File size: 6,893 Bytes
ac2f8e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
"""Tests for sho1d.py"""
from sympy.concrete import Sum
from sympy.core import oo
from sympy.core.numbers import (I, Integer)
from sympy.core.singleton import S
from sympy.core.symbol import Symbol, symbols
from sympy.functions.combinatorial.factorials import factorial
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.complexes import Abs
from sympy.functions.special.tensor_functions import KroneckerDelta
from sympy.physics.quantum import Dagger
from sympy.physics.quantum.constants import hbar
from sympy.physics.quantum import Commutator
from sympy.physics.quantum.qapply import qapply
from sympy.physics.quantum.innerproduct import InnerProduct
from sympy.physics.quantum.cartesian import X, Px
from sympy.physics.quantum.hilbert import ComplexSpace
from sympy.physics.quantum.represent import represent
from sympy.simplify import simplify
from sympy.external import import_module
from sympy.tensor import IndexedBase, Idx
from sympy.testing.pytest import skip, raises
from sympy.physics.quantum.sho1d import (RaisingOp, LoweringOp,
SHOKet, SHOBra,
Hamiltonian, NumberOp)
ad = RaisingOp('a')
a = LoweringOp('a')
k = SHOKet('k')
kz = SHOKet(0)
kf = SHOKet(1)
k3 = SHOKet(3)
b = SHOBra('b')
b3 = SHOBra(3)
H = Hamiltonian('H')
N = NumberOp('N')
omega = Symbol('omega')
m = Symbol('m')
ndim = Integer(4)
p = Symbol('p', integer=True)
q = Symbol('q', nonnegative=True, integer=True)
np = import_module('numpy')
scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']})
ad_rep_sympy = represent(ad, basis=N, ndim=4, format='sympy')
a_rep = represent(a, basis=N, ndim=4, format='sympy')
N_rep = represent(N, basis=N, ndim=4, format='sympy')
H_rep = represent(H, basis=N, ndim=4, format='sympy')
k3_rep = represent(k3, basis=N, ndim=4, format='sympy')
b3_rep = represent(b3, basis=N, ndim=4, format='sympy')
def test_RaisingOp():
assert Dagger(ad) == a
assert Commutator(ad, a).doit() == Integer(-1)
assert Commutator(ad, N).doit() == Integer(-1)*ad
assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand()
assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand()
assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand()
assert ad.rewrite('xp').doit() == \
(Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X)
assert ad.hilbert_space == ComplexSpace(S.Infinity)
for i in range(ndim - 1):
assert ad_rep_sympy[i + 1,i] == sqrt(i + 1)
if not np:
skip("numpy not installed.")
ad_rep_numpy = represent(ad, basis=N, ndim=4, format='numpy')
for i in range(ndim - 1):
assert ad_rep_numpy[i + 1,i] == float(sqrt(i + 1))
if not np:
skip("numpy not installed.")
if not scipy:
skip("scipy not installed.")
ad_rep_scipy = represent(ad, basis=N, ndim=4, format='scipy.sparse', spmatrix='lil')
for i in range(ndim - 1):
assert ad_rep_scipy[i + 1,i] == float(sqrt(i + 1))
assert ad_rep_numpy.dtype == 'float64'
assert ad_rep_scipy.dtype == 'float64'
def test_LoweringOp():
assert Dagger(a) == ad
assert Commutator(a, ad).doit() == Integer(1)
assert Commutator(a, N).doit() == a
assert qapply(a*k) == (sqrt(k.n)*SHOKet(k.n-Integer(1))).expand()
assert qapply(a*kz) == Integer(0)
assert qapply(a*kf) == (sqrt(kf.n)*SHOKet(kf.n-Integer(1))).expand()
assert a.rewrite('xp').doit() == \
(Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(I*Px + m*omega*X)
for i in range(ndim - 1):
assert a_rep[i,i + 1] == sqrt(i + 1)
def test_NumberOp():
assert Commutator(N, ad).doit() == ad
assert Commutator(N, a).doit() == Integer(-1)*a
assert Commutator(N, H).doit() == Integer(0)
assert qapply(N*k) == (k.n*k).expand()
assert N.rewrite('a').doit() == ad*a
assert N.rewrite('xp').doit() == (Integer(1)/(Integer(2)*m*hbar*omega))*(
Px**2 + (m*omega*X)**2) - Integer(1)/Integer(2)
assert N.rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2)
for i in range(ndim):
assert N_rep[i,i] == i
assert N_rep == ad_rep_sympy*a_rep
def test_Hamiltonian():
assert Commutator(H, N).doit() == Integer(0)
assert qapply(H*k) == ((hbar*omega*(k.n + Integer(1)/Integer(2)))*k).expand()
assert H.rewrite('a').doit() == hbar*omega*(ad*a + Integer(1)/Integer(2))
assert H.rewrite('xp').doit() == \
(Integer(1)/(Integer(2)*m))*(Px**2 + (m*omega*X)**2)
assert H.rewrite('N').doit() == hbar*omega*(N + Integer(1)/Integer(2))
for i in range(ndim):
assert H_rep[i,i] == hbar*omega*(i + Integer(1)/Integer(2))
def test_SHOKet():
assert SHOKet('k').dual_class() == SHOBra
assert SHOBra('b').dual_class() == SHOKet
assert InnerProduct(b,k).doit() == KroneckerDelta(k.n, b.n)
assert k.hilbert_space == ComplexSpace(S.Infinity)
assert k3_rep[k3.n, 0] == Integer(1)
assert b3_rep[0, b3.n] == Integer(1)
def test_sho_sums():
e1 = Sum(SHOKet(p)*SHOBra(p), (p, 0, 1))
assert e1.doit() == SHOKet(0)*SHOBra(0) + SHOKet(1)*SHOBra(1)
# Test qapply with Sum on the left
assert qapply(
Sum(SHOKet(p)*SHOBra(p), (p, 0, oo))*SHOKet(q),
sum_doit=True
) == SHOKet(q)
# Test qapply with Sum on the right
a = IndexedBase('a')
n = symbols('n', cls=Idx)
result = qapply(SHOBra(q)*Sum(a[n]*SHOKet(n), (n,0,oo)), sum_doit=True)
assert result == a[q]
# Test qapply with a product of Sums
result = qapply(
SHOBra(q)*Sum(SHOKet(p)*SHOBra(p), (p, 0, oo))*Sum(a[n]*SHOKet(n), (n,0,oo)),
sum_doit=True
)
assert result == a[q]
with raises(ValueError):
result = qapply(
SHOBra(q)*Sum(SHOKet(p)*SHOBra(p), (p, 0, oo))*Sum(a[p]*SHOKet(p), (p,0,oo)),
sum_doit=True
)
def test_sho_coherant_state():
alpha = Symbol('alpha', is_complex=True)
cstate = exp(-Abs(alpha)**2/S(2))*Sum(((alpha**p)/sqrt(factorial(p)))*SHOKet(p), (p,0,oo))
# Projection onto the number eigenstate
assert qapply(SHOBra(q)*cstate, sum_doit=True) == exp(-Abs(alpha)**2/S(2))*alpha**q/sqrt(factorial(q))
# Ensure that the coherent state is an eigenstate of annihilation operator
assert simplify(qapply(SHOBra(q)*a*cstate, sum_doit=True)) == simplify(qapply(SHOBra(q)*alpha*cstate, sum_doit=True))
def test_issue_26495():
nbar = Symbol('nbar', real=True, nonnegative=True)
n = Symbol('n', integer=True)
i = Symbol('i', integer=True, nonnegative=True)
j = Symbol('j', integer=True, nonnegative=True)
rho = Sum((nbar/(1+nbar))**n*SHOKet(n)*SHOBra(n), (n,0,oo))
result = qapply(SHOBra(i)*rho*SHOKet(j), sum_doit=True)
assert simplify(result) == (nbar/(nbar+1))**i*KroneckerDelta(i,j)
|