File size: 20,712 Bytes
ac2f8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# Ported from latex2sympy by @augustt198
# https://github.com/augustt198/latex2sympy
# See license in LICENSE.txt
from importlib.metadata import version
import sympy
from sympy.external import import_module
from sympy.printing.str import StrPrinter
from sympy.physics.quantum.state import Bra, Ket

from .errors import LaTeXParsingError


LaTeXParser = LaTeXLexer = MathErrorListener = None

try:
    LaTeXParser = import_module('sympy.parsing.latex._antlr.latexparser',
                                import_kwargs={'fromlist': ['LaTeXParser']}).LaTeXParser
    LaTeXLexer = import_module('sympy.parsing.latex._antlr.latexlexer',
                               import_kwargs={'fromlist': ['LaTeXLexer']}).LaTeXLexer
except Exception:
    pass

ErrorListener = import_module('antlr4.error.ErrorListener',
                              warn_not_installed=True,
                              import_kwargs={'fromlist': ['ErrorListener']}
                              )



if ErrorListener:
    class MathErrorListener(ErrorListener.ErrorListener):  # type:ignore # noqa:F811
        def __init__(self, src):
            super(ErrorListener.ErrorListener, self).__init__()
            self.src = src

        def syntaxError(self, recog, symbol, line, col, msg, e):
            fmt = "%s\n%s\n%s"
            marker = "~" * col + "^"

            if msg.startswith("missing"):
                err = fmt % (msg, self.src, marker)
            elif msg.startswith("no viable"):
                err = fmt % ("I expected something else here", self.src, marker)
            elif msg.startswith("mismatched"):
                names = LaTeXParser.literalNames
                expected = [
                    names[i] for i in e.getExpectedTokens() if i < len(names)
                ]
                if len(expected) < 10:
                    expected = " ".join(expected)
                    err = (fmt % ("I expected one of these: " + expected, self.src,
                                  marker))
                else:
                    err = (fmt % ("I expected something else here", self.src,
                                  marker))
            else:
                err = fmt % ("I don't understand this", self.src, marker)
            raise LaTeXParsingError(err)


def parse_latex(sympy, strict=False):
    antlr4 = import_module('antlr4')

    if None in [antlr4, MathErrorListener] or \
            not version('antlr4-python3-runtime').startswith('4.11'):
        raise ImportError("LaTeX parsing requires the antlr4 Python package,"
                          " provided by pip (antlr4-python3-runtime) or"
                          " conda (antlr-python-runtime), version 4.11")

    sympy = sympy.strip()
    matherror = MathErrorListener(sympy)

    stream = antlr4.InputStream(sympy)
    lex = LaTeXLexer(stream)
    lex.removeErrorListeners()
    lex.addErrorListener(matherror)

    tokens = antlr4.CommonTokenStream(lex)
    parser = LaTeXParser(tokens)

    # remove default console error listener
    parser.removeErrorListeners()
    parser.addErrorListener(matherror)

    relation = parser.math().relation()
    if strict and (relation.start.start != 0 or relation.stop.stop != len(sympy) - 1):
        raise LaTeXParsingError("Invalid LaTeX")
    expr = convert_relation(relation)

    return expr


def convert_relation(rel):
    if rel.expr():
        return convert_expr(rel.expr())

    lh = convert_relation(rel.relation(0))
    rh = convert_relation(rel.relation(1))
    if rel.LT():
        return sympy.StrictLessThan(lh, rh)
    elif rel.LTE():
        return sympy.LessThan(lh, rh)
    elif rel.GT():
        return sympy.StrictGreaterThan(lh, rh)
    elif rel.GTE():
        return sympy.GreaterThan(lh, rh)
    elif rel.EQUAL():
        return sympy.Eq(lh, rh)
    elif rel.NEQ():
        return sympy.Ne(lh, rh)


def convert_expr(expr):
    return convert_add(expr.additive())


def convert_add(add):
    if add.ADD():
        lh = convert_add(add.additive(0))
        rh = convert_add(add.additive(1))
        return sympy.Add(lh, rh, evaluate=False)
    elif add.SUB():
        lh = convert_add(add.additive(0))
        rh = convert_add(add.additive(1))
        if hasattr(rh, "is_Atom") and rh.is_Atom:
            return sympy.Add(lh, -1 * rh, evaluate=False)
        return sympy.Add(lh, sympy.Mul(-1, rh, evaluate=False), evaluate=False)
    else:
        return convert_mp(add.mp())


def convert_mp(mp):
    if hasattr(mp, 'mp'):
        mp_left = mp.mp(0)
        mp_right = mp.mp(1)
    else:
        mp_left = mp.mp_nofunc(0)
        mp_right = mp.mp_nofunc(1)

    if mp.MUL() or mp.CMD_TIMES() or mp.CMD_CDOT():
        lh = convert_mp(mp_left)
        rh = convert_mp(mp_right)
        return sympy.Mul(lh, rh, evaluate=False)
    elif mp.DIV() or mp.CMD_DIV() or mp.COLON():
        lh = convert_mp(mp_left)
        rh = convert_mp(mp_right)
        return sympy.Mul(lh, sympy.Pow(rh, -1, evaluate=False), evaluate=False)
    else:
        if hasattr(mp, 'unary'):
            return convert_unary(mp.unary())
        else:
            return convert_unary(mp.unary_nofunc())


def convert_unary(unary):
    if hasattr(unary, 'unary'):
        nested_unary = unary.unary()
    else:
        nested_unary = unary.unary_nofunc()
    if hasattr(unary, 'postfix_nofunc'):
        first = unary.postfix()
        tail = unary.postfix_nofunc()
        postfix = [first] + tail
    else:
        postfix = unary.postfix()

    if unary.ADD():
        return convert_unary(nested_unary)
    elif unary.SUB():
        numabs = convert_unary(nested_unary)
        # Use Integer(-n) instead of Mul(-1, n)
        return -numabs
    elif postfix:
        return convert_postfix_list(postfix)


def convert_postfix_list(arr, i=0):
    if i >= len(arr):
        raise LaTeXParsingError("Index out of bounds")

    res = convert_postfix(arr[i])
    if isinstance(res, sympy.Expr):
        if i == len(arr) - 1:
            return res  # nothing to multiply by
        else:
            if i > 0:
                left = convert_postfix(arr[i - 1])
                right = convert_postfix(arr[i + 1])
                if isinstance(left, sympy.Expr) and isinstance(
                        right, sympy.Expr):
                    left_syms = convert_postfix(arr[i - 1]).atoms(sympy.Symbol)
                    right_syms = convert_postfix(arr[i + 1]).atoms(
                        sympy.Symbol)
                    # if the left and right sides contain no variables and the
                    # symbol in between is 'x', treat as multiplication.
                    if not (left_syms or right_syms) and str(res) == 'x':
                        return convert_postfix_list(arr, i + 1)
            # multiply by next
            return sympy.Mul(
                res, convert_postfix_list(arr, i + 1), evaluate=False)
    else:  # must be derivative
        wrt = res[0]
        if i == len(arr) - 1:
            raise LaTeXParsingError("Expected expression for derivative")
        else:
            expr = convert_postfix_list(arr, i + 1)
            return sympy.Derivative(expr, wrt)


def do_subs(expr, at):
    if at.expr():
        at_expr = convert_expr(at.expr())
        syms = at_expr.atoms(sympy.Symbol)
        if len(syms) == 0:
            return expr
        elif len(syms) > 0:
            sym = next(iter(syms))
            return expr.subs(sym, at_expr)
    elif at.equality():
        lh = convert_expr(at.equality().expr(0))
        rh = convert_expr(at.equality().expr(1))
        return expr.subs(lh, rh)


def convert_postfix(postfix):
    if hasattr(postfix, 'exp'):
        exp_nested = postfix.exp()
    else:
        exp_nested = postfix.exp_nofunc()

    exp = convert_exp(exp_nested)
    for op in postfix.postfix_op():
        if op.BANG():
            if isinstance(exp, list):
                raise LaTeXParsingError("Cannot apply postfix to derivative")
            exp = sympy.factorial(exp, evaluate=False)
        elif op.eval_at():
            ev = op.eval_at()
            at_b = None
            at_a = None
            if ev.eval_at_sup():
                at_b = do_subs(exp, ev.eval_at_sup())
            if ev.eval_at_sub():
                at_a = do_subs(exp, ev.eval_at_sub())
            if at_b is not None and at_a is not None:
                exp = sympy.Add(at_b, -1 * at_a, evaluate=False)
            elif at_b is not None:
                exp = at_b
            elif at_a is not None:
                exp = at_a

    return exp


def convert_exp(exp):
    if hasattr(exp, 'exp'):
        exp_nested = exp.exp()
    else:
        exp_nested = exp.exp_nofunc()

    if exp_nested:
        base = convert_exp(exp_nested)
        if isinstance(base, list):
            raise LaTeXParsingError("Cannot raise derivative to power")
        if exp.atom():
            exponent = convert_atom(exp.atom())
        elif exp.expr():
            exponent = convert_expr(exp.expr())
        return sympy.Pow(base, exponent, evaluate=False)
    else:
        if hasattr(exp, 'comp'):
            return convert_comp(exp.comp())
        else:
            return convert_comp(exp.comp_nofunc())


def convert_comp(comp):
    if comp.group():
        return convert_expr(comp.group().expr())
    elif comp.abs_group():
        return sympy.Abs(convert_expr(comp.abs_group().expr()), evaluate=False)
    elif comp.atom():
        return convert_atom(comp.atom())
    elif comp.floor():
        return convert_floor(comp.floor())
    elif comp.ceil():
        return convert_ceil(comp.ceil())
    elif comp.func():
        return convert_func(comp.func())


def convert_atom(atom):
    if atom.LETTER():
        sname = atom.LETTER().getText()
        if atom.subexpr():
            if atom.subexpr().expr():  # subscript is expr
                subscript = convert_expr(atom.subexpr().expr())
            else:  # subscript is atom
                subscript = convert_atom(atom.subexpr().atom())
            sname += '_{' + StrPrinter().doprint(subscript) + '}'
        if atom.SINGLE_QUOTES():
            sname += atom.SINGLE_QUOTES().getText()  # put after subscript for easy identify
        return sympy.Symbol(sname)
    elif atom.SYMBOL():
        s = atom.SYMBOL().getText()[1:]
        if s == "infty":
            return sympy.oo
        else:
            if atom.subexpr():
                subscript = None
                if atom.subexpr().expr():  # subscript is expr
                    subscript = convert_expr(atom.subexpr().expr())
                else:  # subscript is atom
                    subscript = convert_atom(atom.subexpr().atom())
                subscriptName = StrPrinter().doprint(subscript)
                s += '_{' + subscriptName + '}'
            return sympy.Symbol(s)
    elif atom.number():
        s = atom.number().getText().replace(",", "")
        return sympy.Number(s)
    elif atom.DIFFERENTIAL():
        var = get_differential_var(atom.DIFFERENTIAL())
        return sympy.Symbol('d' + var.name)
    elif atom.mathit():
        text = rule2text(atom.mathit().mathit_text())
        return sympy.Symbol(text)
    elif atom.frac():
        return convert_frac(atom.frac())
    elif atom.binom():
        return convert_binom(atom.binom())
    elif atom.bra():
        val = convert_expr(atom.bra().expr())
        return Bra(val)
    elif atom.ket():
        val = convert_expr(atom.ket().expr())
        return Ket(val)


def rule2text(ctx):
    stream = ctx.start.getInputStream()
    # starting index of starting token
    startIdx = ctx.start.start
    # stopping index of stopping token
    stopIdx = ctx.stop.stop

    return stream.getText(startIdx, stopIdx)


def convert_frac(frac):
    diff_op = False
    partial_op = False
    if frac.lower and frac.upper:
        lower_itv = frac.lower.getSourceInterval()
        lower_itv_len = lower_itv[1] - lower_itv[0] + 1
        if (frac.lower.start == frac.lower.stop
                and frac.lower.start.type == LaTeXLexer.DIFFERENTIAL):
            wrt = get_differential_var_str(frac.lower.start.text)
            diff_op = True
        elif (lower_itv_len == 2 and frac.lower.start.type == LaTeXLexer.SYMBOL
              and frac.lower.start.text == '\\partial'
              and (frac.lower.stop.type == LaTeXLexer.LETTER
                   or frac.lower.stop.type == LaTeXLexer.SYMBOL)):
            partial_op = True
            wrt = frac.lower.stop.text
            if frac.lower.stop.type == LaTeXLexer.SYMBOL:
                wrt = wrt[1:]

        if diff_op or partial_op:
            wrt = sympy.Symbol(wrt)
            if (diff_op and frac.upper.start == frac.upper.stop
                    and frac.upper.start.type == LaTeXLexer.LETTER
                    and frac.upper.start.text == 'd'):
                return [wrt]
            elif (partial_op and frac.upper.start == frac.upper.stop
                  and frac.upper.start.type == LaTeXLexer.SYMBOL
                  and frac.upper.start.text == '\\partial'):
                return [wrt]
            upper_text = rule2text(frac.upper)

            expr_top = None
            if diff_op and upper_text.startswith('d'):
                expr_top = parse_latex(upper_text[1:])
            elif partial_op and frac.upper.start.text == '\\partial':
                expr_top = parse_latex(upper_text[len('\\partial'):])
            if expr_top:
                return sympy.Derivative(expr_top, wrt)
    if frac.upper:
        expr_top = convert_expr(frac.upper)
    else:
        expr_top = sympy.Number(frac.upperd.text)
    if frac.lower:
        expr_bot = convert_expr(frac.lower)
    else:
        expr_bot = sympy.Number(frac.lowerd.text)
    inverse_denom = sympy.Pow(expr_bot, -1, evaluate=False)
    if expr_top == 1:
        return inverse_denom
    else:
        return sympy.Mul(expr_top, inverse_denom, evaluate=False)

def convert_binom(binom):
    expr_n = convert_expr(binom.n)
    expr_k = convert_expr(binom.k)
    return sympy.binomial(expr_n, expr_k, evaluate=False)

def convert_floor(floor):
    val = convert_expr(floor.val)
    return sympy.floor(val, evaluate=False)

def convert_ceil(ceil):
    val = convert_expr(ceil.val)
    return sympy.ceiling(val, evaluate=False)

def convert_func(func):
    if func.func_normal():
        if func.L_PAREN():  # function called with parenthesis
            arg = convert_func_arg(func.func_arg())
        else:
            arg = convert_func_arg(func.func_arg_noparens())

        name = func.func_normal().start.text[1:]

        # change arc<trig> -> a<trig>
        if name in [
                "arcsin", "arccos", "arctan", "arccsc", "arcsec", "arccot"
        ]:
            name = "a" + name[3:]
            expr = getattr(sympy.functions, name)(arg, evaluate=False)
        if name in ["arsinh", "arcosh", "artanh"]:
            name = "a" + name[2:]
            expr = getattr(sympy.functions, name)(arg, evaluate=False)

        if name == "exp":
            expr = sympy.exp(arg, evaluate=False)

        if name in ("log", "lg", "ln"):
            if func.subexpr():
                if func.subexpr().expr():
                    base = convert_expr(func.subexpr().expr())
                else:
                    base = convert_atom(func.subexpr().atom())
            elif name == "lg":  # ISO 80000-2:2019
                base = 10
            elif name in ("ln", "log"):  # SymPy's latex printer prints ln as log by default
                base = sympy.E
            expr = sympy.log(arg, base, evaluate=False)

        func_pow = None
        should_pow = True
        if func.supexpr():
            if func.supexpr().expr():
                func_pow = convert_expr(func.supexpr().expr())
            else:
                func_pow = convert_atom(func.supexpr().atom())

        if name in [
                "sin", "cos", "tan", "csc", "sec", "cot", "sinh", "cosh",
                "tanh"
        ]:
            if func_pow == -1:
                name = "a" + name
                should_pow = False
            expr = getattr(sympy.functions, name)(arg, evaluate=False)

        if func_pow and should_pow:
            expr = sympy.Pow(expr, func_pow, evaluate=False)

        return expr
    elif func.LETTER() or func.SYMBOL():
        if func.LETTER():
            fname = func.LETTER().getText()
        elif func.SYMBOL():
            fname = func.SYMBOL().getText()[1:]
        fname = str(fname)  # can't be unicode
        if func.subexpr():
            if func.subexpr().expr():  # subscript is expr
                subscript = convert_expr(func.subexpr().expr())
            else:  # subscript is atom
                subscript = convert_atom(func.subexpr().atom())
            subscriptName = StrPrinter().doprint(subscript)
            fname += '_{' + subscriptName + '}'
        if func.SINGLE_QUOTES():
            fname += func.SINGLE_QUOTES().getText()
        input_args = func.args()
        output_args = []
        while input_args.args():  # handle multiple arguments to function
            output_args.append(convert_expr(input_args.expr()))
            input_args = input_args.args()
        output_args.append(convert_expr(input_args.expr()))
        return sympy.Function(fname)(*output_args)
    elif func.FUNC_INT():
        return handle_integral(func)
    elif func.FUNC_SQRT():
        expr = convert_expr(func.base)
        if func.root:
            r = convert_expr(func.root)
            return sympy.root(expr, r, evaluate=False)
        else:
            return sympy.sqrt(expr, evaluate=False)
    elif func.FUNC_OVERLINE():
        expr = convert_expr(func.base)
        return sympy.conjugate(expr, evaluate=False)
    elif func.FUNC_SUM():
        return handle_sum_or_prod(func, "summation")
    elif func.FUNC_PROD():
        return handle_sum_or_prod(func, "product")
    elif func.FUNC_LIM():
        return handle_limit(func)


def convert_func_arg(arg):
    if hasattr(arg, 'expr'):
        return convert_expr(arg.expr())
    else:
        return convert_mp(arg.mp_nofunc())


def handle_integral(func):
    if func.additive():
        integrand = convert_add(func.additive())
    elif func.frac():
        integrand = convert_frac(func.frac())
    else:
        integrand = 1

    int_var = None
    if func.DIFFERENTIAL():
        int_var = get_differential_var(func.DIFFERENTIAL())
    else:
        for sym in integrand.atoms(sympy.Symbol):
            s = str(sym)
            if len(s) > 1 and s[0] == 'd':
                if s[1] == '\\':
                    int_var = sympy.Symbol(s[2:])
                else:
                    int_var = sympy.Symbol(s[1:])
                int_sym = sym
        if int_var:
            integrand = integrand.subs(int_sym, 1)
        else:
            # Assume dx by default
            int_var = sympy.Symbol('x')

    if func.subexpr():
        if func.subexpr().atom():
            lower = convert_atom(func.subexpr().atom())
        else:
            lower = convert_expr(func.subexpr().expr())
        if func.supexpr().atom():
            upper = convert_atom(func.supexpr().atom())
        else:
            upper = convert_expr(func.supexpr().expr())
        return sympy.Integral(integrand, (int_var, lower, upper))
    else:
        return sympy.Integral(integrand, int_var)


def handle_sum_or_prod(func, name):
    val = convert_mp(func.mp())
    iter_var = convert_expr(func.subeq().equality().expr(0))
    start = convert_expr(func.subeq().equality().expr(1))
    if func.supexpr().expr():  # ^{expr}
        end = convert_expr(func.supexpr().expr())
    else:  # ^atom
        end = convert_atom(func.supexpr().atom())

    if name == "summation":
        return sympy.Sum(val, (iter_var, start, end))
    elif name == "product":
        return sympy.Product(val, (iter_var, start, end))


def handle_limit(func):
    sub = func.limit_sub()
    if sub.LETTER():
        var = sympy.Symbol(sub.LETTER().getText())
    elif sub.SYMBOL():
        var = sympy.Symbol(sub.SYMBOL().getText()[1:])
    else:
        var = sympy.Symbol('x')
    if sub.SUB():
        direction = "-"
    elif sub.ADD():
        direction = "+"
    else:
        direction = "+-"
    approaching = convert_expr(sub.expr())
    content = convert_mp(func.mp())

    return sympy.Limit(content, var, approaching, direction)


def get_differential_var(d):
    text = get_differential_var_str(d.getText())
    return sympy.Symbol(text)


def get_differential_var_str(text):
    for i in range(1, len(text)):
        c = text[i]
        if not (c == " " or c == "\r" or c == "\n" or c == "\t"):
            idx = i
            break
    text = text[idx:]
    if text[0] == "\\":
        text = text[1:]
    return text