File size: 18,441 Bytes
ac2f8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
from sympy.concrete.summations import Sum
from sympy.core.exprtools import gcd_terms
from sympy.core.function import (diff, expand)
from sympy.core.relational import Eq
from sympy.core.symbol import (Dummy, Symbol, Str)
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.matrices.dense import zeros
from sympy.polys.polytools import factor

from sympy.core import (S, symbols, Add, Mul, SympifyError, Rational,
                    Function)
from sympy.functions import sin, cos, tan, sqrt, cbrt, exp
from sympy.simplify import simplify
from sympy.matrices import (ImmutableMatrix, Inverse, MatAdd, MatMul,
        MatPow, Matrix, MatrixExpr, MatrixSymbol,
        SparseMatrix, Transpose, Adjoint, MatrixSet)
from sympy.matrices.exceptions import NonSquareMatrixError
from sympy.matrices.expressions.determinant import Determinant, det
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.matrices.expressions.special import ZeroMatrix, Identity
from sympy.testing.pytest import raises, XFAIL, skip
from importlib.metadata import version

n, m, l, k, p = symbols('n m l k p', integer=True)
x = symbols('x')
A = MatrixSymbol('A', n, m)
B = MatrixSymbol('B', m, l)
C = MatrixSymbol('C', n, n)
D = MatrixSymbol('D', n, n)
E = MatrixSymbol('E', m, n)
w = MatrixSymbol('w', n, 1)


def test_matrix_symbol_creation():
    assert MatrixSymbol('A', 2, 2)
    assert MatrixSymbol('A', 0, 0)
    raises(ValueError, lambda: MatrixSymbol('A', -1, 2))
    raises(ValueError, lambda: MatrixSymbol('A', 2.0, 2))
    raises(ValueError, lambda: MatrixSymbol('A', 2j, 2))
    raises(ValueError, lambda: MatrixSymbol('A', 2, -1))
    raises(ValueError, lambda: MatrixSymbol('A', 2, 2.0))
    raises(ValueError, lambda: MatrixSymbol('A', 2, 2j))

    n = symbols('n')
    assert MatrixSymbol('A', n, n)
    n = symbols('n', integer=False)
    raises(ValueError, lambda: MatrixSymbol('A', n, n))
    n = symbols('n', negative=True)
    raises(ValueError, lambda: MatrixSymbol('A', n, n))


def test_matexpr_properties():
    assert A.shape == (n, m)
    assert (A * B).shape == (n, l)
    assert A[0, 1].indices == (0, 1)
    assert A[0, 0].symbol == A
    assert A[0, 0].symbol.name == 'A'


def test_matexpr():
    assert (x*A).shape == A.shape
    assert (x*A).__class__ == MatMul
    assert 2*A - A - A == ZeroMatrix(*A.shape)
    assert (A*B).shape == (n, l)


def test_matexpr_subs():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', m, l)
    C = MatrixSymbol('C', m, l)

    assert A.subs(n, m).shape == (m, m)
    assert (A*B).subs(B, C) == A*C
    assert (A*B).subs(l, n).is_square

    W = MatrixSymbol("W", 3, 3)
    X = MatrixSymbol("X", 2, 2)
    Y = MatrixSymbol("Y", 1, 2)
    Z = MatrixSymbol("Z", n, 2)
    # no restrictions on Symbol replacement
    assert X.subs(X, Y) == Y
    # it might be better to just change the name
    y = Str('y')
    assert X.subs(Str("X"), y).args == (y, 2, 2)
    # it's ok to introduce a wider matrix
    assert X[1, 1].subs(X, W) == W[1, 1]
    # but for a given MatrixExpression, only change
    # name if indexing on the new shape is valid.
    # Here, X is 2,2; Y is 1,2 and Y[1, 1] is out
    # of range so an error is raised
    raises(IndexError, lambda: X[1, 1].subs(X, Y))
    # here, [0, 1] is in range so the subs succeeds
    assert X[0, 1].subs(X, Y) == Y[0, 1]
    # and here the size of n will accept any index
    # in the first position
    assert W[2, 1].subs(W, Z) == Z[2, 1]
    # but not in the second position
    raises(IndexError, lambda: W[2, 2].subs(W, Z))
    # any matrix should raise if invalid
    raises(IndexError, lambda: W[2, 2].subs(W, zeros(2)))

    A = SparseMatrix([[1, 2], [3, 4]])
    B = Matrix([[1, 2], [3, 4]])
    C, D = MatrixSymbol('C', 2, 2), MatrixSymbol('D', 2, 2)

    assert (C*D).subs({C: A, D: B}) == MatMul(A, B)


def test_addition():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', n, m)

    assert isinstance(A + B, MatAdd)
    assert (A + B).shape == A.shape
    assert isinstance(A - A + 2*B, MatMul)

    raises(TypeError, lambda: A + 1)
    raises(TypeError, lambda: 5 + A)
    raises(TypeError, lambda: 5 - A)

    assert A + ZeroMatrix(n, m) - A == ZeroMatrix(n, m)
    raises(TypeError, lambda: ZeroMatrix(n, m) + S.Zero)


def test_multiplication():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', m, l)
    C = MatrixSymbol('C', n, n)

    assert (2*A*B).shape == (n, l)
    assert (A*0*B) == ZeroMatrix(n, l)
    assert (2*A).shape == A.shape

    assert A * ZeroMatrix(m, m) * B == ZeroMatrix(n, l)

    assert C * Identity(n) * C.I == Identity(n)

    assert B/2 == S.Half*B
    raises(NotImplementedError, lambda: 2/B)

    A = MatrixSymbol('A', n, n)
    B = MatrixSymbol('B', n, n)
    assert Identity(n) * (A + B) == A + B

    assert A**2*A == A**3
    assert A**2*(A.I)**3 == A.I
    assert A**3*(A.I)**2 == A


def test_MatPow():
    A = MatrixSymbol('A', n, n)

    AA = MatPow(A, 2)
    assert AA.exp == 2
    assert AA.base == A
    assert (A**n).exp == n

    assert A**0 == Identity(n)
    assert A**1 == A
    assert A**2 == AA
    assert A**-1 == Inverse(A)
    assert (A**-1)**-1 == A
    assert (A**2)**3 == A**6
    assert A**S.Half == sqrt(A)
    assert A**Rational(1, 3) == cbrt(A)
    raises(NonSquareMatrixError, lambda: MatrixSymbol('B', 3, 2)**2)


def test_MatrixSymbol():
    n, m, t = symbols('n,m,t')
    X = MatrixSymbol('X', n, m)
    assert X.shape == (n, m)
    raises(TypeError, lambda: MatrixSymbol('X', n, m)(t))  # issue 5855
    assert X.doit() == X


def test_dense_conversion():
    X = MatrixSymbol('X', 2, 2)
    assert ImmutableMatrix(X) == ImmutableMatrix(2, 2, lambda i, j: X[i, j])
    assert Matrix(X) == Matrix(2, 2, lambda i, j: X[i, j])


def test_free_symbols():
    assert (C*D).free_symbols == {C, D}


def test_zero_matmul():
    assert isinstance(S.Zero * MatrixSymbol('X', 2, 2), MatrixExpr)


def test_matadd_simplify():
    A = MatrixSymbol('A', 1, 1)
    assert simplify(MatAdd(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
        MatAdd(A, Matrix([[1]]))


def test_matmul_simplify():
    A = MatrixSymbol('A', 1, 1)
    assert simplify(MatMul(A, ImmutableMatrix([[sin(x)**2 + cos(x)**2]]))) == \
        MatMul(A, Matrix([[1]]))


def test_invariants():
    A = MatrixSymbol('A', n, m)
    B = MatrixSymbol('B', m, l)
    X = MatrixSymbol('X', n, n)
    objs = [Identity(n), ZeroMatrix(m, n), A, MatMul(A, B), MatAdd(A, A),
            Transpose(A), Adjoint(A), Inverse(X), MatPow(X, 2), MatPow(X, -1),
            MatPow(X, 0)]
    for obj in objs:
        assert obj == obj.__class__(*obj.args)


def test_matexpr_indexing():
    A = MatrixSymbol('A', n, m)
    A[1, 2]
    A[l, k]
    A[l + 1, k + 1]
    A = MatrixSymbol('A', 2, 1)
    for i in range(-2, 2):
        for j in range(-1, 1):
            A[i, j]


def test_single_indexing():
    A = MatrixSymbol('A', 2, 3)
    assert A[1] == A[0, 1]
    assert A[int(1)] == A[0, 1]
    assert A[3] == A[1, 0]
    assert list(A[:2, :2]) == [A[0, 0], A[0, 1], A[1, 0], A[1, 1]]
    raises(IndexError, lambda: A[6])
    raises(IndexError, lambda: A[n])
    B = MatrixSymbol('B', n, m)
    raises(IndexError, lambda: B[1])
    B = MatrixSymbol('B', n, 3)
    assert B[3] == B[1, 0]


def test_MatrixElement_commutative():
    assert A[0, 1]*A[1, 0] == A[1, 0]*A[0, 1]


def test_MatrixSymbol_determinant():
    A = MatrixSymbol('A', 4, 4)
    assert A.as_explicit().det() == A[0, 0]*A[1, 1]*A[2, 2]*A[3, 3] - \
        A[0, 0]*A[1, 1]*A[2, 3]*A[3, 2] - A[0, 0]*A[1, 2]*A[2, 1]*A[3, 3] + \
        A[0, 0]*A[1, 2]*A[2, 3]*A[3, 1] + A[0, 0]*A[1, 3]*A[2, 1]*A[3, 2] - \
        A[0, 0]*A[1, 3]*A[2, 2]*A[3, 1] - A[0, 1]*A[1, 0]*A[2, 2]*A[3, 3] + \
        A[0, 1]*A[1, 0]*A[2, 3]*A[3, 2] + A[0, 1]*A[1, 2]*A[2, 0]*A[3, 3] - \
        A[0, 1]*A[1, 2]*A[2, 3]*A[3, 0] - A[0, 1]*A[1, 3]*A[2, 0]*A[3, 2] + \
        A[0, 1]*A[1, 3]*A[2, 2]*A[3, 0] + A[0, 2]*A[1, 0]*A[2, 1]*A[3, 3] - \
        A[0, 2]*A[1, 0]*A[2, 3]*A[3, 1] - A[0, 2]*A[1, 1]*A[2, 0]*A[3, 3] + \
        A[0, 2]*A[1, 1]*A[2, 3]*A[3, 0] + A[0, 2]*A[1, 3]*A[2, 0]*A[3, 1] - \
        A[0, 2]*A[1, 3]*A[2, 1]*A[3, 0] - A[0, 3]*A[1, 0]*A[2, 1]*A[3, 2] + \
        A[0, 3]*A[1, 0]*A[2, 2]*A[3, 1] + A[0, 3]*A[1, 1]*A[2, 0]*A[3, 2] - \
        A[0, 3]*A[1, 1]*A[2, 2]*A[3, 0] - A[0, 3]*A[1, 2]*A[2, 0]*A[3, 1] + \
        A[0, 3]*A[1, 2]*A[2, 1]*A[3, 0]

    B = MatrixSymbol('B', 4, 4)
    assert Determinant(A + B).doit() == det(A + B) == (A + B).det()


def test_MatrixElement_diff():
    assert (A[3, 0]*A[0, 0]).diff(A[0, 0]) == A[3, 0]


def test_MatrixElement_doit():
    u = MatrixSymbol('u', 2, 1)
    v = ImmutableMatrix([3, 5])
    assert u[0, 0].subs(u, v).doit() == v[0, 0]


def test_identity_powers():
    M = Identity(n)
    assert MatPow(M, 3).doit() == M**3
    assert M**n == M
    assert MatPow(M, 0).doit() == M**2
    assert M**-2 == M
    assert MatPow(M, -2).doit() == M**0
    N = Identity(3)
    assert MatPow(N, 2).doit() == N**n
    assert MatPow(N, 3).doit() == N
    assert MatPow(N, -2).doit() == N**4
    assert MatPow(N, 2).doit() == N**0


def test_Zero_power():
    z1 = ZeroMatrix(n, n)
    assert z1**4 == z1
    raises(ValueError, lambda:z1**-2)
    assert z1**0 == Identity(n)
    assert MatPow(z1, 2).doit() == z1**2
    raises(ValueError, lambda:MatPow(z1, -2).doit())
    z2 = ZeroMatrix(3, 3)
    assert MatPow(z2, 4).doit() == z2**4
    raises(ValueError, lambda:z2**-3)
    assert z2**3 == MatPow(z2, 3).doit()
    assert z2**0 == Identity(3)
    raises(ValueError, lambda:MatPow(z2, -1).doit())


def test_matrixelement_diff():
    dexpr = diff((D*w)[k,0], w[p,0])

    assert w[k, p].diff(w[k, p]) == 1
    assert w[k, p].diff(w[0, 0]) == KroneckerDelta(0, k, (0, n-1))*KroneckerDelta(0, p, (0, 0))
    _i_1 = Dummy("_i_1")
    assert dexpr.dummy_eq(Sum(KroneckerDelta(_i_1, p, (0, n-1))*D[k, _i_1], (_i_1, 0, n - 1)))
    assert dexpr.doit() == D[k, p]


def test_MatrixElement_with_values():
    x, y, z, w = symbols("x y z w")
    M = Matrix([[x, y], [z, w]])
    i, j = symbols("i, j")
    Mij = M[i, j]
    assert isinstance(Mij, MatrixElement)
    Ms = SparseMatrix([[2, 3], [4, 5]])
    msij = Ms[i, j]
    assert isinstance(msij, MatrixElement)
    for oi, oj in [(0, 0), (0, 1), (1, 0), (1, 1)]:
        assert Mij.subs({i: oi, j: oj}) == M[oi, oj]
        assert msij.subs({i: oi, j: oj}) == Ms[oi, oj]
    A = MatrixSymbol("A", 2, 2)
    assert A[0, 0].subs(A, M) == x
    assert A[i, j].subs(A, M) == M[i, j]
    assert M[i, j].subs(M, A) == A[i, j]

    assert isinstance(M[3*i - 2, j], MatrixElement)
    assert M[3*i - 2, j].subs({i: 1, j: 0}) == M[1, 0]
    assert isinstance(M[i, 0], MatrixElement)
    assert M[i, 0].subs(i, 0) == M[0, 0]
    assert M[0, i].subs(i, 1) == M[0, 1]

    assert M[i, j].diff(x) == Matrix([[1, 0], [0, 0]])[i, j]

    raises(ValueError, lambda: M[i, 2])
    raises(ValueError, lambda: M[i, -1])
    raises(ValueError, lambda: M[2, i])
    raises(ValueError, lambda: M[-1, i])


def test_inv():
    B = MatrixSymbol('B', 3, 3)
    assert B.inv() == B**-1

    # https://github.com/sympy/sympy/issues/19162
    X = MatrixSymbol('X', 1, 1).as_explicit()
    assert X.inv() == Matrix([[1/X[0, 0]]])

    X = MatrixSymbol('X', 2, 2).as_explicit()
    detX = X[0, 0]*X[1, 1] - X[0, 1]*X[1, 0]
    invX = Matrix([[ X[1, 1], -X[0, 1]],
                   [-X[1, 0],  X[0, 0]]]) / detX
    assert X.inv() == invX


@XFAIL
def test_factor_expand():
    A = MatrixSymbol("A", n, n)
    B = MatrixSymbol("B", n, n)
    expr1 = (A + B)*(C + D)
    expr2 = A*C + B*C + A*D + B*D
    assert expr1 != expr2
    assert expand(expr1) == expr2
    assert factor(expr2) == expr1

    expr = B**(-1)*(A**(-1)*B**(-1) - A**(-1)*C*B**(-1))**(-1)*A**(-1)
    I = Identity(n)
    # Ideally we get the first, but we at least don't want a wrong answer
    assert factor(expr) in [I - C, B**-1*(A**-1*(I - C)*B**-1)**-1*A**-1]

def test_numpy_conversion():
    try:
        from numpy import array, array_equal
    except ImportError:
        skip('NumPy must be available to test creating matrices from ndarrays')
    A = MatrixSymbol('A', 2, 2)
    np_array = array([[MatrixElement(A, 0, 0), MatrixElement(A, 0, 1)],
    [MatrixElement(A, 1, 0), MatrixElement(A, 1, 1)]])
    assert array_equal(array(A), np_array)
    assert array_equal(array(A, copy=True), np_array)
    if(int(version('numpy').split('.')[0]) >= 2): #run this test only if numpy is new enough that copy variable is passed properly.
        raises(TypeError, lambda: array(A, copy=False))

def test_issue_2749():
    A = MatrixSymbol("A", 5, 2)
    assert (A.T * A).I.as_explicit() == Matrix([[(A.T * A).I[0, 0], (A.T * A).I[0, 1]], \
    [(A.T * A).I[1, 0], (A.T * A).I[1, 1]]])


def test_issue_2750():
    x = MatrixSymbol('x', 1, 1)
    assert (x.T*x).as_explicit()**-1 == Matrix([[x[0, 0]**(-2)]])


def test_issue_7842():
    A = MatrixSymbol('A', 3, 1)
    B = MatrixSymbol('B', 2, 1)
    assert Eq(A, B) == False
    assert Eq(A[1,0], B[1, 0]).func is Eq
    A = ZeroMatrix(2, 3)
    B = ZeroMatrix(2, 3)
    assert Eq(A, B) == True


def test_issue_21195():
    t = symbols('t')
    x = Function('x')(t)
    dx = x.diff(t)
    exp1 = cos(x) + cos(x)*dx
    exp2 = sin(x) + tan(x)*(dx.diff(t))
    exp3 = sin(x)*sin(t)*(dx.diff(t)).diff(t)
    A = Matrix([[exp1], [exp2], [exp3]])
    B = Matrix([[exp1.diff(x)], [exp2.diff(x)], [exp3.diff(x)]])
    assert A.diff(x) == B


def test_issue_24859():
    A = MatrixSymbol('A', 2, 3)
    B = MatrixSymbol('B', 3, 2)
    J = A*B
    Jinv = Matrix(J).adjugate()
    u = MatrixSymbol('u', 2, 3)
    Jk = Jinv.subs(A, A + x*u)

    expected = B[0, 1]*u[1, 0] + B[1, 1]*u[1, 1] + B[2, 1]*u[1, 2]
    assert Jk[0, 0].diff(x) == expected
    assert diff(Jk[0, 0], x).doit() == expected


def test_MatMul_postprocessor():
    z = zeros(2)
    z1 = ZeroMatrix(2, 2)
    assert Mul(0, z) == Mul(z, 0) in [z, z1]

    M = Matrix([[1, 2], [3, 4]])
    Mx = Matrix([[x, 2*x], [3*x, 4*x]])
    assert Mul(x, M) == Mul(M, x) == Mx

    A = MatrixSymbol("A", 2, 2)
    assert Mul(A, M) == MatMul(A, M)
    assert Mul(M, A) == MatMul(M, A)
    # Scalars should be absorbed into constant matrices
    a = Mul(x, M, A)
    b = Mul(M, x, A)
    c = Mul(M, A, x)
    assert a == b == c == MatMul(Mx, A)
    a = Mul(x, A, M)
    b = Mul(A, x, M)
    c = Mul(A, M, x)
    assert a == b == c == MatMul(A, Mx)
    assert Mul(M, M) == M**2
    assert Mul(A, M, M) == MatMul(A, M**2)
    assert Mul(M, M, A) == MatMul(M**2, A)
    assert Mul(M, A, M) == MatMul(M, A, M)

    assert Mul(A, x, M, M, x) == MatMul(A, Mx**2)


@XFAIL
def test_MatAdd_postprocessor_xfail():
    # This is difficult to get working because of the way that Add processes
    # its args.
    z = zeros(2)
    assert Add(z, S.NaN) == Add(S.NaN, z)


def test_MatAdd_postprocessor():
    # Some of these are nonsensical, but we do not raise errors for Add
    # because that breaks algorithms that want to replace matrices with dummy
    # symbols.

    z = zeros(2)

    assert Add(0, z) == Add(z, 0) == z

    a = Add(S.Infinity, z)
    assert a == Add(z, S.Infinity)
    assert isinstance(a, Add)
    assert a.args == (S.Infinity, z)

    a = Add(S.ComplexInfinity, z)
    assert a == Add(z, S.ComplexInfinity)
    assert isinstance(a, Add)
    assert a.args == (S.ComplexInfinity, z)

    a = Add(z, S.NaN)
    # assert a == Add(S.NaN, z) # See the XFAIL above
    assert isinstance(a, Add)
    assert a.args == (S.NaN, z)

    M = Matrix([[1, 2], [3, 4]])
    a = Add(x, M)
    assert a == Add(M, x)
    assert isinstance(a, Add)
    assert a.args == (x, M)

    A = MatrixSymbol("A", 2, 2)
    assert Add(A, M) == Add(M, A) == A + M

    # Scalars should be absorbed into constant matrices (producing an error)
    a = Add(x, M, A)
    assert a == Add(M, x, A) == Add(M, A, x) == Add(x, A, M) == Add(A, x, M) == Add(A, M, x)
    assert isinstance(a, Add)
    assert a.args == (x, A + M)

    assert Add(M, M) == 2*M
    assert Add(M, A, M) == Add(M, M, A) == Add(A, M, M) == A + 2*M

    a = Add(A, x, M, M, x)
    assert isinstance(a, Add)
    assert a.args == (2*x, A + 2*M)


def test_simplify_matrix_expressions():
    # Various simplification functions
    assert type(gcd_terms(C*D + D*C)) == MatAdd
    a = gcd_terms(2*C*D + 4*D*C)
    assert type(a) == MatAdd
    assert a.args == (2*C*D, 4*D*C)


def test_exp():
    A = MatrixSymbol('A', 2, 2)
    B = MatrixSymbol('B', 2, 2)
    expr1 = exp(A)*exp(B)
    expr2 = exp(B)*exp(A)
    assert expr1 != expr2
    assert expr1 - expr2 != 0
    assert not isinstance(expr1, exp)
    assert not isinstance(expr2, exp)


def test_invalid_args():
    raises(SympifyError, lambda: MatrixSymbol(1, 2, 'A'))


def test_matrixsymbol_from_symbol():
    # The label should be preserved during doit and subs
    A_label = Symbol('A', complex=True)
    A = MatrixSymbol(A_label, 2, 2)

    A_1 = A.doit()
    A_2 = A.subs(2, 3)
    assert A_1.args == A.args
    assert A_2.args[0] == A.args[0]


def test_as_explicit():
    Z = MatrixSymbol('Z', 2, 3)
    assert Z.as_explicit() == ImmutableMatrix([
        [Z[0, 0], Z[0, 1], Z[0, 2]],
        [Z[1, 0], Z[1, 1], Z[1, 2]],
    ])
    raises(ValueError, lambda: A.as_explicit())


def test_MatrixSet():
    M = MatrixSet(2, 2, set=S.Reals)
    assert M.shape == (2, 2)
    assert M.set == S.Reals
    X = Matrix([[1, 2], [3, 4]])
    assert X in M
    X = ZeroMatrix(2, 2)
    assert X in M
    raises(TypeError, lambda: A in M)
    raises(TypeError, lambda: 1 in M)
    M = MatrixSet(n, m, set=S.Reals)
    assert A in M
    raises(TypeError, lambda: C in M)
    raises(TypeError, lambda: X in M)
    M = MatrixSet(2, 2, set={1, 2, 3})
    X = Matrix([[1, 2], [3, 4]])
    Y = Matrix([[1, 2]])
    assert (X in M) == S.false
    assert (Y in M) == S.false
    raises(ValueError, lambda: MatrixSet(2, -2, S.Reals))
    raises(ValueError, lambda: MatrixSet(2.4, -1, S.Reals))
    raises(TypeError, lambda: MatrixSet(2, 2, (1, 2, 3)))


def test_matrixsymbol_solving():
    A = MatrixSymbol('A', 2, 2)
    B = MatrixSymbol('B', 2, 2)
    Z = ZeroMatrix(2, 2)
    assert -(-A + B) - A + B == Z
    assert (-(-A + B) - A + B).simplify() == Z
    assert (-(-A + B) - A + B).expand() == Z
    assert (-(-A + B) - A + B - Z).simplify() == Z
    assert (-(-A + B) - A + B - Z).expand() == Z
    assert (A*(A + B) + B*(A.T + B.T)).expand() == A**2 + A*B + B*A.T + B*B.T