File size: 6,893 Bytes
ac2f8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
"""Tests for sho1d.py"""

from sympy.concrete import Sum
from sympy.core import oo
from sympy.core.numbers import (I, Integer)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import Abs
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.physics.quantum import Dagger
from sympy.physics.quantum.constants import hbar
from sympy.physics.quantum import Commutator
from sympy.physics.quantum.qapply import qapply
from sympy.physics.quantum.innerproduct import InnerProduct
from sympy.physics.quantum.cartesian import X, Px
from sympy.physics.quantum.hilbert import ComplexSpace
from sympy.physics.quantum.represent import represent
from sympy.simplify import simplify
from sympy.external import import_module
from sympy.tensor import IndexedBase, Idx
from sympy.testing.pytest import skip, raises

from sympy.physics.quantum.sho1d import (RaisingOp, LoweringOp,
                                        SHOKet, SHOBra,
                                        Hamiltonian, NumberOp)

ad = RaisingOp('a')
a = LoweringOp('a')
k = SHOKet('k')
kz = SHOKet(0)
kf = SHOKet(1)
k3 = SHOKet(3)
b = SHOBra('b')
b3 = SHOBra(3)
H = Hamiltonian('H')
N = NumberOp('N')
omega = Symbol('omega')
m = Symbol('m')
ndim = Integer(4)
p = Symbol('p', integer=True)
q = Symbol('q', nonnegative=True, integer=True)


np = import_module('numpy')
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})

ad_rep_sympy = represent(ad, basis=N, ndim=4, format='sympy')
a_rep = represent(a, basis=N, ndim=4, format='sympy')
N_rep = represent(N, basis=N, ndim=4, format='sympy')
H_rep = represent(H, basis=N, ndim=4, format='sympy')
k3_rep = represent(k3, basis=N, ndim=4, format='sympy')
b3_rep = represent(b3, basis=N, ndim=4, format='sympy')

def test_RaisingOp():
    assert Dagger(ad) == a
    assert Commutator(ad, a).doit() == Integer(-1)
    assert Commutator(ad, N).doit() == Integer(-1)*ad
    assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand()
    assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand()
    assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand()
    assert ad.rewrite('xp').doit() == \
        (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X)
    assert ad.hilbert_space == ComplexSpace(S.Infinity)
    for i in range(ndim - 1):
        assert ad_rep_sympy[i + 1,i] == sqrt(i + 1)

    if not np:
        skip("numpy not installed.")

    ad_rep_numpy = represent(ad, basis=N, ndim=4, format='numpy')
    for i in range(ndim - 1):
        assert ad_rep_numpy[i + 1,i] == float(sqrt(i + 1))

    if not np:
        skip("numpy not installed.")
    if not scipy:
        skip("scipy not installed.")

    ad_rep_scipy = represent(ad, basis=N, ndim=4, format='scipy.sparse', spmatrix='lil')
    for i in range(ndim - 1):
        assert ad_rep_scipy[i + 1,i] == float(sqrt(i + 1))

    assert ad_rep_numpy.dtype == 'float64'
    assert ad_rep_scipy.dtype == 'float64'

def test_LoweringOp():
    assert Dagger(a) == ad
    assert Commutator(a, ad).doit() == Integer(1)
    assert Commutator(a, N).doit() == a
    assert qapply(a*k) == (sqrt(k.n)*SHOKet(k.n-Integer(1))).expand()
    assert qapply(a*kz) == Integer(0)
    assert qapply(a*kf) == (sqrt(kf.n)*SHOKet(kf.n-Integer(1))).expand()
    assert a.rewrite('xp').doit() == \
        (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(I*Px + m*omega*X)
    for i in range(ndim - 1):
        assert a_rep[i,i + 1] == sqrt(i + 1)

def test_NumberOp():
    assert Commutator(N, ad).doit() == ad
    assert Commutator(N, a).doit() == Integer(-1)*a
    assert Commutator(N, H).doit() == Integer(0)
    assert qapply(N*k) == (k.n*k).expand()
    assert N.rewrite('a').doit() == ad*a
    assert N.rewrite('xp').doit() == (Integer(1)/(Integer(2)*m*hbar*omega))*(
        Px**2 + (m*omega*X)**2) - Integer(1)/Integer(2)
    assert N.rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2)
    for i in range(ndim):
        assert N_rep[i,i] == i
    assert N_rep == ad_rep_sympy*a_rep

def test_Hamiltonian():
    assert Commutator(H, N).doit() == Integer(0)
    assert qapply(H*k) == ((hbar*omega*(k.n + Integer(1)/Integer(2)))*k).expand()
    assert H.rewrite('a').doit() == hbar*omega*(ad*a + Integer(1)/Integer(2))
    assert H.rewrite('xp').doit() == \
        (Integer(1)/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
    assert H.rewrite('N').doit() == hbar*omega*(N + Integer(1)/Integer(2))
    for i in range(ndim):
        assert H_rep[i,i] == hbar*omega*(i + Integer(1)/Integer(2))

def test_SHOKet():
    assert SHOKet('k').dual_class() == SHOBra
    assert SHOBra('b').dual_class() == SHOKet
    assert InnerProduct(b,k).doit() == KroneckerDelta(k.n, b.n)
    assert k.hilbert_space == ComplexSpace(S.Infinity)
    assert k3_rep[k3.n, 0] == Integer(1)
    assert b3_rep[0, b3.n] == Integer(1)

def test_sho_sums():
    e1 = Sum(SHOKet(p)*SHOBra(p), (p, 0, 1))
    assert e1.doit() == SHOKet(0)*SHOBra(0) + SHOKet(1)*SHOBra(1)

    # Test qapply with Sum on the left
    assert qapply(
        Sum(SHOKet(p)*SHOBra(p), (p, 0, oo))*SHOKet(q),
        sum_doit=True
    ) == SHOKet(q)

    # Test qapply with Sum on the right
    a = IndexedBase('a')
    n = symbols('n', cls=Idx)
    result = qapply(SHOBra(q)*Sum(a[n]*SHOKet(n), (n,0,oo)), sum_doit=True)
    assert result == a[q]

    # Test qapply with a product of Sums
    result = qapply(
        SHOBra(q)*Sum(SHOKet(p)*SHOBra(p), (p, 0, oo))*Sum(a[n]*SHOKet(n), (n,0,oo)),
        sum_doit=True
    )
    assert result == a[q]

    with raises(ValueError):
        result = qapply(
            SHOBra(q)*Sum(SHOKet(p)*SHOBra(p), (p, 0, oo))*Sum(a[p]*SHOKet(p), (p,0,oo)),
            sum_doit=True
        )

def test_sho_coherant_state():
    alpha = Symbol('alpha', is_complex=True)
    cstate = exp(-Abs(alpha)**2/S(2))*Sum(((alpha**p)/sqrt(factorial(p)))*SHOKet(p), (p,0,oo))
    # Projection onto the number eigenstate
    assert qapply(SHOBra(q)*cstate, sum_doit=True) == exp(-Abs(alpha)**2/S(2))*alpha**q/sqrt(factorial(q))
    # Ensure that the coherent state is an eigenstate of annihilation operator
    assert simplify(qapply(SHOBra(q)*a*cstate, sum_doit=True)) == simplify(qapply(SHOBra(q)*alpha*cstate, sum_doit=True))

def test_issue_26495():
    nbar = Symbol('nbar', real=True, nonnegative=True)
    n = Symbol('n', integer=True)
    i = Symbol('i', integer=True, nonnegative=True)
    j = Symbol('j', integer=True, nonnegative=True)
    rho = Sum((nbar/(1+nbar))**n*SHOKet(n)*SHOBra(n), (n,0,oo))
    result = qapply(SHOBra(i)*rho*SHOKet(j), sum_doit=True)
    assert simplify(result) == (nbar/(nbar+1))**i*KroneckerDelta(i,j)