File size: 10,967 Bytes
ac2f8e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# -*- coding: utf-8 -*-

from sympy.core.function import Function
from sympy.core.symbol import symbols
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.trigonometric import (asin, cos, sin)
from sympy.physics.vector import ReferenceFrame, dynamicsymbols, Dyadic
from sympy.physics.vector.printing import (VectorLatexPrinter, vpprint,
                                           vsprint, vsstrrepr, vlatex)


a, b, c = symbols('a, b, c')
alpha, omega, beta = dynamicsymbols('alpha, omega, beta')

A = ReferenceFrame('A')
N = ReferenceFrame('N')

v = a ** 2 * N.x + b * N.y + c * sin(alpha) * N.z
w = alpha * N.x + sin(omega) * N.y + alpha * beta * N.z
ww = alpha * N.x + asin(omega) * N.y - alpha.diff() * beta * N.z
o = a/b * N.x + (c+b)/a * N.y + c**2/b * N.z

y = a ** 2 * (N.x | N.y) + b * (N.y | N.y) + c * sin(alpha) * (N.z | N.y)
x = alpha * (N.x | N.x) + sin(omega) * (N.y | N.z) + alpha * beta * (N.z | N.x)
xx = N.x | (-N.y - N.z)
xx2 = N.x | (N.y + N.z)

def ascii_vpretty(expr):
    return vpprint(expr, use_unicode=False, wrap_line=False)


def unicode_vpretty(expr):
    return vpprint(expr, use_unicode=True, wrap_line=False)


def test_latex_printer():
    r = Function('r')('t')
    assert VectorLatexPrinter().doprint(r ** 2) == "r^{2}"
    r2 = Function('r^2')('t')
    assert VectorLatexPrinter().doprint(r2.diff()) == r'\dot{r^{2}}'
    ra = Function('r__a')('t')
    assert VectorLatexPrinter().doprint(ra.diff().diff()) == r'\ddot{r^{a}}'


def test_vector_pretty_print():

    # TODO : The unit vectors should print with subscripts but they just
    # print as `n_x` instead of making `x` a subscript with unicode.

    # TODO : The pretty print division does not print correctly here:
    # w = alpha * N.x + sin(omega) * N.y + alpha / beta * N.z

    expected = """\
 2                               \n\
a  n_x + b n_y + c*sin(alpha) n_z\
"""
    uexpected = """\
 2                           \n\
a  n_x + b n_y + c⋅sin(α) n_z\
"""

    assert ascii_vpretty(v) == expected
    assert unicode_vpretty(v) == uexpected

    expected = 'alpha n_x + sin(omega) n_y + alpha*beta n_z'
    uexpected = 'α n_x + sin(ω) n_y + α⋅β n_z'

    assert ascii_vpretty(w) == expected
    assert unicode_vpretty(w) == uexpected

    expected = """\
                     2    \n\
a       b + c       c     \n\
- n_x + ----- n_y + -- n_z\n\
b         a         b     \
"""
    uexpected = """\
                     2    \n\
a       b + c       c     \n\
─ n_x + ───── n_y + ── n_z\n\
b         a         b     \
"""

    assert ascii_vpretty(o) == expected
    assert unicode_vpretty(o) == uexpected

    # https://github.com/sympy/sympy/issues/26731
    assert ascii_vpretty(-A.x) == '-a_x'
    assert unicode_vpretty(-A.x) == '-a_x'

    # https://github.com/sympy/sympy/issues/26799
    assert ascii_vpretty(0*A.x) == '0'
    assert unicode_vpretty(0*A.x) == '0'


def test_vector_latex():

    a, b, c, d, omega = symbols('a, b, c, d, omega')

    v = (a ** 2 + b / c) * A.x + sqrt(d) * A.y + cos(omega) * A.z

    assert vlatex(v) == (r'(a^{2} + \frac{b}{c})\mathbf{\hat{a}_x} + '
                         r'\sqrt{d}\mathbf{\hat{a}_y} + '
                         r'\cos{\left(\omega \right)}'
                         r'\mathbf{\hat{a}_z}')

    theta, omega, alpha, q = dynamicsymbols('theta, omega, alpha, q')

    v = theta * A.x + omega * omega * A.y + (q * alpha) * A.z

    assert vlatex(v) == (r'\theta\mathbf{\hat{a}_x} + '
                         r'\omega^{2}\mathbf{\hat{a}_y} + '
                         r'\alpha q\mathbf{\hat{a}_z}')

    phi1, phi2, phi3 = dynamicsymbols('phi1, phi2, phi3')
    theta1, theta2, theta3 = symbols('theta1, theta2, theta3')

    v = (sin(theta1) * A.x +
         cos(phi1) * cos(phi2) * A.y +
         cos(theta1 + phi3) * A.z)

    assert vlatex(v) == (r'\sin{\left(\theta_{1} \right)}'
                         r'\mathbf{\hat{a}_x} + \cos{'
                         r'\left(\phi_{1} \right)} \cos{'
                         r'\left(\phi_{2} \right)}\mathbf{\hat{a}_y} + '
                         r'\cos{\left(\theta_{1} + '
                         r'\phi_{3} \right)}\mathbf{\hat{a}_z}')

    N = ReferenceFrame('N')

    a, b, c, d, omega = symbols('a, b, c, d, omega')

    v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z

    expected = (r'(a^{2} + \frac{b}{c})\mathbf{\hat{n}_x} + '
                r'\sqrt{d}\mathbf{\hat{n}_y} + '
                r'\cos{\left(\omega \right)}'
                r'\mathbf{\hat{n}_z}')

    assert vlatex(v) == expected

    # Try custom unit vectors.

    N = ReferenceFrame('N', latexs=(r'\hat{i}', r'\hat{j}', r'\hat{k}'))

    v = (a ** 2 + b / c) * N.x + sqrt(d) * N.y + cos(omega) * N.z

    expected = (r'(a^{2} + \frac{b}{c})\hat{i} + '
                r'\sqrt{d}\hat{j} + '
                r'\cos{\left(\omega \right)}\hat{k}')
    assert vlatex(v) == expected

    expected = r'\alpha\mathbf{\hat{n}_x} + \operatorname{asin}{\left(\omega ' \
        r'\right)}\mathbf{\hat{n}_y} -  \beta \dot{\alpha}\mathbf{\hat{n}_z}'
    assert vlatex(ww) == expected

    expected = r'- \mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} - ' \
        r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_z}'
    assert vlatex(xx) == expected

    expected = r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} + ' \
        r'\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_z}'
    assert vlatex(xx2) == expected


def test_vector_latex_arguments():
    assert vlatex(N.x * 3.0, full_prec=False) == r'3.0\mathbf{\hat{n}_x}'
    assert vlatex(N.x * 3.0, full_prec=True) == r'3.00000000000000\mathbf{\hat{n}_x}'


def test_vector_latex_with_functions():

    N = ReferenceFrame('N')

    omega, alpha = dynamicsymbols('omega, alpha')

    v = omega.diff() * N.x

    assert vlatex(v) == r'\dot{\omega}\mathbf{\hat{n}_x}'

    v = omega.diff() ** alpha * N.x

    assert vlatex(v) == (r'\dot{\omega}^{\alpha}'
                          r'\mathbf{\hat{n}_x}')


def test_dyadic_pretty_print():

    expected = """\
 2
a  n_x|n_y + b n_y|n_y + c*sin(alpha) n_z|n_y\
"""

    uexpected = """\
 2
a  n_x⊗n_y + b n_y⊗n_y + c⋅sin(α) n_z⊗n_y\
"""
    assert ascii_vpretty(y) == expected
    assert unicode_vpretty(y) == uexpected

    expected = 'alpha n_x|n_x + sin(omega) n_y|n_z + alpha*beta n_z|n_x'
    uexpected = 'α n_x⊗n_x + sin(ω) n_y⊗n_z + α⋅β n_z⊗n_x'
    assert ascii_vpretty(x) == expected
    assert unicode_vpretty(x) == uexpected

    assert ascii_vpretty(Dyadic([])) == '0'
    assert unicode_vpretty(Dyadic([])) == '0'

    assert ascii_vpretty(xx) == '- n_x|n_y - n_x|n_z'
    assert unicode_vpretty(xx) == '- n_x⊗n_y - n_x⊗n_z'

    assert ascii_vpretty(xx2) == 'n_x|n_y + n_x|n_z'
    assert unicode_vpretty(xx2) == 'n_x⊗n_y + n_x⊗n_z'


def test_dyadic_latex():

    expected = (r'a^{2}\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_y} + '
                r'b\mathbf{\hat{n}_y}\otimes \mathbf{\hat{n}_y} + '
                r'c \sin{\left(\alpha \right)}'
                r'\mathbf{\hat{n}_z}\otimes \mathbf{\hat{n}_y}')

    assert vlatex(y) == expected

    expected = (r'\alpha\mathbf{\hat{n}_x}\otimes \mathbf{\hat{n}_x} + '
                r'\sin{\left(\omega \right)}\mathbf{\hat{n}_y}'
                r'\otimes \mathbf{\hat{n}_z} + '
                r'\alpha \beta\mathbf{\hat{n}_z}\otimes \mathbf{\hat{n}_x}')

    assert vlatex(x) == expected

    assert vlatex(Dyadic([])) == '0'


def test_dyadic_str():
    assert vsprint(Dyadic([])) == '0'
    assert vsprint(y) == 'a**2*(N.x|N.y) + b*(N.y|N.y) + c*sin(alpha)*(N.z|N.y)'
    assert vsprint(x) == 'alpha*(N.x|N.x) + sin(omega)*(N.y|N.z) + alpha*beta*(N.z|N.x)'
    assert vsprint(ww) == "alpha*N.x + asin(omega)*N.y - beta*alpha'*N.z"
    assert vsprint(xx) == '- (N.x|N.y) - (N.x|N.z)'
    assert vsprint(xx2) == '(N.x|N.y) + (N.x|N.z)'


def test_vlatex(): # vlatex is broken #12078
    from sympy.physics.vector import vlatex

    x = symbols('x')
    J = symbols('J')

    f = Function('f')
    g = Function('g')
    h = Function('h')

    expected = r'J \left(\frac{d}{d x} g{\left(x \right)} - \frac{d}{d x} h{\left(x \right)}\right)'

    expr = J*f(x).diff(x).subs(f(x), g(x)-h(x))

    assert vlatex(expr) == expected


def test_issue_13354():
    """
    Test for proper pretty printing of physics vectors with ADD
    instances in arguments.

    Test is exactly the one suggested in the original bug report by
    @moorepants.
    """

    a, b, c = symbols('a, b, c')
    A = ReferenceFrame('A')
    v = a * A.x + b * A.y + c * A.z
    w = b * A.x + c * A.y + a * A.z
    z = w + v

    expected = """(a + b) a_x + (b + c) a_y + (a + c) a_z"""

    assert ascii_vpretty(z) == expected


def test_vector_derivative_printing():
    # First order
    v = omega.diff() * N.x
    assert unicode_vpretty(v) == 'ω̇ n_x'
    assert ascii_vpretty(v) == "omega'(t) n_x"

    # Second order
    v = omega.diff().diff() * N.x

    assert vlatex(v) == r'\ddot{\omega}\mathbf{\hat{n}_x}'
    assert unicode_vpretty(v) == 'ω̈ n_x'
    assert ascii_vpretty(v) == "omega''(t) n_x"

    # Third order
    v = omega.diff().diff().diff() * N.x

    assert vlatex(v) == r'\dddot{\omega}\mathbf{\hat{n}_x}'
    assert unicode_vpretty(v) == 'ω⃛ n_x'
    assert ascii_vpretty(v) == "omega'''(t) n_x"

    # Fourth order
    v = omega.diff().diff().diff().diff() * N.x

    assert vlatex(v) == r'\ddddot{\omega}\mathbf{\hat{n}_x}'
    assert unicode_vpretty(v) == 'ω⃜ n_x'
    assert ascii_vpretty(v) == "omega''''(t) n_x"

    # Fifth order
    v = omega.diff().diff().diff().diff().diff() * N.x

    assert vlatex(v) == r'\frac{d^{5}}{d t^{5}} \omega\mathbf{\hat{n}_x}'
    expected = '''\
 5            \n\
d             \n\
---(omega) n_x\n\
  5           \n\
dt            \
'''
    uexpected = '''\
 5        \n\
d         \n\
───(ω) n_x\n\
  5       \n\
dt        \
'''
    assert unicode_vpretty(v) == uexpected
    assert ascii_vpretty(v) == expected


def test_vector_str_printing():
    assert vsprint(w) == 'alpha*N.x + sin(omega)*N.y + alpha*beta*N.z'
    assert vsprint(omega.diff() * N.x) == "omega'*N.x"
    assert vsstrrepr(w) == 'alpha*N.x + sin(omega)*N.y + alpha*beta*N.z'


def test_vector_str_arguments():
    assert vsprint(N.x * 3.0, full_prec=False) == '3.0*N.x'
    assert vsprint(N.x * 3.0, full_prec=True) == '3.00000000000000*N.x'


def test_issue_14041():
    import sympy.physics.mechanics as me

    A_frame = me.ReferenceFrame('A')
    thetad, phid = me.dynamicsymbols('theta, phi', 1)
    L = symbols('L')

    assert vlatex(L*(phid + thetad)**2*A_frame.x) == \
        r"L \left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
    assert vlatex((phid + thetad)**2*A_frame.x) == \
        r"\left(\dot{\phi} + \dot{\theta}\right)^{2}\mathbf{\hat{a}_x}"
    assert vlatex((phid*thetad)**a*A_frame.x) == \
        r"\left(\dot{\phi} \dot{\theta}\right)^{a}\mathbf{\hat{a}_x}"