File size: 25,754 Bytes
ac2f8e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import re
import sympy
from sympy.external import import_module
from sympy.parsing.latex.errors import LaTeXParsingError
lark = import_module("lark")
if lark:
from lark import Transformer, Token, Tree # type: ignore
else:
class Transformer: # type: ignore
def transform(self, *args):
pass
class Token: # type: ignore
pass
class Tree: # type: ignore
pass
# noinspection PyPep8Naming,PyMethodMayBeStatic
class TransformToSymPyExpr(Transformer):
"""Returns a SymPy expression that is generated by traversing the ``lark.Tree``
passed to the ``.transform()`` function.
Notes
=====
**This class is never supposed to be used directly.**
In order to tweak the behavior of this class, it has to be subclassed and then after
the required modifications are made, the name of the new class should be passed to
the :py:class:`LarkLaTeXParser` class by using the ``transformer`` argument in the
constructor.
Parameters
==========
visit_tokens : bool, optional
For information about what this option does, see `here
<https://lark-parser.readthedocs.io/en/latest/visitors.html#lark.visitors.Transformer>`_.
Note that the option must be set to ``True`` for the default parser to work.
"""
SYMBOL = sympy.Symbol
DIGIT = sympy.core.numbers.Integer
def CMD_INFTY(self, tokens):
return sympy.oo
def GREEK_SYMBOL_WITH_PRIMES(self, tokens):
# we omit the first character because it is a backslash. Also, if the variable name has "var" in it,
# like "varphi" or "varepsilon", we remove that too
variable_name = re.sub("var", "", tokens[1:])
return sympy.Symbol(variable_name)
def LATIN_SYMBOL_WITH_LATIN_SUBSCRIPT(self, tokens):
base, sub = tokens.value.split("_")
if sub.startswith("{"):
return sympy.Symbol("%s_{%s}" % (base, sub[1:-1]))
else:
return sympy.Symbol("%s_{%s}" % (base, sub))
def GREEK_SYMBOL_WITH_LATIN_SUBSCRIPT(self, tokens):
base, sub = tokens.value.split("_")
greek_letter = re.sub("var", "", base[1:])
if sub.startswith("{"):
return sympy.Symbol("%s_{%s}" % (greek_letter, sub[1:-1]))
else:
return sympy.Symbol("%s_{%s}" % (greek_letter, sub))
def LATIN_SYMBOL_WITH_GREEK_SUBSCRIPT(self, tokens):
base, sub = tokens.value.split("_")
if sub.startswith("{"):
greek_letter = sub[2:-1]
else:
greek_letter = sub[1:]
greek_letter = re.sub("var", "", greek_letter)
return sympy.Symbol("%s_{%s}" % (base, greek_letter))
def GREEK_SYMBOL_WITH_GREEK_SUBSCRIPT(self, tokens):
base, sub = tokens.value.split("_")
greek_base = re.sub("var", "", base[1:])
if sub.startswith("{"):
greek_sub = sub[2:-1]
else:
greek_sub = sub[1:]
greek_sub = re.sub("var", "", greek_sub)
return sympy.Symbol("%s_{%s}" % (greek_base, greek_sub))
def multi_letter_symbol(self, tokens):
if len(tokens) == 4: # no primes (single quotes) on symbol
return sympy.Symbol(tokens[2])
if len(tokens) == 5: # there are primes on the symbol
return sympy.Symbol(tokens[2] + tokens[4])
def number(self, tokens):
if tokens[0].type == "CMD_IMAGINARY_UNIT":
return sympy.I
if "." in tokens[0]:
return sympy.core.numbers.Float(tokens[0])
else:
return sympy.core.numbers.Integer(tokens[0])
def latex_string(self, tokens):
return tokens[0]
def group_round_parentheses(self, tokens):
return tokens[1]
def group_square_brackets(self, tokens):
return tokens[1]
def group_curly_parentheses(self, tokens):
return tokens[1]
def eq(self, tokens):
return sympy.Eq(tokens[0], tokens[2])
def ne(self, tokens):
return sympy.Ne(tokens[0], tokens[2])
def lt(self, tokens):
return sympy.Lt(tokens[0], tokens[2])
def lte(self, tokens):
return sympy.Le(tokens[0], tokens[2])
def gt(self, tokens):
return sympy.Gt(tokens[0], tokens[2])
def gte(self, tokens):
return sympy.Ge(tokens[0], tokens[2])
def add(self, tokens):
if len(tokens) == 2: # +a
return tokens[1]
if len(tokens) == 3: # a + b
lh = tokens[0]
rh = tokens[2]
if self._obj_is_sympy_Matrix(lh) or self._obj_is_sympy_Matrix(rh):
return sympy.MatAdd(lh, rh)
return sympy.Add(lh, rh)
def sub(self, tokens):
if len(tokens) == 2: # -a
x = tokens[1]
if self._obj_is_sympy_Matrix(x):
return sympy.MatMul(-1, x)
return -x
if len(tokens) == 3: # a - b
lh = tokens[0]
rh = tokens[2]
if self._obj_is_sympy_Matrix(lh) or self._obj_is_sympy_Matrix(rh):
return sympy.MatAdd(lh, sympy.MatMul(-1, rh))
return sympy.Add(lh, -rh)
def mul(self, tokens):
lh = tokens[0]
rh = tokens[2]
if self._obj_is_sympy_Matrix(lh) or self._obj_is_sympy_Matrix(rh):
return sympy.MatMul(lh, rh)
return sympy.Mul(lh, rh)
def div(self, tokens):
return self._handle_division(tokens[0], tokens[2])
def adjacent_expressions(self, tokens):
# Most of the time, if two expressions are next to each other, it means implicit multiplication,
# but not always
from sympy.physics.quantum import Bra, Ket
if isinstance(tokens[0], Ket) and isinstance(tokens[1], Bra):
from sympy.physics.quantum import OuterProduct
return OuterProduct(tokens[0], tokens[1])
elif tokens[0] == sympy.Symbol("d"):
# If the leftmost token is a "d", then it is highly likely that this is a differential
return tokens[0], tokens[1]
elif isinstance(tokens[0], tuple):
# then we have a derivative
return sympy.Derivative(tokens[1], tokens[0][1])
else:
return sympy.Mul(tokens[0], tokens[1])
def superscript(self, tokens):
def isprime(x):
return isinstance(x, Token) and x.type == "PRIMES"
def iscmdprime(x):
return isinstance(x, Token) and (x.type == "PRIMES_VIA_CMD"
or x.type == "CMD_PRIME")
def isstar(x):
return isinstance(x, Token) and x.type == "STARS"
def iscmdstar(x):
return isinstance(x, Token) and (x.type == "STARS_VIA_CMD"
or x.type == "CMD_ASTERISK")
base = tokens[0]
if len(tokens) == 3: # a^b OR a^\prime OR a^\ast
sup = tokens[2]
if len(tokens) == 5:
# a^{'}, a^{''}, ... OR
# a^{*}, a^{**}, ... OR
# a^{\prime}, a^{\prime\prime}, ... OR
# a^{\ast}, a^{\ast\ast}, ...
sup = tokens[3]
if self._obj_is_sympy_Matrix(base):
if sup == sympy.Symbol("T"):
return sympy.Transpose(base)
if sup == sympy.Symbol("H"):
return sympy.adjoint(base)
if isprime(sup):
sup = sup.value
if len(sup) % 2 == 0:
return base
return sympy.Transpose(base)
if iscmdprime(sup):
sup = sup.value
if (len(sup)/len(r"\prime")) % 2 == 0:
return base
return sympy.Transpose(base)
if isstar(sup):
sup = sup.value
# need .doit() in order to be consistent with
# sympy.adjoint() which returns the evaluated adjoint
# of a matrix
if len(sup) % 2 == 0:
return base.doit()
return sympy.adjoint(base)
if iscmdstar(sup):
sup = sup.value
# need .doit() for same reason as above
if (len(sup)/len(r"\ast")) % 2 == 0:
return base.doit()
return sympy.adjoint(base)
if isprime(sup) or iscmdprime(sup) or isstar(sup) or iscmdstar(sup):
raise LaTeXParsingError(f"{base} with superscript {sup} is not understood.")
return sympy.Pow(base, sup)
def matrix_prime(self, tokens):
base = tokens[0]
primes = tokens[1].value
if not self._obj_is_sympy_Matrix(base):
raise LaTeXParsingError(f"({base}){primes} is not understood.")
if len(primes) % 2 == 0:
return base
return sympy.Transpose(base)
def symbol_prime(self, tokens):
base = tokens[0]
primes = tokens[1].value
return sympy.Symbol(f"{base.name}{primes}")
def fraction(self, tokens):
numerator = tokens[1]
if isinstance(tokens[2], tuple):
# we only need the variable w.r.t. which we are differentiating
_, variable = tokens[2]
# we will pass this information upwards
return "derivative", variable
else:
denominator = tokens[2]
return self._handle_division(numerator, denominator)
def binomial(self, tokens):
return sympy.binomial(tokens[1], tokens[2])
def normal_integral(self, tokens):
underscore_index = None
caret_index = None
if "_" in tokens:
# we need to know the index because the next item in the list is the
# arguments for the lower bound of the integral
underscore_index = tokens.index("_")
if "^" in tokens:
# we need to know the index because the next item in the list is the
# arguments for the upper bound of the integral
caret_index = tokens.index("^")
lower_bound = tokens[underscore_index + 1] if underscore_index else None
upper_bound = tokens[caret_index + 1] if caret_index else None
differential_symbol = self._extract_differential_symbol(tokens)
if differential_symbol is None:
raise LaTeXParsingError("Differential symbol was not found in the expression."
"Valid differential symbols are \"d\", \"\\text{d}, and \"\\mathrm{d}\".")
# else we can assume that a differential symbol was found
differential_variable_index = tokens.index(differential_symbol) + 1
differential_variable = tokens[differential_variable_index]
# we can't simply do something like `if (lower_bound and not upper_bound) ...` because this would
# evaluate to `True` if the `lower_bound` is 0 and upper bound is non-zero
if lower_bound is not None and upper_bound is None:
# then one was given and the other wasn't
raise LaTeXParsingError("Lower bound for the integral was found, but upper bound was not found.")
if upper_bound is not None and lower_bound is None:
# then one was given and the other wasn't
raise LaTeXParsingError("Upper bound for the integral was found, but lower bound was not found.")
# check if any expression was given or not. If it wasn't, then set the integrand to 1.
if underscore_index is not None and underscore_index == differential_variable_index - 3:
# The Token at differential_variable_index - 2 should be the integrand. However, if going one more step
# backwards after that gives us the underscore, then that means that there _was_ no integrand.
# Example: \int^7_0 dx
integrand = 1
elif caret_index is not None and caret_index == differential_variable_index - 3:
# The Token at differential_variable_index - 2 should be the integrand. However, if going one more step
# backwards after that gives us the caret, then that means that there _was_ no integrand.
# Example: \int_0^7 dx
integrand = 1
elif differential_variable_index == 2:
# this means we have something like "\int dx", because the "\int" symbol will always be
# at index 0 in `tokens`
integrand = 1
else:
# The Token at differential_variable_index - 1 is the differential symbol itself, so we need to go one
# more step before that.
integrand = tokens[differential_variable_index - 2]
if lower_bound is not None:
# then we have a definite integral
# we can assume that either both the lower and upper bounds are given, or
# neither of them are
return sympy.Integral(integrand, (differential_variable, lower_bound, upper_bound))
else:
# we have an indefinite integral
return sympy.Integral(integrand, differential_variable)
def group_curly_parentheses_int(self, tokens):
# return signature is a tuple consisting of the expression in the numerator, along with the variable of
# integration
if len(tokens) == 3:
return 1, tokens[1]
elif len(tokens) == 4:
return tokens[1], tokens[2]
# there are no other possibilities
def special_fraction(self, tokens):
numerator, variable = tokens[1]
denominator = tokens[2]
# We pass the integrand, along with information about the variable of integration, upw
return sympy.Mul(numerator, sympy.Pow(denominator, -1)), variable
def integral_with_special_fraction(self, tokens):
underscore_index = None
caret_index = None
if "_" in tokens:
# we need to know the index because the next item in the list is the
# arguments for the lower bound of the integral
underscore_index = tokens.index("_")
if "^" in tokens:
# we need to know the index because the next item in the list is the
# arguments for the upper bound of the integral
caret_index = tokens.index("^")
lower_bound = tokens[underscore_index + 1] if underscore_index else None
upper_bound = tokens[caret_index + 1] if caret_index else None
# we can't simply do something like `if (lower_bound and not upper_bound) ...` because this would
# evaluate to `True` if the `lower_bound` is 0 and upper bound is non-zero
if lower_bound is not None and upper_bound is None:
# then one was given and the other wasn't
raise LaTeXParsingError("Lower bound for the integral was found, but upper bound was not found.")
if upper_bound is not None and lower_bound is None:
# then one was given and the other wasn't
raise LaTeXParsingError("Upper bound for the integral was found, but lower bound was not found.")
integrand, differential_variable = tokens[-1]
if lower_bound is not None:
# then we have a definite integral
# we can assume that either both the lower and upper bounds are given, or
# neither of them are
return sympy.Integral(integrand, (differential_variable, lower_bound, upper_bound))
else:
# we have an indefinite integral
return sympy.Integral(integrand, differential_variable)
def group_curly_parentheses_special(self, tokens):
underscore_index = tokens.index("_")
caret_index = tokens.index("^")
# given the type of expressions we are parsing, we can assume that the lower limit
# will always use braces around its arguments. This is because we don't support
# converting unconstrained sums into SymPy expressions.
# first we isolate the bottom limit
left_brace_index = tokens.index("{", underscore_index)
right_brace_index = tokens.index("}", underscore_index)
bottom_limit = tokens[left_brace_index + 1: right_brace_index]
# next, we isolate the upper limit
top_limit = tokens[caret_index + 1:]
# the code below will be useful for supporting things like `\sum_{n = 0}^{n = 5} n^2`
# if "{" in top_limit:
# left_brace_index = tokens.index("{", caret_index)
# if left_brace_index != -1:
# # then there's a left brace in the string, and we need to find the closing right brace
# right_brace_index = tokens.index("}", caret_index)
# top_limit = tokens[left_brace_index + 1: right_brace_index]
# print(f"top limit = {top_limit}")
index_variable = bottom_limit[0]
lower_limit = bottom_limit[-1]
upper_limit = top_limit[0] # for now, the index will always be 0
# print(f"return value = ({index_variable}, {lower_limit}, {upper_limit})")
return index_variable, lower_limit, upper_limit
def summation(self, tokens):
return sympy.Sum(tokens[2], tokens[1])
def product(self, tokens):
return sympy.Product(tokens[2], tokens[1])
def limit_dir_expr(self, tokens):
caret_index = tokens.index("^")
if "{" in tokens:
left_curly_brace_index = tokens.index("{", caret_index)
direction = tokens[left_curly_brace_index + 1]
else:
direction = tokens[caret_index + 1]
if direction == "+":
return tokens[0], "+"
elif direction == "-":
return tokens[0], "-"
else:
return tokens[0], "+-"
def group_curly_parentheses_lim(self, tokens):
limit_variable = tokens[1]
if isinstance(tokens[3], tuple):
destination, direction = tokens[3]
else:
destination = tokens[3]
direction = "+-"
return limit_variable, destination, direction
def limit(self, tokens):
limit_variable, destination, direction = tokens[2]
return sympy.Limit(tokens[-1], limit_variable, destination, direction)
def differential(self, tokens):
return tokens[1]
def derivative(self, tokens):
return sympy.Derivative(tokens[-1], tokens[5])
def list_of_expressions(self, tokens):
if len(tokens) == 1:
# we return it verbatim because the function_applied node expects
# a list
return tokens
else:
def remove_tokens(args):
if isinstance(args, Token):
if args.type != "COMMA":
# An unexpected token was encountered
raise LaTeXParsingError("A comma token was expected, but some other token was encountered.")
return False
return True
return filter(remove_tokens, tokens)
def function_applied(self, tokens):
return sympy.Function(tokens[0])(*tokens[2])
def min(self, tokens):
return sympy.Min(*tokens[2])
def max(self, tokens):
return sympy.Max(*tokens[2])
def bra(self, tokens):
from sympy.physics.quantum import Bra
return Bra(tokens[1])
def ket(self, tokens):
from sympy.physics.quantum import Ket
return Ket(tokens[1])
def inner_product(self, tokens):
from sympy.physics.quantum import Bra, Ket, InnerProduct
return InnerProduct(Bra(tokens[1]), Ket(tokens[3]))
def sin(self, tokens):
return sympy.sin(tokens[1])
def cos(self, tokens):
return sympy.cos(tokens[1])
def tan(self, tokens):
return sympy.tan(tokens[1])
def csc(self, tokens):
return sympy.csc(tokens[1])
def sec(self, tokens):
return sympy.sec(tokens[1])
def cot(self, tokens):
return sympy.cot(tokens[1])
def sin_power(self, tokens):
exponent = tokens[2]
if exponent == -1:
return sympy.asin(tokens[-1])
else:
return sympy.Pow(sympy.sin(tokens[-1]), exponent)
def cos_power(self, tokens):
exponent = tokens[2]
if exponent == -1:
return sympy.acos(tokens[-1])
else:
return sympy.Pow(sympy.cos(tokens[-1]), exponent)
def tan_power(self, tokens):
exponent = tokens[2]
if exponent == -1:
return sympy.atan(tokens[-1])
else:
return sympy.Pow(sympy.tan(tokens[-1]), exponent)
def csc_power(self, tokens):
exponent = tokens[2]
if exponent == -1:
return sympy.acsc(tokens[-1])
else:
return sympy.Pow(sympy.csc(tokens[-1]), exponent)
def sec_power(self, tokens):
exponent = tokens[2]
if exponent == -1:
return sympy.asec(tokens[-1])
else:
return sympy.Pow(sympy.sec(tokens[-1]), exponent)
def cot_power(self, tokens):
exponent = tokens[2]
if exponent == -1:
return sympy.acot(tokens[-1])
else:
return sympy.Pow(sympy.cot(tokens[-1]), exponent)
def arcsin(self, tokens):
return sympy.asin(tokens[1])
def arccos(self, tokens):
return sympy.acos(tokens[1])
def arctan(self, tokens):
return sympy.atan(tokens[1])
def arccsc(self, tokens):
return sympy.acsc(tokens[1])
def arcsec(self, tokens):
return sympy.asec(tokens[1])
def arccot(self, tokens):
return sympy.acot(tokens[1])
def sinh(self, tokens):
return sympy.sinh(tokens[1])
def cosh(self, tokens):
return sympy.cosh(tokens[1])
def tanh(self, tokens):
return sympy.tanh(tokens[1])
def asinh(self, tokens):
return sympy.asinh(tokens[1])
def acosh(self, tokens):
return sympy.acosh(tokens[1])
def atanh(self, tokens):
return sympy.atanh(tokens[1])
def abs(self, tokens):
return sympy.Abs(tokens[1])
def floor(self, tokens):
return sympy.floor(tokens[1])
def ceil(self, tokens):
return sympy.ceiling(tokens[1])
def factorial(self, tokens):
return sympy.factorial(tokens[0])
def conjugate(self, tokens):
return sympy.conjugate(tokens[1])
def square_root(self, tokens):
if len(tokens) == 2:
# then there was no square bracket argument
return sympy.sqrt(tokens[1])
elif len(tokens) == 3:
# then there _was_ a square bracket argument
return sympy.root(tokens[2], tokens[1])
def exponential(self, tokens):
return sympy.exp(tokens[1])
def log(self, tokens):
if tokens[0].type == "FUNC_LG":
# we don't need to check if there's an underscore or not because having one
# in this case would be meaningless
# TODO: ANTLR refers to ISO 80000-2:2019. should we keep base 10 or base 2?
return sympy.log(tokens[1], 10)
elif tokens[0].type == "FUNC_LN":
return sympy.log(tokens[1])
elif tokens[0].type == "FUNC_LOG":
# we check if a base was specified or not
if "_" in tokens:
# then a base was specified
return sympy.log(tokens[3], tokens[2])
else:
# a base was not specified
return sympy.log(tokens[1])
def _extract_differential_symbol(self, s: str):
differential_symbols = {"d", r"\text{d}", r"\mathrm{d}"}
differential_symbol = next((symbol for symbol in differential_symbols if symbol in s), None)
return differential_symbol
def matrix(self, tokens):
def is_matrix_row(x):
return (isinstance(x, Tree) and x.data == "matrix_row")
def is_not_col_delim(y):
return (not isinstance(y, Token) or y.type != "MATRIX_COL_DELIM")
matrix_body = tokens[1].children
return sympy.Matrix([[y for y in x.children if is_not_col_delim(y)]
for x in matrix_body if is_matrix_row(x)])
def determinant(self, tokens):
if len(tokens) == 2: # \det A
if not self._obj_is_sympy_Matrix(tokens[1]):
raise LaTeXParsingError("Cannot take determinant of non-matrix.")
return tokens[1].det()
if len(tokens) == 3: # | A |
return self.matrix(tokens).det()
def trace(self, tokens):
if not self._obj_is_sympy_Matrix(tokens[1]):
raise LaTeXParsingError("Cannot take trace of non-matrix.")
return sympy.Trace(tokens[1])
def adjugate(self, tokens):
if not self._obj_is_sympy_Matrix(tokens[1]):
raise LaTeXParsingError("Cannot take adjugate of non-matrix.")
# need .doit() since MatAdd does not support .adjugate() method
return tokens[1].doit().adjugate()
def _obj_is_sympy_Matrix(self, obj):
if hasattr(obj, "is_Matrix"):
return obj.is_Matrix
return isinstance(obj, sympy.Matrix)
def _handle_division(self, numerator, denominator):
if self._obj_is_sympy_Matrix(denominator):
raise LaTeXParsingError("Cannot divide by matrices like this since "
"it is not clear if left or right multiplication "
"by the inverse is intended. Try explicitly "
"multiplying by the inverse instead.")
if self._obj_is_sympy_Matrix(numerator):
return sympy.MatMul(numerator, sympy.Pow(denominator, -1))
return sympy.Mul(numerator, sympy.Pow(denominator, -1))
|