File size: 4,216 Bytes
ac2f8e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
from sympy.core.symbol import Symbol
from sympy.plotting.intervalmath import interval
from sympy.plotting.intervalmath.interval_membership import intervalMembership
from sympy.plotting.experimental_lambdify import experimental_lambdify
from sympy.testing.pytest import raises
def test_creation():
assert intervalMembership(True, True)
raises(TypeError, lambda: intervalMembership(True))
raises(TypeError, lambda: intervalMembership(True, True, True))
def test_getitem():
a = intervalMembership(True, False)
assert a[0] is True
assert a[1] is False
raises(IndexError, lambda: a[2])
def test_str():
a = intervalMembership(True, False)
assert str(a) == 'intervalMembership(True, False)'
assert repr(a) == 'intervalMembership(True, False)'
def test_equivalence():
a = intervalMembership(True, True)
b = intervalMembership(True, False)
assert (a == b) is False
assert (a != b) is True
a = intervalMembership(True, False)
b = intervalMembership(True, False)
assert (a == b) is True
assert (a != b) is False
def test_not():
x = Symbol('x')
r1 = x > -1
r2 = x <= -1
i = interval
f1 = experimental_lambdify((x,), r1)
f2 = experimental_lambdify((x,), r2)
tt = i(-0.1, 0.1, is_valid=True)
tn = i(-0.1, 0.1, is_valid=None)
tf = i(-0.1, 0.1, is_valid=False)
assert f1(tt) == ~f2(tt)
assert f1(tn) == ~f2(tn)
assert f1(tf) == ~f2(tf)
nt = i(0.9, 1.1, is_valid=True)
nn = i(0.9, 1.1, is_valid=None)
nf = i(0.9, 1.1, is_valid=False)
assert f1(nt) == ~f2(nt)
assert f1(nn) == ~f2(nn)
assert f1(nf) == ~f2(nf)
ft = i(1.9, 2.1, is_valid=True)
fn = i(1.9, 2.1, is_valid=None)
ff = i(1.9, 2.1, is_valid=False)
assert f1(ft) == ~f2(ft)
assert f1(fn) == ~f2(fn)
assert f1(ff) == ~f2(ff)
def test_boolean():
# There can be 9*9 test cases in full mapping of the cartesian product.
# But we only consider 3*3 cases for simplicity.
s = [
intervalMembership(False, False),
intervalMembership(None, None),
intervalMembership(True, True)
]
# Reduced tests for 'And'
a1 = [
intervalMembership(False, False),
intervalMembership(False, False),
intervalMembership(False, False),
intervalMembership(False, False),
intervalMembership(None, None),
intervalMembership(None, None),
intervalMembership(False, False),
intervalMembership(None, None),
intervalMembership(True, True)
]
a1_iter = iter(a1)
for i in range(len(s)):
for j in range(len(s)):
assert s[i] & s[j] == next(a1_iter)
# Reduced tests for 'Or'
a1 = [
intervalMembership(False, False),
intervalMembership(None, False),
intervalMembership(True, False),
intervalMembership(None, False),
intervalMembership(None, None),
intervalMembership(True, None),
intervalMembership(True, False),
intervalMembership(True, None),
intervalMembership(True, True)
]
a1_iter = iter(a1)
for i in range(len(s)):
for j in range(len(s)):
assert s[i] | s[j] == next(a1_iter)
# Reduced tests for 'Xor'
a1 = [
intervalMembership(False, False),
intervalMembership(None, False),
intervalMembership(True, False),
intervalMembership(None, False),
intervalMembership(None, None),
intervalMembership(None, None),
intervalMembership(True, False),
intervalMembership(None, None),
intervalMembership(False, True)
]
a1_iter = iter(a1)
for i in range(len(s)):
for j in range(len(s)):
assert s[i] ^ s[j] == next(a1_iter)
# Reduced tests for 'Not'
a1 = [
intervalMembership(True, False),
intervalMembership(None, None),
intervalMembership(False, True)
]
a1_iter = iter(a1)
for i in range(len(s)):
assert ~s[i] == next(a1_iter)
def test_boolean_errors():
a = intervalMembership(True, True)
raises(ValueError, lambda: a & 1)
raises(ValueError, lambda: a | 1)
raises(ValueError, lambda: a ^ 1)
|