File size: 10,967 Bytes
ac2f8e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# -*- coding: utf-8 -*-
from sympy.core.function import Function
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (asin, cos, sin)
from sympy.physics.vector import ReferenceFrame, dynamicsymbols, Dyadic
from sympy.physics.vector.printing import (VectorLatexPrinter, vpprint,
vsprint, vsstrrepr, vlatex)
a, b, c = symbols('a, b, c')
alpha, omega, beta = dynamicsymbols('alpha, omega, beta')
A = ReferenceFrame('A')
N = ReferenceFrame('N')
v = a ** 2 * N.x + b * N.y + c * sin(alpha) * N.z
w = alpha * N.x + sin(omega) * N.y + alpha * beta * N.z
ww = alpha * N.x + asin(omega) * N.y - alpha.diff() * beta * N.z
o = a/b * N.x + (c+b)/a * N.y + c**2/b * N.z
y = a ** 2 * (N.x | N.y) + b * (N.y | N.y) + c * sin(alpha) * (N.z | N.y)
x = alpha * (N.x | N.x) + sin(omega) * (N.y | N.z) + alpha * beta * (N.z | N.x)
xx = N.x | (-N.y - N.z)
xx2 = N.x | (N.y + N.z)
def ascii_vpretty(expr):
return vpprint(expr, use_unicode=False, wrap_line=False)
def unicode_vpretty(expr):
return vpprint(expr, use_unicode=True, wrap_line=False)
def test_latex_printer():
r = Function('r')('t')
assert VectorLatexPrinter().doprint(r ** 2) == "r^{2}"
r2 = Function('r^2')('t')
assert VectorLatexPrinter().doprint(r2.diff()) == r'\dot{r^{2}}'
ra = Function('r__a')('t')
assert VectorLatexPrinter().doprint(ra.diff().diff()) == r'\ddot{r^{a}}'
def test_vector_pretty_print():
# TODO : The unit vectors should print with subscripts but they just
# print as `n_x` instead of making `x` a subscript with unicode.
# TODO : The pretty print division does not print correctly here:
# w = alpha * N.x + sin(omega) * N.y + alpha / beta * N.z
expected = """\
2 \n\
a n_x + b n_y + c*sin(alpha) n_z\
"""
uexpected = """\
2 \n\
a n_x + b n_y + c⋅sin(α) n_z\
"""
assert ascii_vpretty(v) == expected
assert unicode_vpretty(v) == uexpected
expected = 'alpha n_x + sin(omega) n_y + alpha*beta n_z'
uexpected = 'α n_x + sin(ω) n_y + α⋅β n_z'
assert ascii_vpretty(w) == expected
assert unicode_vpretty(w) == uexpected
expected = """\
2 \n\
a b + c c \n\
- n_x + ----- n_y + -- n_z\n\
b a b \
"""
uexpected = """\
2 \n\
a b + c c \n\
─ n_x + ───── n_y + ── n_z\n\
b a b \
"""
assert ascii_vpretty(o) == expected
assert unicode_vpretty(o) == uexpected
# https://github.com/sympy/sympy/issues/26731
assert ascii_vpretty(-A.x) == '-a_x'
assert unicode_vpretty(-A.x) == '-a_x'
# https://github.com/sympy/sympy/issues/26799
assert ascii_vpretty(0*A.x) == '0'
assert unicode_vpretty(0*A.x) == '0'
def test_vector_latex():
a, b, c, d, omega = symbols('a, b, c, d, omega')
v = (a ** 2 + b / c) * A.x + sqrt(d) * A.y + cos(omega) * A.z
assert vlatex(v) == (r'(a^{2} + \frac{b}{c})\mathbf{\hat{a}_x} + '
r'\sqrt{d}\mathbf{\hat{a}_y} + '
r'\cos{\left(\omega \right)}'
r'\mathbf{\hat{a}_z}')
theta, omega, alpha, q = dynamicsymbols('theta, omega, alpha, q')
v = theta * A.x + omega * omega * A.y + (q * alpha) * A.z
assert vlatex(v) == (r'\theta\mathbf{\hat{a}_x} + '
r'\omega^{2}\mathbf{\hat{a}_y} + '
r'\alpha q\mathbf{\hat{a}_z}')
phi1, phi2, phi3 = dynamicsymbols('phi1, phi2, phi3')
theta1, theta2, theta3 = symbols('theta1, theta2, theta3')
v = (sin(theta1) * A.x +
cos(phi1) * cos(phi2) * A.y +
cos(theta1 + phi3) * A.z)
assert vlatex(v) == (r'\sin{\left(\theta_{1} \right)}'
r'\mathbf{\hat{a}_x} + \cos{'
r'\left(\phi_{1} \right)} \cos{'
r'\left(\phi_{2} \right)}\mathbf{\hat{a}_y} + '
r'\cos{\left(\theta_{1} + '
r'\phi_{3} \right)}\mathbf{\hat{a}_z}')
N = ReferenceFrame('N')
a, b, c, d, omega = symbols('a, b, c, d, omega')
v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z
expected = (r'(a^{2} + \frac{b}{c})\mathbf{\hat{n}_x} + '
r'\sqrt{d}\mathbf{\hat{n}_y} + '
r'\cos{\left(\omega \right)}'
r'\mathbf{\hat{n}_z}')
assert vlatex(v) == expected
# Try custom unit vectors.
N = ReferenceFrame('N', latexs=(r'\hat{i}', r'\hat{j}', r'\hat{k}'))
v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z
expected = (r'(a^{2} + \frac{b}{c})\hat{i} + '
r'\sqrt{d}\hat{j} + '
r'\cos{\left(\omega \right)}\hat{k}')
assert vlatex(v) == expected
expected = r'\alpha\mathbf{\hat{n}_x} + \operatorname{asin}{\left(\omega ' \
r'\right)}\mathbf{\hat{n}_y} - \beta \dot{\alpha}\mathbf{\hat{n}_z}'
assert vlatex(ww) == expected
expected = r'- \mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} - ' \
r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_z}'
assert vlatex(xx) == expected
expected = r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} + ' \
r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_z}'
assert vlatex(xx2) == expected
def test_vector_latex_arguments():
assert vlatex(N.x * 3.0, full_prec=False) == r'3.0\mathbf{\hat{n}_x}'
assert vlatex(N.x * 3.0, full_prec=True) == r'3.00000000000000\mathbf{\hat{n}_x}'
def test_vector_latex_with_functions():
N = ReferenceFrame('N')
omega, alpha = dynamicsymbols('omega, alpha')
v = omega.diff() * N.x
assert vlatex(v) == r'\dot{\omega}\mathbf{\hat{n}_x}'
v = omega.diff() ** alpha * N.x
assert vlatex(v) == (r'\dot{\omega}^{\alpha}'
r'\mathbf{\hat{n}_x}')
def test_dyadic_pretty_print():
expected = """\
2
a n_x|n_y + b n_y|n_y + c*sin(alpha) n_z|n_y\
"""
uexpected = """\
2
a n_x⊗n_y + b n_y⊗n_y + c⋅sin(α) n_z⊗n_y\
"""
assert ascii_vpretty(y) == expected
assert unicode_vpretty(y) == uexpected
expected = 'alpha n_x|n_x + sin(omega) n_y|n_z + alpha*beta n_z|n_x'
uexpected = 'α n_x⊗n_x + sin(ω) n_y⊗n_z + α⋅β n_z⊗n_x'
assert ascii_vpretty(x) == expected
assert unicode_vpretty(x) == uexpected
assert ascii_vpretty(Dyadic([])) == '0'
assert unicode_vpretty(Dyadic([])) == '0'
assert ascii_vpretty(xx) == '- n_x|n_y - n_x|n_z'
assert unicode_vpretty(xx) == '- n_x⊗n_y - n_x⊗n_z'
assert ascii_vpretty(xx2) == 'n_x|n_y + n_x|n_z'
assert unicode_vpretty(xx2) == 'n_x⊗n_y + n_x⊗n_z'
def test_dyadic_latex():
expected = (r'a^{2}\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} + '
r'b\mathbf{\hat{n}_y}\otimes \mathbf{\hat{n}_y} + '
r'c \sin{\left(\alpha \right)}'
r'\mathbf{\hat{n}_z}\otimes \mathbf{\hat{n}_y}')
assert vlatex(y) == expected
expected = (r'\alpha\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_x} + '
r'\sin{\left(\omega \right)}\mathbf{\hat{n}_y}'
r'\otimes \mathbf{\hat{n}_z} + '
r'\alpha \beta\mathbf{\hat{n}_z}\otimes \mathbf{\hat{n}_x}')
assert vlatex(x) == expected
assert vlatex(Dyadic([])) == '0'
def test_dyadic_str():
assert vsprint(Dyadic([])) == '0'
assert vsprint(y) == 'a**2*(N.x|N.y) + b*(N.y|N.y) + c*sin(alpha)*(N.z|N.y)'
assert vsprint(x) == 'alpha*(N.x|N.x) + sin(omega)*(N.y|N.z) + alpha*beta*(N.z|N.x)'
assert vsprint(ww) == "alpha*N.x + asin(omega)*N.y - beta*alpha'*N.z"
assert vsprint(xx) == '- (N.x|N.y) - (N.x|N.z)'
assert vsprint(xx2) == '(N.x|N.y) + (N.x|N.z)'
def test_vlatex(): # vlatex is broken #12078
from sympy.physics.vector import vlatex
x = symbols('x')
J = symbols('J')
f = Function('f')
g = Function('g')
h = Function('h')
expected = r'J \left(\frac{d}{d x} g{\left(x \right)} - \frac{d}{d x} h{\left(x \right)}\right)'
expr = J*f(x).diff(x).subs(f(x), g(x)-h(x))
assert vlatex(expr) == expected
def test_issue_13354():
"""
Test for proper pretty printing of physics vectors with ADD
instances in arguments.
Test is exactly the one suggested in the original bug report by
@moorepants.
"""
a, b, c = symbols('a, b, c')
A = ReferenceFrame('A')
v = a * A.x + b * A.y + c * A.z
w = b * A.x + c * A.y + a * A.z
z = w + v
expected = """(a + b) a_x + (b + c) a_y + (a + c) a_z"""
assert ascii_vpretty(z) == expected
def test_vector_derivative_printing():
# First order
v = omega.diff() * N.x
assert unicode_vpretty(v) == 'ω̇ n_x'
assert ascii_vpretty(v) == "omega'(t) n_x"
# Second order
v = omega.diff().diff() * N.x
assert vlatex(v) == r'\ddot{\omega}\mathbf{\hat{n}_x}'
assert unicode_vpretty(v) == 'ω̈ n_x'
assert ascii_vpretty(v) == "omega''(t) n_x"
# Third order
v = omega.diff().diff().diff() * N.x
assert vlatex(v) == r'\dddot{\omega}\mathbf{\hat{n}_x}'
assert unicode_vpretty(v) == 'ω⃛ n_x'
assert ascii_vpretty(v) == "omega'''(t) n_x"
# Fourth order
v = omega.diff().diff().diff().diff() * N.x
assert vlatex(v) == r'\ddddot{\omega}\mathbf{\hat{n}_x}'
assert unicode_vpretty(v) == 'ω⃜ n_x'
assert ascii_vpretty(v) == "omega''''(t) n_x"
# Fifth order
v = omega.diff().diff().diff().diff().diff() * N.x
assert vlatex(v) == r'\frac{d^{5}}{d t^{5}} \omega\mathbf{\hat{n}_x}'
expected = '''\
5 \n\
d \n\
---(omega) n_x\n\
5 \n\
dt \
'''
uexpected = '''\
5 \n\
d \n\
───(ω) n_x\n\
5 \n\
dt \
'''
assert unicode_vpretty(v) == uexpected
assert ascii_vpretty(v) == expected
def test_vector_str_printing():
assert vsprint(w) == 'alpha*N.x + sin(omega)*N.y + alpha*beta*N.z'
assert vsprint(omega.diff() * N.x) == "omega'*N.x"
assert vsstrrepr(w) == 'alpha*N.x + sin(omega)*N.y + alpha*beta*N.z'
def test_vector_str_arguments():
assert vsprint(N.x * 3.0, full_prec=False) == '3.0*N.x'
assert vsprint(N.x * 3.0, full_prec=True) == '3.00000000000000*N.x'
def test_issue_14041():
import sympy.physics.mechanics as me
A_frame = me.ReferenceFrame('A')
thetad, phid = me.dynamicsymbols('theta, phi', 1)
L = symbols('L')
assert vlatex(L*(phid + thetad)**2*A_frame.x) == \
r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert vlatex((phid + thetad)**2*A_frame.x) == \
r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
assert vlatex((phid*thetad)**a*A_frame.x) == \
r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}"
|