinite(x) & Q.lt(x, 10000000) & Q.positive_infinite(y)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for lit in enc.encoding.values():
        if lra.assert_lit(lit) is not None:
            break
    assert len(lra.enc_to_boundary) == 3
    assert lra.check()[0] == False

    bf = Q.positive_infinite(x) & Q.gt(x, 10000000) & Q.positive_infinite(y)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for lit in enc.encoding.values():
        if lra.assert_lit(lit) is not None:
            break
    assert len(lra.enc_to_boundary) == 3
    assert lra.check()[0] == True

    bf = Q.positive_infinite(x) & Q.negative_infinite(x)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for lit in enc.encoding.values():
        if lra.assert_lit(lit) is not None:
            break
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == False


def test_binrel_evaluation():
    bf = Q.gt(3, 2)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    assert len(lra.enc_to_boundary) == 0
    assert conflicts == [[1]]

    bf = Q.lt(3, 2)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, conflicts = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    assert len(lra.enc_to_boundary) == 0
    assert conflicts == [[-1]]


def test_negation():
    assert HANDLE_NEGATION is True
    bf = Q.gt(x, 1) & ~Q.gt(x, 0)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for clause in enc.data:
        for lit in clause:
            lra.assert_lit(lit)
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == False
    assert sorted(lra.check()[1]) in [[-1, 2], [-2, 1]]

    bf = ~Q.gt(x, 1) & ~Q.lt(x, 0)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for clause in enc.data:
        for lit in clause:
            lra.assert_lit(lit)
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == True

    bf = ~Q.gt(x, 0) & ~Q.lt(x, 1)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for clause in enc.data:
        for lit in clause:
            lra.assert_lit(lit)
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == False

    bf = ~Q.gt(x, 0) & ~Q.le(x, 0)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for clause in enc.data:
        for lit in clause:
            lra.assert_lit(lit)
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == False

    bf = ~Q.le(x+y, 2) & ~Q.ge(x-y, 2) & ~Q.ge(y, 0)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for clause in enc.data:
        for lit in clause:
            lra.assert_lit(lit)
    assert len(lra.enc_to_boundary) == 3
    assert lra.check()[0] == False
    assert len(lra.check()[1]) == 3
    assert all(i > 0 for i in lra.check()[1])


def test_unhandled_input():
    nan = S.NaN
    bf = Q.gt(3, nan) & Q.gt(x, nan)
    enc = boolean_formula_to_encoded_cnf(bf)
    raises(ValueError, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))

    bf = Q.gt(3, I) & Q.gt(x, I)
    enc = boolean_formula_to_encoded_cnf(bf)
    raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))

    bf = Q.gt(3, float("inf")) & Q.gt(x, float("inf"))
    enc = boolean_formula_to_encoded_cnf(bf)
    raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))

    bf = Q.gt(3, oo) & Q.gt(x, oo)
    enc = boolean_formula_to_encoded_cnf(bf)
    raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))

    # test non-linearity
    bf = Q.gt(x**2 + x, 2)
    enc = boolean_formula_to_encoded_cnf(bf)
    raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))

    bf = Q.gt(cos(x) + x, 2)
    enc = boolean_formula_to_encoded_cnf(bf)
    raises(UnhandledInput, lambda: LRASolver.from_encoded_cnf(enc, testing_mode=True))

@XFAIL
def test_infinite_strict_inequalities():
    # Extensive testing of the interaction between strict inequalities
    # and constraints containing infinity is needed because
    # the paper's rule for strict inequalities don't work when
    # infinite numbers are allowed. Using the paper's rules you
    # can end up with situations where oo + delta > oo is considered
    # True when oo + delta should be equal to oo.
    # See https://math.stackexchange.com/questions/4757069/can-this-method-of-converting-strict-inequalities-to-equisatisfiable-nonstrict-i
    bf = (-x - y >= -float("inf")) & (x > 0) & (y >= float("inf"))
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for lit in sorted(enc.encoding.values()):
        if lra.assert_lit(lit) is not None:
            break
    assert len(lra.enc_to_boundary) == 3
    assert lra.check()[0] == True


def test_pivot():
    for _ in range(10):
        m = randMatrix(5)
        rref = m.rref()
        for _ in range(5):
            i, j = randint(0, 4), randint(0, 4)
            if m[i, j] != 0:
                assert LRASolver._pivot(m, i, j).rref() == rref


def test_reset_bounds():
    bf = Q.ge(x, 1) & Q.lt(x, 1)
    enc = boolean_formula_to_encoded_cnf(bf)
    lra, _ = LRASolver.from_encoded_cnf(enc, testing_mode=True)
    for clause in enc.data:
        for lit in clause:
            lra.assert_lit(lit)
    assert len(lra.enc_to_boundary) == 2
    assert lra.check()[0] == False

    lra.reset_bounds()
    assert lra.check()[0] == True
    for var in lra.all_var:
        assert var.upper == LRARational(float("inf"), 0)
        assert var.upper_from_eq == False
        assert var.upper_from_neg == False
        assert var.lower == LRARational(-float("inf"), 0)
        assert var.lower_from_eq == False
        assert var.lower_from_neg == False
        assert var.assign == LRARational(0, 0)
        assert var.var is not None
        assert var.col_idx is not None


def test_empty_cnf():
    cnf = CNF()
    enc = EncodedCNF()
    enc.from_cnf(cnf)
    lra, conflict = LRASolver.from_encoded_cnf(enc)
    assert len(conflict) == 0
    assert lra.check() == (True, {})