File size: 9,921 Bytes
ac2f8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
from sympy.core.numbers import (I, pi, Rational)
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (cos, sin)
from sympy.functions.special.spherical_harmonics import Ynm
from sympy.matrices.dense import Matrix
from sympy.physics.wigner import (clebsch_gordan, wigner_9j, wigner_6j, gaunt,
        real_gaunt, racah, dot_rot_grad_Ynm, wigner_3j, wigner_d_small, wigner_d)
from sympy.testing.pytest import raises, skip

# for test cases, refer : https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients

def test_clebsch_gordan_docs():
    assert clebsch_gordan(Rational(3, 2), S.Half, 2, Rational(3, 2), S.Half, 2) == 1
    assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(3, 2), Rational(-1, 2), 1) == sqrt(3)/2
    assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(-1, 2), S.Half, 0) == -sqrt(2)/2


def test_clebsch_gordan():
    # Argument order: (j_1, j_2, j, m_1, m_2, m)

    h = S.One
    k = S.Half
    l = Rational(3, 2)
    i = Rational(-1, 2)
    n = Rational(7, 2)
    p = Rational(5, 2)
    assert clebsch_gordan(k, k, 1, k, k, 1) == 1
    assert clebsch_gordan(k, k, 1, k, k, 0) == 0
    assert clebsch_gordan(k, k, 1, i, i, -1) == 1
    assert clebsch_gordan(k, k, 1, k, i, 0) == sqrt(2)/2
    assert clebsch_gordan(k, k, 0, k, i, 0) == sqrt(2)/2
    assert clebsch_gordan(k, k, 1, i, k, 0) == sqrt(2)/2
    assert clebsch_gordan(k, k, 0, i, k, 0) == -sqrt(2)/2
    assert clebsch_gordan(h, k, l, 1, k, l) == 1
    assert clebsch_gordan(h, k, l, 1, i, k) == 1/sqrt(3)
    assert clebsch_gordan(h, k, k, 1, i, k) == sqrt(2)/sqrt(3)
    assert clebsch_gordan(h, k, k, 0, k, k) == -1/sqrt(3)
    assert clebsch_gordan(h, k, l, 0, k, k) == sqrt(2)/sqrt(3)
    assert clebsch_gordan(h, h, S(2), 1, 1, S(2)) == 1
    assert clebsch_gordan(h, h, S(2), 1, 0, 1) == 1/sqrt(2)
    assert clebsch_gordan(h, h, S(2), 0, 1, 1) == 1/sqrt(2)
    assert clebsch_gordan(h, h, 1, 1, 0, 1) == 1/sqrt(2)
    assert clebsch_gordan(h, h, 1, 0, 1, 1) == -1/sqrt(2)
    assert clebsch_gordan(l, l, S(3), l, l, S(3)) == 1
    assert clebsch_gordan(l, l, S(2), l, k, S(2)) == 1/sqrt(2)
    assert clebsch_gordan(l, l, S(3), l, k, S(2)) == 1/sqrt(2)
    assert clebsch_gordan(S(2), S(2), S(4), S(2), S(2), S(4)) == 1
    assert clebsch_gordan(S(2), S(2), S(3), S(2), 1, S(3)) == 1/sqrt(2)
    assert clebsch_gordan(S(2), S(2), S(3), 1, 1, S(2)) == 0
    assert clebsch_gordan(p, h, n, p, 1, n) == 1
    assert clebsch_gordan(p, h, p, p, 0, p) == sqrt(5)/sqrt(7)
    assert clebsch_gordan(p, h, l, k, 1, l) == 1/sqrt(15)


def test_clebsch_gordan_numpy():
    try:
        import numpy as np
    except ImportError:
        skip("numpy not installed")
    assert clebsch_gordan(*np.zeros(6).astype(np.int64)) == 1
    assert wigner_3j(2, np.float64(6.0), 4.0, 0, 0, 0) == sqrt(715)/143
    assert wigner_3j(0, 0.5, 0.5, 0, 0.5, -0.5) == sqrt(2)/2
    raises(ValueError, lambda: wigner_3j(2.1, 6, 4, 0, 0, 0))


def test_wigner():
    try:
        import numpy as np
    except ImportError:
        skip("numpy not installed")
    def tn(a, b):
        return (a - b).n(64) < S('1e-64')
    assert tn(wigner_9j(1, 1, 1, 1, 1, 1, 1, 1, 0, prec=64), Rational(1, 18))
    assert wigner_9j(3, 3, 2, 3, 3, 2, 3, 3, 2) == 3221*sqrt(
        70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105))
    assert wigner_6j(5, 5, 5, 5, 5, 5) == Rational(1, 52)
    assert tn(wigner_6j(8, 8, 8, 8, 8, 8, prec=64), Rational(-12219, 965770))
    assert wigner_6j(1, 1, 1, 1.0, np.float64(1.0), 1) == Rational(1, 6)
    assert wigner_6j(3.0, np.float32(3), 3.0, 3, 3, 3) == Rational(-1, 14)
    # regression test for #8747
    half = S.Half
    assert wigner_9j(0, 0, 0, 0, half, half, 0, half, half) == half
    assert (wigner_9j(3, 5, 4,
                      7 * half, 5 * half, 4,
                      9 * half, 9 * half, 0)
            == -sqrt(Rational(361, 205821000)))
    assert (wigner_9j(1, 4, 3,
                      5 * half, 4, 5 * half,
                      5 * half, 2, 7 * half)
            == -sqrt(Rational(3971, 373403520)))
    assert (wigner_9j(4, 9 * half, 5 * half,
                      2, 4, 4,
                      5, 7 * half, 7 * half)
            == -sqrt(Rational(3481, 5042614500)))
    assert (wigner_9j(5, 5, 5.0,
                      np.float64(5.0), 5, 5,
                      5, 5, 5)
            == 0)
    assert (wigner_9j(1.0, 2.0, 3.0,
                      3, 2, 1,
                      2, 1, 3)
            == -4*sqrt(70)/11025)


def test_gaunt():
    def tn(a, b):
        return (a - b).n(64) < S('1e-64')
    assert gaunt(1, 0, 1, 1, 0, -1) == -1/(2*sqrt(pi))
    assert isinstance(gaunt(1, 1, 0, -1, 1, 0).args[0], Rational)
    assert isinstance(gaunt(0, 1, 1, 0, -1, 1).args[0], Rational)

    assert tn(gaunt(
        10, 10, 12, 9, 3, -12, prec=64), (Rational(-98, 62031)) * sqrt(6279)/sqrt(pi))
    def gaunt_ref(l1, l2, l3, m1, m2, m3):
        return (
            sqrt((2 * l1 + 1) * (2 * l2 + 1) * (2 * l3 + 1) / (4 * pi)) *
            wigner_3j(l1, l2, l3, 0, 0, 0) *
            wigner_3j(l1, l2, l3, m1, m2, m3)
        )
    threshold = 1e-10
    l_max = 3
    l3_max = 24
    for l1 in range(l_max + 1):
        for l2 in range(l_max + 1):
            for l3 in range(l3_max + 1):
                for m1 in range(-l1, l1 + 1):
                    for m2 in range(-l2, l2 + 1):
                        for m3 in range(-l3, l3 + 1):
                            args = l1, l2, l3, m1, m2, m3
                            g  = gaunt(*args)
                            g0 = gaunt_ref(*args)
                            assert abs(g - g0) < threshold
                            if m1 + m2 + m3 != 0:
                                assert abs(g) < threshold
                            if (l1 + l2 + l3) % 2:
                                assert abs(g) < threshold
    assert gaunt(1, 1, 0, 0, 2, -2) is S.Zero


def test_realgaunt():
    # All non-zero values corresponding to l values from 0 to 2
    for l in range(3):
        for m in range(-l, l+1):
            assert real_gaunt(0, l, l, 0, m, m) == 1/(2*sqrt(pi))
    assert real_gaunt(1, 1, 2, 0, 0, 0) == sqrt(5)/(5*sqrt(pi))
    assert real_gaunt(1, 1, 2, 1, 1, 0) == -sqrt(5)/(10*sqrt(pi))
    assert real_gaunt(2, 2, 2, 0, 0, 0) == sqrt(5)/(7*sqrt(pi))
    assert real_gaunt(2, 2, 2, 0, 2, 2) == -sqrt(5)/(7*sqrt(pi))
    assert real_gaunt(2, 2, 2, -2, -2, 0) == -sqrt(5)/(7*sqrt(pi))
    assert real_gaunt(1, 1, 2, -1, 0, -1) == sqrt(15)/(10*sqrt(pi))
    assert real_gaunt(1, 1, 2, 0, 1, 1) == sqrt(15)/(10*sqrt(pi))
    assert real_gaunt(1, 1, 2, 1, 1, 2) == sqrt(15)/(10*sqrt(pi))
    assert real_gaunt(1, 1, 2, -1, 1, -2) == sqrt(15)/(10*sqrt(pi))
    assert real_gaunt(1, 1, 2, -1, -1, 2) == -sqrt(15)/(10*sqrt(pi))
    assert real_gaunt(2, 2, 2, 0, 1, 1) == sqrt(5)/(14*sqrt(pi))
    assert real_gaunt(2, 2, 2, 1, 1, 2) == sqrt(15)/(14*sqrt(pi))
    assert real_gaunt(2, 2, 2, -1, -1, 2) == -sqrt(15)/(14*sqrt(pi))

    assert real_gaunt(-2, -2, -2, -2, -2, 0) is S.Zero  # m test
    assert real_gaunt(-2, 1, 0, 1, 1, 1) is S.Zero  # l test
    assert real_gaunt(-2, -1, -2, -1, -1, 0) is S.Zero  # m and l test
    assert real_gaunt(-2, -2, -2, -2, -2, -2) is S.Zero  # m and k test
    assert real_gaunt(-2, -1, -2, -1, -1, -1) is S.Zero  # m, l and k test

    x = symbols('x', integer=True)
    v = [0]*6
    for i in range(len(v)):
        v[i] = x  # non literal ints fail
        raises(ValueError, lambda: real_gaunt(*v))
        v[i] = 0


def test_racah():
    assert racah(3,3,3,3,3,3) == Rational(-1,14)
    assert racah(2,2,2,2,2,2) == Rational(-3,70)
    assert racah(7,8,7,1,7,7, prec=4).is_Float
    assert racah(5.5,7.5,9.5,6.5,8,9) == -719*sqrt(598)/1158924
    assert abs(racah(5.5,7.5,9.5,6.5,8,9, prec=4) - (-0.01517)) < S('1e-4')


def test_dot_rota_grad_SH():
    theta, phi = symbols("theta phi")
    assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0) !=  \
        sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi))
    assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0).doit() ==  \
        sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi))
    assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2) !=  \
        0
    assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2).doit() ==  \
        0
    assert dot_rot_grad_Ynm(3, 3, 3, 3, theta, phi).doit() ==  \
        15*sqrt(3003)*Ynm(6, 6, theta, phi)/(143*sqrt(pi))
    assert dot_rot_grad_Ynm(3, 3, 1, 1, theta, phi).doit() ==  \
        sqrt(3)*Ynm(4, 4, theta, phi)/sqrt(pi)
    assert dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() ==  \
        3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi))
    assert dot_rot_grad_Ynm(3, 2, 3, 2, theta, phi).doit().expand() ==  \
        -sqrt(70)*Ynm(4, 4, theta, phi)/(11*sqrt(pi)) + \
        45*sqrt(182)*Ynm(6, 4, theta, phi)/(143*sqrt(pi))


def test_wigner_d():
    half = S(1)/2
    assert wigner_d_small(half, 0) == Matrix([[1, 0], [0, 1]])
    assert wigner_d_small(half, pi/2) == Matrix([[1, 1], [-1, 1]])/sqrt(2)
    assert wigner_d_small(half, pi) == Matrix([[0, 1], [-1, 0]])

    alpha, beta, gamma = symbols("alpha, beta, gamma", real=True)
    D = wigner_d(half, alpha, beta, gamma)
    assert D[0, 0] == exp(I*alpha/2)*exp(I*gamma/2)*cos(beta/2)
    assert D[0, 1] == exp(I*alpha/2)*exp(-I*gamma/2)*sin(beta/2)
    assert D[1, 0] == -exp(-I*alpha/2)*exp(I*gamma/2)*sin(beta/2)
    assert D[1, 1] == exp(-I*alpha/2)*exp(-I*gamma/2)*cos(beta/2)

    # Test Y_{n mi}(g*x)=\sum_{mj}D^n_{mi mj}*Y_{n mj}(x)
    theta, phi = symbols("theta phi", real=True)
    v = Matrix([Ynm(1, mj, theta, phi) for mj in range(1, -2, -1)])
    w = wigner_d(1, -pi/2, pi/2, -pi/2)@v.subs({theta: pi/4, phi: pi})
    w_ = v.subs({theta: pi/2, phi: pi/4})
    assert w.expand(func=True).as_real_imag() == w_.expand(func=True).as_real_imag()